JPS6258773B2 - - Google Patents

Info

Publication number
JPS6258773B2
JPS6258773B2 JP56214989A JP21498981A JPS6258773B2 JP S6258773 B2 JPS6258773 B2 JP S6258773B2 JP 56214989 A JP56214989 A JP 56214989A JP 21498981 A JP21498981 A JP 21498981A JP S6258773 B2 JPS6258773 B2 JP S6258773B2
Authority
JP
Japan
Prior art keywords
oxygen
adsorption
nitrogen
air
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56214989A
Other languages
Japanese (ja)
Other versions
JPS58114729A (en
Inventor
Jun Izumi
Hiroyuki Tsutaya
Shuichi Shikagawa
Masakazu Iwamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56214989A priority Critical patent/JPS58114729A/en
Publication of JPS58114729A publication Critical patent/JPS58114729A/en
Publication of JPS6258773B2 publication Critical patent/JPS6258773B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は空気中の酸素を分離、除去又は濃縮す
るための酸素分離方法に関する。 空気からの酸素の分離、除去、又は濃縮に於け
る最大の問題点は、通常原料を空気に求めるため
原料コストは存せず、酸素に付加される価格が (a) 分離、濃縮に設けられる設備費 (b) 装置を稼動させるに必要な諸動力費 (c) 分離媒体が必要な場合、その価格及び補充費
用 等に依存することである。 又、分離、濃縮のプロセスは原料を空気に求め
る限り酸素の分離、窒素の分離の二つの方法のい
ずれをとつてもかまわない。 これらの点から経済的に有利なものとしては、
従来実施されてきた酸素、窒素分離プロセスの代
表的なものとして、空気を極低温に冷却し酸素、
窒素の沸点の違いにより分離する深冷分離装置が
挙げられる。この装置は、大容量の酸素製造に適
しており国内の酸素、窒素製造の大半が深冷分離
プロセスに依存しているが、大電力、大設備を要
するという欠点がある。 他には、近年ユニオンカーバイト社等により開
発され実用化されている分離方法に、アルミノシ
リケート系高分子吸着剤を使用したものがある。
このうち、モレキユラーシーブス5A、13X(ユニ
オンカーバイド社製、商品名)と称されるもの
は、窒素に対して極めて大きな吸着能(1.2g
N2/1004g at NTP)を有し、これらにより空
気中から窒素の選択的除去を行ない酸素を分離、
濃縮するプロセスが実用化されている。実際に
は、5A、13X型モレキユラーシーブスは、その吸
着能がラングミユア(Langmuir)型吸着等温線
に従い、圧力が1.5ataに達すると圧力の増加に比
しあまり吸着能が伸びないこと、又、空気中
N2/O2モル比が4のため、極めて多量の窒素の
除去が必要となる。そのため、装置の大容量化に
ともなうスケールメリツトが小さく、小容量設備
に限定されているのが実状である。 又、他には酸素を選択的に吸収する遷移金属系
の有機錯体の利用も考えられる。 例えば、サルコミンと呼ばれる環状コバルト錯
体は、2モルのサルコミンで1モルの酸素を吸収
する。この吸収は、温度、圧力の変動に対して可
逆的であるので空気の昇温−降温サイクル、昇圧
−降圧サイクルにより原理的には酸素の分離、濃
縮が達成される。実際には吸収、放出にともない
劣化が甚だしく、又、高価なため、適用は極めて
特殊な酸素キヤリアーとしての使用に限定されよ
う。 これらの他、未だに実用化に至らないが原理的
にも充分に可能なものとして酸素選択透過フイル
ター、酸化ジルコニウムによる酸素ポンプ等が挙
げられる。 以上のように、酸素の分離、濃縮、除去に関し
ては実用上小容量酸素製造プロセスでは、モレキ
ユラーシーブスによる空気中の窒素除去による圧
力スイングプロセスが採用されている。又、大容
量型では空気の極低温冷却による深冷分離プロセ
スが採用されているが、いずれも動力費、設備費
の低減に関してはほとんど限界に到達したと考え
られる。 本発明は上記の酸素製造装置の欠点を改善した
酸素分離方法を供することにより大幅な酸素製造
価格の低減、酸素製造プロセスの大幅な設備の小
型化を達成することを目的として提案するもので
ある。 本発明者等は空気中の酸素及び窒素の吸着分離
に関連し、各種金属イオンを交換したA型ゼオラ
イトの酸素、窒素吸着能について鋭意研究を重ね
た結果Zn及びKイオンで交換されたA型ゼオラ
イトはZn交換のある範囲で、25℃以下の低温吸
着操作により著しい酸素選択吸着性を出現する事
を見出し本発明に到達したものである。 以下に本発明について詳細に説明する。Zn及
びKを交換イオンとして有するA型ゼオライト
(以下Zn−K−A型ゼオライトと略す)について
は特公昭52−18159号公報にその製造方法が記載
されており、Zn交換率66.7〜83.3%で特異な吸着
特性を示す事が述べられている。 ここでZn交換率(%)は、(1)式で定義され
る。 Zn交換率(%)=2〔Zn〕/2〔Zn〕+〔K〕×10
0………(1) 〔Zn〕:ゼオライト中のZnモル濃度 〔K〕: 〃 〃Kモル濃度 特公昭52−18159号公報記載の内容から推定す
るとZn−K−A型ゼオライトのZn交換率と吸着
剤の窓径の関係は第1表の如くなる。
The present invention relates to an oxygen separation method for separating, removing or concentrating oxygen in the air. The biggest problem in separating, removing, or concentrating oxygen from air is that since the raw material is usually air, there is no raw material cost, and the price added to oxygen is set for (a) separation and concentration. Equipment costs (b) Power costs necessary to operate the equipment (c) If a separation medium is required, it depends on its price and replenishment costs. Further, the separation and concentration process may be carried out by either of the two methods, oxygen separation or nitrogen separation, as long as air is used as the raw material. From these points of view, the economically advantageous ones are:
A typical oxygen and nitrogen separation process that has been carried out in the past involves cooling air to a cryogenic temperature to remove oxygen and nitrogen.
An example is a cryogenic separation device that separates nitrogen based on the difference in boiling point. This device is suitable for large-capacity oxygen production, and most of the domestic oxygen and nitrogen production relies on the cryogenic separation process, but it has the disadvantage of requiring large amounts of electricity and large equipment. Another separation method recently developed and put into practical use by Union Carbide and others uses an aluminosilicate polymer adsorbent.
