JPS61251593A - Crucible for production of high-purity semiconductor single crystal - Google Patents

Crucible for production of high-purity semiconductor single crystal

Info

Publication number
JPS61251593A
JPS61251593A JP9418085A JP9418085A JPS61251593A JP S61251593 A JPS61251593 A JP S61251593A JP 9418085 A JP9418085 A JP 9418085A JP 9418085 A JP9418085 A JP 9418085A JP S61251593 A JPS61251593 A JP S61251593A
Authority
JP
Japan
Prior art keywords
crucible
graphite
coated
semiconductor
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9418085A
Other languages
Japanese (ja)
Other versions
JPH0686352B2 (en
Inventor
Koichi Yamaguchi
浩一 山口
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60094180A priority Critical patent/JPH0686352B2/en
Publication of JPS61251593A publication Critical patent/JPS61251593A/en
Publication of JPH0686352B2 publication Critical patent/JPH0686352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide the titled crucible free of leaching of impurities and resistant to peeling off of the coating layer even after repeated heating and cooling cycles, by coating the surface of graphite substrate with a thermally decomposed BN via an SiC film. CONSTITUTION:A graphite having excellent processability and available at a low cost is used as a substrate and is coated with an SiC film having high melting point and high corrosion resistance to molten semiconductor to obtain the core of a formed crucible. The surface of the core is coated with a thermally decomposed BN of usually about 0.01-1.0mm thick by CVD process to obtain the objective crucible. Since graphite coated with SiC layer is used as the base of the crucible, the peeling off of the coating layer can be prevented even after repeated heating and cooling cycles. A large-sized crucible having thin wall thickness can be produced because of high strength of the base, and the production cost of the crucible can be reduced. It is especially suitable as a crucible for the production of high-purity GaAs semiconductor for IC, e.g. VLSI.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ホウ素でコーディングされたルツボであり
、特に高純度半導体単結晶製造用ルツボに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a crucible coated with boron nitride, and more particularly to a crucible for producing high-purity semiconductor single crystals.

〔従来技術〕[Prior art]

半導体業界においては、良品賞の半導体製品を作成する
に当たって、まず高純度の珪素、ゲルマ二6ム、ヒ化ガ
リウム(GaAs )等の単結晶を製造することが重要
である。
In the semiconductor industry, it is important to first manufacture single crystals of high-purity silicon, germanium, gallium arsenide (GaAs), etc. in order to produce semiconductor products that receive quality awards.

即ち、原料に不純物が混入しないように為すことばかシ
でなく、得られた半導体物質を熔融しで引き上げ法によ
シ大径の単結晶を製造する際にその装置自体の損傷など
によシそれが不純物となって該単結晶に混入されること
のないようにする必要がある。
In other words, it is important not only to prevent impurities from being mixed into the raw materials, but also to prevent damage to the equipment itself when manufacturing large-diameter single crystals by melting and pulling the obtained semiconductor material. It is necessary to prevent it from becoming an impurity and being mixed into the single crystal.

熔融状態の半導体素材から引き上げ法によって単結晶を
得る方法においては、熔融のためのルツボを半導体材料
と反応性のない高純度の材料で構成すべきであり、各種
セラミック、貴金属材料等が用いられている。しかしな
がら、それらルツボ材料には種々の焼結剤が配合されて
いることや若干の反応性があることなどの理由から、高
純度半導体単結晶の製造、特に超LSI用GaA3半導
体単結晶の製造に際してはルツボ材料が不純物となって
該単結晶に混入してくることが重大な問題となっている
。また、昨今の大型半導体ウェハー製造工業においては
、大容量のルツボを要するため、ルツボ材料使用量は増
大し、そして大容量の内容物を安全に収容するためには
!ツボ材料の強度も高めなければならない。
In the method of obtaining a single crystal from a molten semiconductor material by the pulling method, the crucible for melting should be made of a high-purity material that is not reactive with the semiconductor material, and various ceramics, precious metal materials, etc. can be used. ing. However, because these crucible materials contain various sintering agents and have some reactivity, they are difficult to manufacture when producing high-purity semiconductor single crystals, especially GaA3 semiconductor single crystals for VLSI. A serious problem is that the crucible material becomes an impurity and mixes into the single crystal. In addition, in the recent large semiconductor wafer manufacturing industry, large-capacity crucibles are required, so the amount of crucible material used has increased, and in order to safely accommodate the large-capacity contents! The strength of the pot material must also be increased.