Among these, molecular sieves 5A and 13X (manufactured by Union Carbide, trade name) have extremely high adsorption capacity for nitrogen (1.2g
N 2 /100 4 g at NTP), which selectively removes nitrogen from the air and separates oxygen.
A concentration process has been put into practical use. In reality, the adsorption capacity of 5A and 13X type molecular sieves follows the Langmuir type adsorption isotherm, and when the pressure reaches 1.5 ata, the adsorption capacity does not increase as much as the pressure increases. , in the air
Since the N 2 /O 2 molar ratio is 4, a very large amount of nitrogen needs to be removed. Therefore, the merits of scale associated with increasing the capacity of the device are small, and the actual situation is that the device is limited to small-capacity equipment. Another possibility is to use a transition metal-based organic complex that selectively absorbs oxygen. For example, a cyclic cobalt complex called sarcomine absorbs 1 mole of oxygen with 2 moles of sarcomine. Since this absorption is reversible with respect to changes in temperature and pressure, separation and concentration of oxygen can be achieved in principle by the heating-lowering cycle and pressure-raising-lowering cycle of the air. In reality, the deterioration due to absorption and release is severe, and since it is expensive, its application will be limited to use as a very special oxygen carrier. In addition to these, there are oxygen selective permeation filters, oxygen pumps using zirconium oxide, etc. that have not yet been put into practical use but are sufficiently possible in principle. As described above, in terms of oxygen separation, concentration, and removal, in practical small-capacity oxygen production processes, a pressure swing process is adopted in which nitrogen is removed from the air using molecular sieves. In addition, large-capacity types employ a cryogenic separation process using cryogenic cooling of air, but it is thought that all of these methods have almost reached their limits in terms of reducing power and equipment costs. The present invention is proposed with the aim of achieving a significant reduction in oxygen production costs and a significant downsizing of equipment for the oxygen production process by providing an oxygen separation method that improves the drawbacks of the above-mentioned oxygen production equipment. . In connection with adsorption separation of oxygen and nitrogen in the air, the present inventors have conducted intensive research on the oxygen and nitrogen adsorption ability of type A zeolite exchanged with various metal ions. The present invention was achieved by discovering that zeolite exhibits remarkable oxygen selective adsorption properties when subjected to low-temperature adsorption operations at temperatures below 25°C within a certain range of Zn exchange. The present invention will be explained in detail below. Regarding A-type zeolite having Zn and K as exchange ions (hereinafter abbreviated as Zn-K-A type zeolite), a manufacturing method is described in Japanese Patent Publication No. 18159/1983, and the method for producing the same is described in Japanese Patent Publication No. 18159/1983, with a Zn exchange rate of 66.7 to 83.3%. It is stated that it exhibits unique adsorption properties. Here, the Zn exchange rate (%) is defined by equation (1). Zn exchange rate (%) = 2 [Zn] / 2 [Zn] + [K] × 10
0......(1) [Zn]: Zn molar concentration in zeolite [K]: [K molar concentration] Estimated from the contents of Japanese Patent Publication No. 52-18159, Zn exchange rate of Zn-K-A type zeolite The relationship between the window diameter of the adsorbent and the window diameter of the adsorbent is shown in Table 1.

【表】 一方、酸素及び窒素分子の各々の見掛け上の形
状は第9図に示すとおりで、この大きさは第2表
に示すとおりであり、酸素と窒素の2成分系から
酸素を選択的に吸着する為には吸着剤の窓径は4
Åよりわずかに小さい事が必要であり、このこと
は本発明者等の別出願である特願昭55−67100号
からも示唆される。
[Table] On the other hand, the apparent shape of each oxygen and nitrogen molecule is as shown in Figure 9, and the size is as shown in Table 2. In order to adsorb to
It is necessary that the thickness be slightly smaller than Å, and this is also suggested by Japanese Patent Application No. 1983-67100, which was filed separately by the present inventors.

【表】 特公昭52−18159号公報ではZn−K−A型ゼオ
ライトによる酸素及び窒素の分離については何ら
言及していないが、酸素及び窒素の分子形状と第
1表に示したZn交換率と窓径の関係から酸素及
び窒素の吸着について予測するとZn交換率66.7%
以下では酸素、窒素とも吸着せず、66.7%以上で
は窓径に段階的変化があるにせよ、いずれも酸
素、窒素共吸着又は窒素選択型の吸着が予測され
る。 これに対し本発明者らは、Zn−K−A型ゼオ
ライトによる酸素、窒素の吸着性に関する試験に
よりZn交換率30〜70%の領域でZn−K−A型ゼ
オライトが酸素、窒素2成分から酸素のみを選択
的に吸着するという特公昭52−18159号公報の記
載内容からは予測できない効果を見出した。これ
はそれとは全く別の現象によるものと思われる。
更にこの傾向は低温になるに従い顕著になる事を
見出した。 本発明者等は上述のZn−K−A型ゼオライト
を得るために下記のような処理を行なつた。 先ず本発明者等は、UCC社製K−A型ゼオラ
イト粉末を充分に水洗し、更にKCl水溶液で100
℃1時間煮沸後、再び水洗したものを原料として
使用した。これはK−A型ゼオライト粉末には、
5wt%程度のNa、0.05wt%程度のCa、0.05wt%程
度のMg等の不純物が通常混入しているが、上記
処理により全不純物量が0.1wt%以下になるよう
に精製することができるからである。この中から
50gを分取しこれを1の純水に入れてスラリー
状になるように撹拌しながらZnCl2水溶液を滴下
して更に撹拌を1時間続けた。ここで、ZnCl2
水溶液のPHが5.5以上になるとZn(OH)2等の沈澱
物となるので極微量のHClでスラリーのPHを4.5
〜5.5に調整し目的のZn交換率になる様にKイオ
ンとの交換を行なつた。この後脱水してから第1
図に示す吸着塔に充填した。なお、本実験では、
滴下するZnCl2の液量を調整してZn交換率がそれ
ぞれ20、40、60、80%の4種のZn−K−A型ゼ
オライトを試作し、これと、対比のためにK−A
型ゼオライトとを吸着分離試験に供した。吸着塔
に充填後Zn−K−A型ゼオライトから真空過
器を使用して水を除去し、その後空気浴で100℃
で予備乾燥してから、真空加熱浴で0.1Torrの真
空排気条件下350〜450℃で1時間加熱して、吸着
活性を出現させた。 以下図を参照してZn−K−A型ゼオライトの
空気からの吸着分離性について説明する。 第1図はZn−K−A型ゼオライトの空気分離
特性を計測するために本発明者等が試作した装置
の概略説明図である。 1は高圧の空気ボンベである。ボンベ1を出た
高圧空気は減圧器2を経てバルブ3に至る。減圧
器2とバルブ3の間にブルドン管式圧力計4が設
置され圧力の測定が可能であり本試験では減圧器
2とブルドン管式圧力計4により入口圧力を5ata
に設定した。内径10mmφ、長さ300mmのステンレ
ス製の吸着塔6に挿入された水洗直後の吸着剤7
は何らの吸着能も有しない。このため本試験では
−70℃〜600℃迄の温度調整可能な温度調節浴8
に吸着塔6を設置し、吸着剤前処理のためバルブ
3,5を閉じ、バルブ9を開にし真空ポンプ10
で吸着塔内を0.1Torrに減圧し、温度調節浴8を
450℃に設定して脱水を兼ねて熱処理を1時間行
なつた。 その後再び室温に冷却してからバルブ3及び5
を開にして高圧空気を流過させフロート式流量計
11で流量を測定した後酸素濃度計12に全量流
入させて出口酸素濃度を計測し更にデータは自動
式記録計13で記録した。 第1図の実験装置により実施した吸着分離試験
に供した試料のZn交換率、及び試験条件を第3
表に示した。
[Table] Although Japanese Patent Publication No. 52-18159 does not mention anything about the separation of oxygen and nitrogen using Zn-K-A type zeolite, the molecular shapes of oxygen and nitrogen and the Zn exchange rate shown in Table 1 are Predicting the adsorption of oxygen and nitrogen based on the window diameter, the Zn exchange rate is 66.7%.
Below, neither oxygen nor nitrogen is adsorbed, and above 66.7%, although there is a stepwise change in the window diameter, oxygen and nitrogen co-adsorption or nitrogen selective adsorption is predicted. In contrast, the present inventors conducted a test on the adsorption of oxygen and nitrogen by Zn-K-A type zeolite, and found that Zn-K-A type zeolite was able to absorb oxygen and nitrogen from the two components in the region of Zn exchange rate of 30 to 70%. We found an effect that could not be predicted from the description in Japanese Patent Publication No. 18159/1983, which states that only oxygen is selectively adsorbed. This seems to be due to a completely different phenomenon.
Furthermore, we found that this tendency becomes more pronounced as the temperature decreases. The present inventors performed the following treatment in order to obtain the above-mentioned Zn-K-A type zeolite. First, the present inventors thoroughly washed K-A type zeolite powder manufactured by UCC with water, and further washed it with a KCl aqueous solution for 100 min.