ところで、窒化はう素は電気絶縁性、熱伝導性、耐熱衝
撃性に優れ、高温下での化学的安定性、附酸化性、潤滑
性等が優れていることから、その用途は多分野に亘って
賞月されているが、前記半導体の製造用ルツボとしても
好適なものとして使用されつつちる。
By the way, boron nitride has excellent electrical insulation, thermal conductivity, and thermal shock resistance, as well as chemical stability at high temperatures, oxidation properties, and lubricity, so it is used in many fields. Although it has been widely praised, it is also being used as a suitable crucible for the production of semiconductors.

窒化ホウ素の製造法にはホウ素酸化物をアンモニア中炭
素で還元窒化する方法や、ハロゲン化ホウ素とアンモニ
アを高温で気相反応させる方法(CVD法)等があるが
、後者の気相反応による方法では熱分解窒化ホウ素(P
BN)が得られ、高純度なものであるので、半導体製造
用ルツボ用には特に良い。
Methods for producing boron nitride include reducing nitridation of boron oxide with carbon in ammonia and a method of reacting boron halide and ammonia in a gas phase at high temperature (CVD method), but the latter method is based on a gas phase reaction. Then, pyrolytic boron nitride (P
BN) and is of high purity, it is particularly suitable for use in crucibles for semiconductor manufacturing.

しかしながら、そのCVD法による製造は容易でなく、
大型のものの製造はコストも実大なものとなシ、実際上
不可能に近いものである。
However, manufacturing using the CVD method is not easy;
The cost of manufacturing large-scale products is enormous, and it is practically impossible.

更に半導体製造用ルツボとしては石英製、黒鉛製、炭化
珪素製、貴金属製等のものが使用されていて、サイズ、
強度の点では好適なルツボが提供されてはいるが、内容
物の熔融時にそれらルツボ材料がしばしば不純物として
半導体に導入される結果、優良な半導体単結晶が得られ
難いという問題点がある。
Furthermore, crucibles for semiconductor manufacturing are made of quartz, graphite, silicon carbide, precious metals, etc.
Although crucibles that are suitable in terms of strength have been provided, there is a problem in that it is difficult to obtain high-quality semiconductor single crystals as a result of the crucible materials often being introduced into semiconductors as impurities when the contents are melted.

一方、PBNの厚膜でコーティングされたグツファイト
(黒鉛)からなる蒸着のための金属蒸気生成用ルツボあ
るいはボートが公知であシ(例えば、特公昭59−19
192号公報ゝ・、この場合PEN膜は保護膜として、
金属蒸気発生用熔融金属によってグツファイトが侵食さ
れないようにするため且つ同時にグツファイトから浸出
する不純物によって該熔融金属が汚染されないようにす
るために作用している。しかしながら、高純度半導体単
結晶製造用ルツボに該公知ルツボを使用しようとすると
、PBNコーティング層へ不純物として不可避的に導入
される幾分かのグツファイトが問題となることと、また
グツファイトとPBNの密着性は非常に弱く、そしてP
EN膜は膜層に平行の方向の熱膨張係数が−2,9X 
10  /℃と負の膨張であることからグツファイト基
体とPBN薄膜とは熱膨張率が大きく異なるため加熱−
冷却サイケ〜を受けると、たちまち剥離現象が生じると
いった問題がある。
On the other hand, crucibles or boats for generating metal vapor for vapor deposition made of gutphite (graphite) coated with a thick film of PBN are known (for example,
Publication No. 192 - In this case, the PEN film is used as a protective film,
It serves to prevent the gutphite from being eroded by the molten metal for generating metal vapor, and at the same time to prevent the molten metal from being contaminated by impurities leached from the gutphite. However, when attempting to use this known crucible for the production of high-purity semiconductor single crystals, problems arise due to some gutphite inevitably being introduced as an impurity into the PBN coating layer, and the adhesion between gutphite and PBN. sex is very weak and P
The EN film has a thermal expansion coefficient of -2.9X in the direction parallel to the film layer.
10 /℃, which is a negative expansion, and the coefficient of thermal expansion of the gutphite substrate and the PBN thin film is significantly different, so heating -
There is a problem that when subjected to cooling psyche, a peeling phenomenon occurs immediately.

従って、実用品となるルツボを製造するには、グツファ
イト自体が低強度のものであることとも相まって、PB
Nを長時間の蒸着によシ分厚く、実際にはグツファイト
基体よシも厚層にコーディングしなければならない状況
である。
Therefore, in order to manufacture crucibles that can be used as practical products, it is necessary to use PB
The situation is such that N is deposited in a thick layer over a long period of time, and in fact the gutsphite substrate must also be coated in a thick layer.

〔発明の目的〕[Purpose of the invention]

従って本発明は叙上の問題を解決すべく完成されたもの
であり、その目的は大型であってしかも強度も充分に保
証でき、加えて比較的低コストな高純度半導体単結晶製
造用ルツボを提供することにある。
Therefore, the present invention was completed in order to solve the above problems, and its purpose is to provide a crucible for manufacturing high-purity semiconductor single crystals that is large in size, has sufficient strength, and is relatively low in cost. It is about providing.

〔問題を解決するための手段〕[Means to solve the problem]

本発明によれば、黒鉛から成るルツボ状成形体基体の表
面が炭化珪素膜を介して熱分解窒化ホウ素でコーティン
グされてなることを特徴とする高純度半導体単結晶製造
用ルツボが提供される。
According to the present invention, there is provided a crucible for producing a high-purity semiconductor single crystal, characterized in that the surface of a crucible-shaped molded base made of graphite is coated with pyrolytic boron nitride through a silicon carbide film.

本発明のルツボ状成形体基体の心金には低コストで加工
性に優れた黒鉛を下地として、この上に高融点を有し、
熔融半導体に対する耐食性の良い炭化珪素膜を形成して
成るものであシ、この心金の表面に熱分解窒化ホウ素(
PBN)が(4D法によシ、通常0.01〜1.0屑m
程度コーティングされる。
The mandrel of the crucible-shaped molded body base of the present invention is made of graphite, which is low cost and has excellent workability, as a base, and has a high melting point on this,
It is made by forming a silicon carbide film that has good corrosion resistance against molten semiconductors, and the surface of this metal core is coated with pyrolytic boron nitride (
PBN) (by 4D method, usually 0.01 to 1.0 m
coated to some degree.

本発明に係る心金によれば、黒鉛だけを用いたものに比
べて強度が大きく、壁厚を比較的薄くしてもルツボの強
度は充分であシ、軽量且つ大型のものとすることができ
る。そして、黒鉛の熱伝導率は約15Q W/mlcで
あって、熱伝導率に優れた炭化珪素の約2倍の熱伝導率
を有しているため、特に、大型のルツボ内の熔融半導体
を均等且つ迅速に所定の温度にまで到達させる効果があ
る。
According to the mandrel according to the present invention, the strength is greater than that using only graphite, the strength of the crucible is sufficient even if the wall thickness is made relatively thin, and the crucible can be made lightweight and large. can. The thermal conductivity of graphite is about 15Q W/mlc, which is about twice that of silicon carbide, which has excellent thermal conductivity, so it is especially useful for molten semiconductors in large crucibles. This has the effect of reaching a predetermined temperature evenly and quickly.

また本発明によれば、炭化珪素膜にPBNをコーティン
グさせると、界面に反応層が生じるのでPEN膜の密着
力が顕著に向上する。
Further, according to the present invention, when a silicon carbide film is coated with PBN, a reaction layer is generated at the interface, so that the adhesion of the PEN film is significantly improved.

本発明は、特に、超LSIの工C々どに用いられる高純
度GaAs半導体の製造のためのyツボ′として好適な
ものであシ、ルツボからの不純物の浸出がなく、また、
加熱・冷却サイクルによるPBNコーティング層の剥離
がない、そして強度も充分テカツまた製造コストも安価
であるという有利性がある。
The present invention is particularly suitable as a y-crucible for manufacturing high-purity GaAs semiconductors used in ultra-LSI manufacturing processes, and there is no leaching of impurities from the crucible, and
It has the advantage that the PBN coating layer does not peel off due to heating/cooling cycles, has sufficient strength, and is inexpensive to manufacture.