After boiling at ℃ for 1 hour, the mixture was washed again with water and used as a raw material. This is true for K-A type zeolite powder.
Impurities such as approximately 5wt% Na, 0.05wt% Ca, and 0.05wt% Mg are usually mixed in, but the above treatment can purify the total impurity amount to 0.1wt% or less. It is from. From this
50 g was taken out and added to the pure water from Step 1. While stirring to form a slurry, an aqueous ZnCl 2 solution was added dropwise, and stirring was continued for an additional hour. Here, ZnCl 2 becomes a precipitate such as Zn(OH) 2 when the pH of the aqueous solution exceeds 5.5, so use a very small amount of HCl to lower the pH of the slurry to 4.5.
The Zn exchange rate was adjusted to ~5.5 and exchanged with K ions to achieve the desired Zn exchange rate. After this, after dehydration, the first
The adsorption tower shown in the figure was filled. In addition, in this experiment,
Four types of Zn-K-A type zeolites with Zn exchange rates of 20, 40, 60, and 80% were prepared by adjusting the amount of dropped ZnCl2 , and for comparison, K-A type zeolite was prepared.
type zeolite was subjected to an adsorption separation test. After filling the adsorption tower, water is removed from the Zn-K-A type zeolite using a vacuum filter, and then heated to 100℃ in an air bath.
After pre-drying the mixture, it was heated in a vacuum heating bath at 350 to 450°C for 1 hour under vacuum conditions of 0.1 Torr to develop adsorption activity. The adsorption and separation properties of Zn-K-A type zeolite from air will be explained below with reference to the figures. FIG. 1 is a schematic explanatory diagram of an apparatus prototyped by the present inventors to measure the air separation characteristics of Zn-K-A type zeolite. 1 is a high pressure air cylinder. High pressure air leaving the cylinder 1 passes through a pressure reducer 2 and reaches a valve 3. A Bourdon tube type pressure gauge 4 is installed between the pressure reducer 2 and the valve 3, and it is possible to measure the pressure.
It was set to Adsorbent 7 immediately after washing inserted into a stainless steel adsorption tower 6 with an inner diameter of 10 mmφ and a length of 300 mm
does not have any adsorption capacity. For this reason, in this test, a temperature-controlled bath 8 whose temperature can be adjusted from -70℃ to 600℃ was used.
The adsorption tower 6 is installed at
The pressure inside the adsorption tower was reduced to 0.1 Torr, and the temperature control bath 8 was
Heat treatment was performed at 450°C for 1 hour, also serving as dehydration. Then, after cooling to room temperature again, valves 3 and 5
was opened to allow high-pressure air to flow through it, and the flow rate was measured with a float type flow meter 11, and then the entire amount was allowed to flow into an oxygen concentration meter 12 to measure the outlet oxygen concentration, and the data was further recorded with an automatic recorder 13. The Zn exchange rate and test conditions of the sample subjected to the adsorption separation test conducted using the experimental apparatus shown in Figure 1 were
Shown in the table.

【表】 第2図及び第3図は試料Zn−K−A−0、及
びZn−K−A−20を用いて25℃及び−30℃で実
施した空気の吸着分離試験における出口酸素濃度
の経時変化を示すグラフであり第2図及び第3図
において横軸14は、流過時間であり、1目盛は
1分である。 縦軸15は出口酸素濃度であり単位は容量%で
ある。入口側酸素濃度を示すため、空気中酸素濃
度20.8%のところに基準線16を記した。 又第2図及び第3図において、出口酸素濃度の
経時変化曲線と試料の対応は、図中に試料名を記
入して区別した。 第2図及び第3図に示した出口酸素濃度の経時
変化データによると、25℃、及び−30℃におい
て、Zn−K−A−0、及びZn−K−A−20のい
ずれの試料についても出口酸素濃度は時間の経過
にかゝわらず一定で基準線16と一致しており、
酸素、窒素いずれもが吸着されないことがわか
る。 第4図及び第5図は試料Zn−K−A−40及び
Zn−K−A−60を用いて25℃及び−30℃で実施
した空気の吸着分離試験における出口酸素濃度の
経時変化を示すグラフであり、図中付番は第2図
と同一箇所を示す。 第4図に示したZn−K−A−40についての出
口酸素濃度の経時変化データによると、出口酸素
濃度は、初期に20.8%から4%迄低下しその後23
%まで比較的急速に上昇してから徐々に減少す
る。 Zn−K−A−60の場合も同様に出口酸素濃度
は初期に20.8%から12%迄低下し、その後28%ま
で比較的急速に上昇してから徐々に減少する。 このデータからわかるように吸着の初期におい
ては、単位時間当りの酸素の吸着量が窒素の吸着
量を上廻りこの為出口酸素濃度は減少する。しか
し時間の経過にともなつて単位時間当りの酸素の
吸着量を窒素の吸着量が上廻り出口酸素濃度は上
昇する。更に吸着剤が酸素、窒素に対し飽和する
ため、徐々に低下する。 更に第5図に示した−30℃におけるZn−K−
A−40についての出口酸素濃度の経時変化におい
ては、初期に20.8%から2%迄低下し2%近傍に
しばらく滞留した後増加し約5分後に破過する。
Zn−K−A−60の場合も同様な傾向を示し、出
口酸素濃度は初期に20.8%から0.5%迄低下し、
0.5%近傍にしばらく滞留した後、その後22%ま
で急速に上昇してから徐々に減少する。 このデータからわかるようにZn−K−A−40
及びZn−K−A−60のいずれの場合も単位時間
当りの酸素の吸着量が窒素の吸着量を圧倒的に上
廻り、窒素の吸着量は無視し得る程であり、酸素
の選択的吸着性が著しく高い。基準線16と出口
酸素濃度の経時変化曲線とで囲まれた面積は、充
填吸着剤当りの見掛けの酸素吸着量と比例する。 第6図及び第7図は試料Zn−K−A−80を用
いて25℃及び−30℃で実施した空気の吸着分離試
験における出口酸素濃度の経時変化を示すグラフ
であり、図中付番は第2図と同一筒所を示す。 第6図によると、Zn−K−A−80についての
25℃における出口酸素濃度は初期に20.8%から48
%まで増加し、その後徐々に低下し約6分で破過
に達している。また第7図に示したZn−K−A
−80についての−30℃における出口酸素濃度の経
時変化のデータによると、出口酸素濃度は初期に
20.8%から42%まで増加しその後徐々に低下して
いる。 第6図及び第7図において、基準線16と出口
酸素濃度の経時変化曲線とで囲まれた面積は充填
吸着剤当りの見掛けの窒素吸着量と比例する。 このデータから判るようにZn−K−A−80の
場合は吸着剤の単位時間当りの窒素吸着量が酸素
吸着量を上廻り、いわゆる窒素選択型である。 以上の結果を要約し各試料毎の酸素、窒素選
択性見掛けの酸素、窒素吸着量(1ata標準状態
換算での吸着剤100g当りの吸着量g)倒達最
低酸素濃度(O2vol%)、到達最高酸素濃度
(O2vol%)を第4表に示す。
[Table] Figures 2 and 3 show the outlet oxygen concentration in air adsorption separation tests conducted using samples Zn-K-A-0 and Zn-K-A-20 at 25℃ and -30℃. In FIGS. 2 and 3, which are graphs showing changes over time, the horizontal axis 14 is the flow time, and one scale is one minute. The vertical axis 15 is the outlet oxygen concentration, and the unit is volume %. In order to indicate the oxygen concentration on the inlet side, a reference line 16 was drawn at the air oxygen concentration of 20.8%. In FIGS. 2 and 3, the correspondence between the outlet oxygen concentration change curve over time and the sample is distinguished by writing the sample name in the figure. According to the data on changes in outlet oxygen concentration over time shown in Figures 2 and 3, at 25°C and -30°C, for both Zn-K-A-0 and Zn-K-A-20 samples. The outlet oxygen concentration remains constant regardless of the passage of time and matches the reference line 16.
It can be seen that neither oxygen nor nitrogen is adsorbed. Figures 4 and 5 show samples Zn-K-A-40 and
This is a graph showing the change in outlet oxygen concentration over time in an air adsorption separation test conducted at 25°C and -30°C using Zn-K-A-60, and the numbers in the figure indicate the same locations as in Figure 2. . According to the temporal change data of the outlet oxygen concentration for Zn-K-A-40 shown in Figure 4, the outlet oxygen concentration decreased from 20.8% to 4% at the initial stage, and then 23%.
%, then gradually decreases. Similarly, in the case of Zn-K-A-60, the outlet oxygen concentration initially decreases from 20.8% to 12%, then increases relatively rapidly to 28%, and then gradually decreases. As can be seen from this data, at the initial stage of adsorption, the amount of oxygen adsorbed per unit time exceeds the amount of nitrogen adsorbed, and therefore the outlet oxygen concentration decreases. However, as time passes, the amount of nitrogen adsorbed exceeds the amount of oxygen adsorbed per unit time, and the outlet oxygen concentration increases. Furthermore, since the adsorbent becomes saturated with oxygen and nitrogen, it gradually decreases. Furthermore, Zn-K- at -30℃ shown in Figure 5
Regarding the change over time in the outlet oxygen concentration for A-40, it initially decreases from 20.8% to 2%, stays around 2% for a while, then increases, and then breaks through after about 5 minutes.
A similar trend was observed in the case of Zn-K-A-60, with the outlet oxygen concentration decreasing from 20.8% to 0.5% at the initial stage.
After staying around 0.5% for a while, it quickly rises to 22% and then gradually decreases. As can be seen from this data, Zn-K-A-40
In both cases, the amount of oxygen adsorbed per unit time overwhelmingly exceeds the amount of nitrogen adsorbed, and the amount of nitrogen adsorbed is negligible, indicating selective adsorption of oxygen. significantly high in gender. The area surrounded by the reference line 16 and the time course curve of outlet oxygen concentration is proportional to the apparent amount of oxygen adsorbed per packed adsorbent. Figures 6 and 7 are graphs showing changes in outlet oxygen concentration over time in air adsorption separation tests conducted at 25°C and -30°C using sample Zn-K-A-80. indicates the same tube place as in Fig. 2. According to Figure 6, for Zn-K-A-80
The outlet oxygen concentration at 25℃ initially ranges from 20.8% to 48%.
%, then gradually decreased and reached breakthrough in about 6 minutes. Also, Zn-K-A shown in Figure 7
According to the data on the time course of the outlet oxygen concentration at −30℃ for −80℃, the outlet oxygen concentration initially
It increased from 20.8% to 42% and then gradually decreased. In FIGS. 6 and 7, the area surrounded by the reference line 16 and the time-course curve of outlet oxygen concentration is proportional to the apparent amount of nitrogen adsorbed per packed adsorbent. As can be seen from this data, in the case of Zn-K-A-80, the amount of nitrogen adsorbed by the adsorbent per unit time exceeds the amount of oxygen adsorbed, and is a so-called nitrogen selective type. Summarizing the above results, the oxygen and nitrogen selectivity for each sample, the apparent oxygen and nitrogen adsorption amount (adsorption amount in g per 100g of adsorbent in terms of 1ata standard conditions), the minimum oxygen concentration reached (O 2 vol%), The maximum oxygen concentration (O 2 vol%) achieved is shown in Table 4.