本発明においては上述した通シ、炭化珪素膜を介在させ
ることが重要であシ、この膜は周知のCVD法を用いれ
ばよく、また黒鉛から成る下地の表面を気相化学反応に
より珪化処理を施すことによっても炭化珪素膜を形成す
ることができる。
In the present invention, it is important to interpose a silicon carbide film as described above, and this film may be formed by using the well-known CVD method, and the surface of the base made of graphite may be silicified by a vapor phase chemical reaction. A silicon carbide film can also be formed by applying.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 高緻密黒鉛から成る直径2oCM、高さ20c11、肉
厚0.5肩渭のルツボ状成形体を作成した。
(Example 1) A crucible-shaped molded body made of highly dense graphite and having a diameter of 2 cm, a height of 20 cm, and a wall thickness of 0.5 cm was prepared.

次いで、この成形体を反応室に設置し、該成形体を12
00℃として反応室に5IH4ガスを3Q TOrrの
圧力で導入し、1時間珪化反応を行った。その結果、黒
鉛成形体の表面に1000μmの膜厚で炭化珪素を全面
に形成した。
Next, this molded body was placed in a reaction chamber, and the molded body was heated for 12 hours.
The temperature was set at 00°C, and 5IH4 gas was introduced into the reaction chamber at a pressure of 3Q TOrr, and a silicification reaction was carried out for 1 hour. As a result, silicon carbide was formed on the entire surface of the graphite compact to a thickness of 1000 μm.

然る後、前記成形体(心金)をCVD反応室に配置して
1300℃の温度に設置し、該反応室内にBCIsガス
、NH3ガス及びH意ガスをそれぞれ50CQ/m、 
200 QQ/謡及び1000 QC/linの流速で
導入して圧カフ、Q Torrとし、10時間にわ九っ
て接触反応をさせ、前記炭化珪素膜の全面に厚さ50μ
鯛のPBNコーティングを施した。
After that, the molded body (mandrel) was placed in a CVD reaction chamber at a temperature of 1300°C, and BCIs gas, NH3 gas, and H2 gas were supplied in the reaction chamber at 50CQ/m, respectively.
A pressure cuff, Q Torr, was introduced at a flow rate of 200 QQ/lin and 1000 QC/lin, and a contact reaction was carried out for 10 hours, leaving a thickness of 50 μm on the entire surface of the silicon carbide film.
PBN coating of sea bream was applied.

得られた本発明製品を引き上げ法による半導体GaAs
単結晶製造ルツボとして使用した結果、10回の使用(
加熱−冷却サイクル付与1回)によっても、PBNコー
ティング膜には剥離やクツツクが生ぜず、セしてルツボ
から不純物がGaA3熔融体へ混入することも全くなく
、良品の高純度半導体GaAs単結晶を製造することが
できた。
The obtained product of the present invention is made into a semiconductor GaAs by a pulling method.
As a result of using it as a single crystal manufacturing crucible, it was used 10 times (
Even after one heating-cooling cycle), the PBN coating film did not peel or crack, and no impurities were mixed into the GaA3 melt from the crucible, making it possible to produce a high-purity semiconductor GaAs single crystal of good quality. could be manufactured.

また、該ルツボはPBNコーティング膜によシ良耐食性
が発揮されるばかシでなく、炭化珪素膜で被覆された黒
鉛から成る心金は熱伝導性の優良なものであるため、ル
ツボ全体の温度を常に均一に維持することができ、ルツ
ボ内の試料は均一に溶解されるので優良な単結晶の製造
に好適である。
In addition, the crucible is not a simple one that exhibits good corrosion resistance due to the PBN coating film, and the core made of graphite coated with a silicon carbide film has excellent thermal conductivity, so the temperature of the entire crucible can be maintained uniformly at all times, and the sample in the crucible is uniformly dissolved, making it suitable for producing high-quality single crystals.

(例2) 例1で用いられた黒鉛製ルツボ状成形体をCVD反応室
に配置して1400℃の温度に設置し、CH45l−C
Itsガスを導入して熱分解によ’) 200 am 
の厚みの炭化珪素膜を全面に形成した。
(Example 2) The graphite crucible shaped body used in Example 1 was placed in a CVD reaction chamber at a temperature of 1400°C, and CH45l-C
200 am
A silicon carbide film with a thickness of .