【表】【table】

【表】 以上詳述したように本発明のZn交換率30〜70
%のZn−K−A型ゼオライトは、特公昭52−
18159号公報を含めた既文献にいかなる示唆もさ
れていない酸素選択型の全く新しい吸着剤であ
り、極めて多量の酸素を吸着するという特徴を有
しており、特にこの傾向は低温において見られ−
30℃の酸素吸着量は室温の酸素吸着量の約7倍で
ある。 この吸着剤は、その適用する範囲が極めて広く
例えばモレキユラーシーブスを利用した酸素濃縮
装置に適用する場合、温度スイング、圧力スイン
グ方式のいずれにも適用可能であり、従来のN2
吸着型モレキユラーシーブスの吸着性能をはるか
に凌駕し装置の小型化、酸素濃縮の低廉化への道
を開くものである。 又、この吸着剤を他成分ガスから酸素除去に利
用するならば極めて安価な酸素吸着除去剤を提供
することとなる。 なお、この吸着剤を利用した酸素分離における
流量(100ml/分)、圧力(5ata)条件下では、Zn
交換率30〜70%の領域では0℃迄の冷却でほぼ完
全な酸素選択性を示した。 なお、この条件下において流量、圧力、
吸着塔断面積、吸着塔長さ等によつてどのよう
に出口酸素濃度が変化するかは“吸着の基礎と設
計、北川、鈴木P89〜P92”により推定できる。 又この温度より高い側では、窒素の共吸着が無
視し得ないが、酸素、窒素の2成分系について解
析すればよい。 これらの結果によるとZn交換率が30〜70%の
領域では低温になる程、酸素と窒素の物質移動係
数が開く事を意味し、これは実用的には低温にな
る程より低い入口流速が許容され室温側ではより
高い入口流速を設定しなければならない事とな
る。 いずれにしても、第2図〜第7図の出口酸素濃
度の経時変化データが得られれば吸着塔及びその
操作の設計は従来の技術範囲内で行ない得る。 なお、低温側温度条件の選定については上記吸
着剤の性質だけでは決らない。例えば廃熱が充分
に得られる条件下では吸収式冷凍機を使用しても
よくこの場合−25℃程度が最適であり、又他には
吸着塔を流過した後の高圧N2ガスとボルテツク
スチユーブを組み合わせると−10℃程度が最適で
あり、又、流過高圧N2ガスで膨脹タービンを駆
動すれば−30℃〜−180℃が好ましく、低温域の
温度選定はむしろ冷却の態様に依存する。 次に、A型ゼオライトのイオン交換可能な陽イ
オンの30%から70%を亜鉛イオンに、70%から30
%をカリウムイオンに交換したZn−K−A型ゼ
オライトを吸着剤として使用し、25℃以下におけ
る低温吸着操作によつて、酸素、窒素2成分混合
ガスから酸素を選択的に吸着分離する方法、すな
わち、前記のZn−K−A型ゼオライトを吸着剤
充填層に充填し、室温以下の温度域で相対的に高
圧の酸素、窒素2成分混合ガスを流過させて酸素
を該吸着剤に選択的に吸着させて窒素ガスを採取
し次いで該吸着剤充填層を相対的に低い圧力で吸
着酸素を採取する方法を圧力スイング式酸素製造
装置に適用した具体的実施例について説明する。 第8図は圧力スイング式酸素製造装置の概略説
明図である。第8図において、17〜24は自動
切換弁、25,26は本発明酸素吸着剤を充填し
た吸着塔、27は低温冷却用熱交、28は脱湿、
脱炭酸ガス用吸着塔、29はブレクーラ、30は
空気圧縮機、31は空気ストレーナ、32は絞り
弁であり、自動切換弁等を制御するための制御装
置等は図示を省略した。 今仮に、吸着塔25が吸着工程にあり、吸着塔
26が再生工程にあるとする。空気ストレーナ3
1を通つて除塵された空気は空気圧縮機30によ
り加圧されてから、ブレクーラ29で粗脱水及び
室温迄冷却されて、更に吸着塔28で脱湿、脱炭
酸を行われてから、低温冷却熱交27で冷却され
て弁20を通つて吸着塔25に送入されて同塔内
の吸着剤に加圧空気中の酸素が選択的に吸着さ
れ、窒素富化空気が弁17を通つて同塔から送出
される。この時、吸着塔25に付設された弁1
7,20は開、弁18,19は閉となつている。 他方、吸着塔26は吸着塔25において吸着操
作を行なつている間に、まず吸着塔26内の吸着
剤の減圧再生を行なう。即ち、この時吸着塔26
に付設された弁21〜24のうち弁21,22,
24は閉、弁23は開とし吸着塔26内を大気圧
(または負圧)になるまで減圧して、吸着工程に
おいて吸着していた吸着成分の一部を脱着し、酸
素富化空気が弁23を通つて同塔から送出され
る。 減圧工程が終了すると同時に弁22が開とな
り、大気を送風手段(図示省略)により絞り弁3
2および弁22を通して吸着塔26内に送入し、
酸素に富んだ同塔内の空隙ガスおよび残吸着成分
を弁23を通じて同塔外に送出する掃気工程を行
なう。 上記の工程が終了すると同時に、吸着塔26は
吸着工程に移り同時に吸着塔25は再生工程に移
る。 上記の如く、吸着工程と再生工程を連続的に繰
返すことにより酸素富化空気および(又は)窒素
富化空気を取出すものである。 本発明の実施例では、内径50mm、長さ600mmの
吸着塔にZn交換率60%のZn−K−A型ゼオライ
トを錠剤成型機で直径約1mmの球状に成型したも
のを1Kg充填し、供給空気圧力を1ata〜5ata間で
スイングし、入口空気流量を16Nl/分、温度−
30℃の低温条件で吸着分離した。 この時の第8図における、バルブ17,21後
方の製品窒素濃度、同窒素分離量、バルブ19,
23後方の製品酸素濃度、同酸素回収量を第5表
に示す。 なお、25℃においては、バルブ17,21の後
方からは製品窒素は酸素濃度5%程度で流過し
た。これは、第1図に示す小型の空気分離試験機
で見られた吸着初期の酸素濃度の低下がそれに続
く窒素吸着に打ち消されたためと思われる。25℃
付近では、より大きな入口流速が必要であろう。
[Table] As detailed above, the Zn exchange rate of the present invention is 30 to 70.
% of Zn-K-A type zeolite is
This is a completely new oxygen-selective adsorbent that has not been suggested in any existing literature, including Publication No. 18159, and has the characteristic of adsorbing an extremely large amount of oxygen, and this tendency is particularly noticeable at low temperatures.
The amount of oxygen adsorbed at 30°C is approximately seven times the amount of oxygen adsorbed at room temperature. This adsorbent has a very wide range of applications, for example, when applied to oxygen concentrators using molecular sieves, it can be applied to both temperature swing and pressure swing methods, and it can be applied to conventional N 2
The adsorption performance far exceeds that of adsorption-type molecular sieves, paving the way for smaller equipment and lower cost oxygen concentration. Furthermore, if this adsorbent is used to remove oxygen from other component gases, an extremely inexpensive oxygen adsorption/removal agent will be provided. Furthermore, under the conditions of flow rate (100ml/min) and pressure (5ata) in oxygen separation using this adsorbent, Zn
In the region of exchange rate of 30 to 70%, almost complete oxygen selectivity was exhibited by cooling to 0°C. In addition, under this condition, the flow rate, pressure,
How the outlet oxygen concentration changes depending on the adsorption tower cross-sectional area, adsorption tower length, etc. can be estimated from "Basics and Design of Adsorption, Kitagawa, Suzuki P89-P92". Further, at temperatures higher than this temperature, the co-adsorption of nitrogen cannot be ignored, but it is sufficient to analyze the two-component system of oxygen and nitrogen. These results indicate that in the region where the Zn exchange rate is 30 to 70%, the lower the temperature, the more the mass transfer coefficients of oxygen and nitrogen open up.This means that in practical terms, the lower the temperature, the lower the inlet flow velocity. On the room temperature side, a higher inlet flow rate must be set. In any case, if the data on changes in outlet oxygen concentration over time shown in FIGS. 2 to 7 are obtained, the design of the adsorption tower and its operation can be carried out within the conventional technical range. Note that the selection of the low-temperature conditions is not determined solely by the properties of the adsorbent. For example, an absorption chiller may be used under conditions where sufficient waste heat can be obtained, and in this case the optimal temperature is around -25℃. When combined with a tube tube, the optimum temperature is about -10℃, and if the expansion turbine is driven by flowing high-pressure N2 gas, the temperature between -30℃ and -180℃ is preferable.The temperature selection in the low-temperature range is rather based on the mode of cooling. Dependent. Next, 30% to 70% of the ion-exchangeable cations of type A zeolite are converted to zinc ions, and 70% to 30%