次いで例1と同様にして全面に厚さ50 swtのPB
Nコーティングを施した。
Then, in the same manner as in Example 1, 50 swt thick PB was applied to the entire surface.
N coating was applied.

得られた本発明製品を引き上げ法による半導体GaAs
単結晶製造ルツボとして使用した結果、PBNコーティ
ング膜には剥離やクツツクが生じることなく、そしてル
ツボから不純物がGaA3熔融体へ混入することは全く
なく、高純度半導体GaAs単結晶が得られた。
The obtained product of the present invention is made into a semiconductor GaAs by a pulling method.
When used as a crucible for producing a single crystal, the PBN coating film did not peel or crack, and no impurities were mixed into the GaA3 melt from the crucible, resulting in a high purity semiconductor GaAs single crystal.

また、ルツボ全体の温度を常に均−I/c、Ii持する
ことができ、ルツボ内の試料は均一に溶解されるので優
良な単結晶の製造に好適である。
In addition, the temperature of the entire crucible can always be kept constant at -I/c, Ii, and the sample in the crucible is uniformly melted, which is suitable for producing high-quality single crystals.

〔発明の効果〕〔Effect of the invention〕

本発明のものは、高純度半導体単結晶製造用ルツボとし
て適当であり特に、超LSIの工Cなどに用いられる高
純度GaAS半導体の製造用ルツボとして好適なもので
あって、又、m−v族半導体やIt−VI族半導体を作
成する方法である分子線エピタキシー法(MB]1il
y)やクフスターイオンプV−ディング法(工CB)等
におけるπ、m、v。
The crucible of the present invention is suitable as a crucible for manufacturing high-purity semiconductor single crystals, and is particularly suitable as a crucible for manufacturing high-purity GaAS semiconductors used in ultra-LSI engineering C. Molecular beam epitaxy (MB) 1il is a method for creating group semiconductors and It-VI group semiconductors.
y), π, m, v in Kufster ion plating method (Eng CB), etc.

■族の合金を蒸発させるるつばとしても用いることがで
きる。
It can also be used as a spit to evaporate group (2) alloys.

更に、本発明によれば基体に炭化珪素膜で被覆した黒鉛
を用いているためにルツボからの不純物浸出がなく、ま
た基体とPBNとは密着性が良いために、加熱・冷却サ
イク〜によってもPBNコーティング層が剥離すること
がない。そして基体は高強度であるため、ルツボの壁厚
を薄くしても強度が充分で軽量、大型のものとすること
ができ、且つ安価な黒鉛を使用するのく加えてPBN層
の厚みを大きくする必要もないため、製造コストを低減
できるという優れた有利性がある。
Furthermore, according to the present invention, since graphite coated with a silicon carbide film is used for the substrate, there is no leaching of impurities from the crucible, and since the substrate and PBN have good adhesion, it can be easily removed even during heating and cooling cycles. The PBN coating layer does not peel off. And since the base is high strength, even if the wall thickness of the crucible is thinned, it can still be strong enough, lightweight, and large.In addition to using inexpensive graphite, the thickness of the PBN layer can be increased. Since there is no need to do this, there is an excellent advantage that manufacturing costs can be reduced.

Claims (1)

【特許請求の範囲】[Claims]  黒鉛から成るルツボ状成形体基体の表面が炭化珪素膜
を介して熱分解窒化ホウ素でコーテイングされてなるこ
とを特徴とする高純度半導体単結晶製造用ルツボ。
A crucible for producing a high-purity semiconductor single crystal, characterized in that the surface of a crucible-shaped molded base made of graphite is coated with pyrolytic boron nitride via a silicon carbide film.
JP60094180A 1985-04-30 1985-04-30 Crucible for manufacturing high-purity semiconductor single crystal Expired - Lifetime JPH0686352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094180A JPH0686352B2 (en) 1985-04-30 1985-04-30 Crucible for manufacturing high-purity semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094180A JPH0686352B2 (en) 1985-04-30 1985-04-30 Crucible for manufacturing high-purity semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS61251593A true JPS61251593A (en) 1986-11-08
JPH0686352B2 JPH0686352B2 (en) 1994-11-02