A method for selectively adsorbing and separating oxygen from a binary gas mixture of oxygen and nitrogen by using Zn-K-A type zeolite with % exchanged with potassium ions as an adsorbent and performing a low-temperature adsorption operation at 25°C or lower; That is, the above-mentioned Zn-K-A type zeolite is packed in an adsorbent packed bed, and a relatively high pressure two-component mixed gas of oxygen and nitrogen is passed through the bed at a temperature below room temperature to select oxygen as the adsorbent. A specific example will be described in which a method of collecting nitrogen gas by adsorbing nitrogen gas and then collecting adsorbed oxygen using the adsorbent packed bed at a relatively low pressure is applied to a pressure swing type oxygen production apparatus. FIG. 8 is a schematic explanatory diagram of a pressure swing type oxygen production apparatus. In FIG. 8, 17 to 24 are automatic switching valves, 25 and 26 are adsorption towers filled with the oxygen adsorbent of the present invention, 27 is a heat exchanger for low-temperature cooling, 28 is a dehumidifier,
An adsorption tower for decarbonizing gas, 29 a bleak cooler, 30 an air compressor, 31 an air strainer, 32 a throttle valve, and a control device for controlling automatic switching valves and the like are not shown. Assume now that the adsorption tower 25 is in the adsorption process and the adsorption tower 26 is in the regeneration process. air strainer 3
The air from which dust has been removed through 1 is pressurized by an air compressor 30, then roughly dehydrated and cooled to room temperature in a bleed cooler 29, further dehumidified and decarboxylated in an adsorption tower 28, and then cooled at a low temperature. The air is cooled by a heat exchanger 27 and sent to an adsorption tower 25 through a valve 20, where oxygen in the pressurized air is selectively adsorbed by an adsorbent in the tower, and the nitrogen-enriched air is passed through a valve 17. Sent from the same tower. At this time, the valve 1 attached to the adsorption tower 25
7 and 20 are open, and valves 18 and 19 are closed. On the other hand, while adsorption operation is being performed in the adsorption tower 25, the adsorption tower 26 first performs vacuum regeneration of the adsorbent within the adsorption tower 26. That is, at this time, the adsorption tower 26
Of the valves 21 to 24 attached to the valves 21, 22,
24 is closed and the valve 23 is opened to reduce the pressure inside the adsorption tower 26 to atmospheric pressure (or negative pressure), desorb some of the adsorbed components adsorbed in the adsorption process, and oxygen-enriched air flows through the valve. 23 and is sent out from the same tower. At the same time as the pressure reduction process is completed, the valve 22 is opened, and the atmosphere is sent to the throttle valve 3 by a blowing means (not shown).
2 and into the adsorption tower 26 through the valve 22,
A scavenging process is performed in which the oxygen-rich void gas and residual adsorbed components in the column are sent out of the column through the valve 23. At the same time as the above steps are completed, the adsorption tower 26 moves to the adsorption step, and at the same time, the adsorption tower 25 moves to the regeneration step. As mentioned above, oxygen-enriched air and/or nitrogen-enriched air are extracted by continuously repeating the adsorption step and the regeneration step. In an example of the present invention, an adsorption tower with an inner diameter of 50 mm and a length of 600 mm was filled with 1 kg of Zn-K-A type zeolite with a Zn exchange rate of 60%, molded into a sphere with a diameter of about 1 mm using a tablet molding machine, and then supplied. Swing the air pressure between 1 ata and 5 ata, inlet air flow rate at 16Nl/min, temperature -
Adsorption separation was carried out at a low temperature of 30°C. At this time, in FIG. 8, the product nitrogen concentration behind valves 17 and 21, the amount of nitrogen separated, the valve 19,
Table 5 shows the product oxygen concentration behind No. 23 and the amount of recovered oxygen. Note that at 25° C., the product nitrogen flowed from behind the valves 17 and 21 with an oxygen concentration of about 5%. This seems to be because the decrease in oxygen concentration at the initial stage of adsorption, which was observed in the small air separation tester shown in Figure 1, was canceled out by the subsequent nitrogen adsorption. 25℃
In the vicinity, larger inlet flow velocities may be required.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関しその効果を確認するため
に使用した実験装置のフロー、第2図〜第7図は
Zn交換率を変えたZn−K−A型ゼオライトの常
温、−30℃の温度下の動的吸着量を示すグラフ、
第8図は本発明の酸素分離方法実施態様のフロー
を示す図、第9図は酸素、窒素2原子分子モデル
を示す図である。
Figure 1 shows the flow of the experimental equipment used to confirm the effects of the present invention, and Figures 2 to 7 show the flow of the experimental equipment used to confirm the effects of the present invention.
A graph showing the dynamic adsorption amount of Zn-K-A type zeolite with different Zn exchange rates at room temperature and -30°C,
FIG. 8 is a diagram showing a flow of an embodiment of the oxygen separation method of the present invention, and FIG. 9 is a diagram showing a two-atom molecular model of oxygen and nitrogen.

Claims (1)

【特許請求の範囲】[Claims] 1 A型ゼオライトのイオン交換可能な陽イオン
の30%から70%を亜鉛イオンに70%から30%をカ
リウムイオンに交換したZn−K−A型ゼオライ
トを吸着剤として使用し、25℃以下における低温
吸着操作によつて、空気から酸素を選択的に吸着
分離することを特徴とする酸素分離方法。
1 Zn-K-A type zeolite, in which 30% to 70% of the ion-exchangeable cations of type A zeolite are exchanged with zinc ions and 70% to 30% with potassium ions, is used as an adsorbent, and the An oxygen separation method characterized by selectively adsorbing and separating oxygen from air by low-temperature adsorption operation.
JP56214989A 1981-12-28 1981-12-28 Selective adsorbent for oxygen and separation of oxygen Granted JPS58114729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56214989A JPS58114729A (en) 1981-12-28 1981-12-28 Selective adsorbent for oxygen and separation of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56214989A JPS58114729A (en) 1981-12-28 1981-12-28 Selective adsorbent for oxygen and separation of oxygen

Publications (2)

Publication Number Publication Date
JPS58114729A JPS58114729A (en) 1983-07-08
JPS6258773B2 true JPS6258773B2 (en) 1987-12-08

Family

ID=16664853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56214989A Granted JPS58114729A (en) 1981-12-28 1981-12-28 Selective adsorbent for oxygen and separation of oxygen

Country Status (1)

Country Link
JP (1) JPS58114729A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875474A (en) * 1971-10-02 1973-10-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875474A (en) * 1971-10-02 1973-10-11

Also Published As

Publication number Publication date
JPS58114729A (en) 1983-07-08

Similar Documents

Publication Publication Date Title
JP3416391B2 (en) Pretreatment method and apparatus for air liquefaction separation apparatus
US6402809B1 (en) Management of an air purification system with thermal regeneration
JP4315666B2 (en) Syngas purification method
EP0040935B1 (en) Oxygen adsorbent and process for the separation of oxygen and nitrogen using same
US7608134B1 (en) Decarbonating gas streams using zeolite adsorbents
JPH0459926B2 (en)
JPH08508968A (en) An improved method for the removal of gaseous impurities from hydrogen streams
JPH0592120A (en) Oxygen enriching method
US9651302B2 (en) Purification method and purification apparatus for feed air in cryogenic air separation
JPS6258773B2 (en)
JPS6358614B2 (en)
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
JPH0530762B2 (en)
JPS6226808B2 (en)
JPS6358613B2 (en)
JPS61245839A (en) Oxygen selective type adsorbent
JP2596952B2 (en) Nitrogen production method
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
JPH0455964B2 (en)
JPS5864132A (en) Adsorbent for adsorbing and separating gas
JPH0255203A (en) Production of high-purity oxygen
JPH0255202A (en) Production of gas rich in oxygen
JPS6082135A (en) Adsorbent of n2 and separation of o2 and n2 by it
JPS6078638A (en) N2-adsorbent and separation of o2 and n2 thereby
JPS61129020A (en) Separation of oxygen and nitrogen from gaseous mixture