Family

ID=14103129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094180A Expired - Lifetime JPH0686352B2 (en) 1985-04-30 1985-04-30 Crucible for manufacturing high-purity semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH0686352B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132145A (en) * 1987-04-27 1992-07-21 Societe Anonyme Method of making composite material crucible for use in a device for making single crystals
WO1996010100A1 (en) * 1994-09-28 1996-04-04 Advanced Ceramics Corporation Evaporator having multiple coating
WO2000012447A1 (en) * 1998-08-31 2000-03-09 Textron Systems Corporation Process for the production of improved boron coatings onto graphite and article obtained in this process
KR20030052467A (en) * 2001-12-21 2003-06-27 주식회사 실트론 Graphite Crucible
JP2006225262A (en) * 1999-04-06 2006-08-31 Toyo Tanso Kk Graphite crucible for pulling up silicon single crystal
JP2010208939A (en) * 1999-04-06 2010-09-24 Toyo Tanso Kk Graphite crucible for pulling up silicon single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331699B1 (en) * 2012-07-16 2013-11-20 주식회사 엘지실트론 Crucible for growing large diameter silicon single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632397A (en) * 1979-08-17 1981-04-01 Toshiba Ceramics Co Ltd Silicon single crystal pulling apparatus
JPS5919192A (en) * 1982-07-26 1984-01-31 Ricoh Co Ltd Multicolor pressure sensitive copy material
JPS59227800A (en) * 1983-05-20 1984-12-21 Sumitomo Electric Ind Ltd Member for producing compound semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632397A (en) * 1979-08-17 1981-04-01 Toshiba Ceramics Co Ltd Silicon single crystal pulling apparatus
JPS5919192A (en) * 1982-07-26 1984-01-31 Ricoh Co Ltd Multicolor pressure sensitive copy material
JPS59227800A (en) * 1983-05-20 1984-12-21 Sumitomo Electric Ind Ltd Member for producing compound semiconductor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132145A (en) * 1987-04-27 1992-07-21 Societe Anonyme Method of making composite material crucible for use in a device for making single crystals
WO1996010100A1 (en) * 1994-09-28 1996-04-04 Advanced Ceramics Corporation Evaporator having multiple coating
CN1046971C (en) * 1994-09-28 1999-12-01 先进陶瓷公司 Evaporator having multiple coating
WO2000012447A1 (en) * 1998-08-31 2000-03-09 Textron Systems Corporation Process for the production of improved boron coatings onto graphite and article obtained in this process
GB2357779A (en) * 1998-08-31 2001-07-04 Textron Systems Corp Process for the production of improved boron coatings onto graphite and article obtained in this process
GB2357779B (en) * 1998-08-31 2003-08-06 Textron Systems Corp Process for the production of improved boron coatings onto a porous substrate and article obtained in this process
JP2006225262A (en) * 1999-04-06 2006-08-31 Toyo Tanso Kk Graphite crucible for pulling up silicon single crystal
JP2010208939A (en) * 1999-04-06 2010-09-24 Toyo Tanso Kk Graphite crucible for pulling up silicon single crystal
KR20030052467A (en) * 2001-12-21 2003-06-27 주식회사 실트론 Graphite Crucible

Also Published As

Publication number Publication date
JPH0686352B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JPS6047202B2 (en) Super hard high purity oriented polycrystalline silicon nitride
JPS61251593A (en) Crucible for production of high-purity semiconductor single crystal
JPS62153189A (en) Boron nitride coated crucible and production thereof
US5759646A (en) Vessel of pyrolytic boron nitride
JPH05254808A (en) Preparation of boron nitride
JPS62176981A (en) Boron nitride-coated crucible
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor
TW202128558A (en) Tantalum carbonate-coated graphite member and method for producing same
JPH0456766B2 (en)
JPH0784357B2 (en) Boron nitride coated crucible
JPS61236672A (en) Pyrolytic boron nitride coated products and manufacture
JPH03146470A (en) Silicon carbide-based material
JPH0798708B2 (en) Method for producing pyrolytic boron nitride coated article
JPH1067584A (en) Reaction vessel
JPH0789776A (en) Production of boron nitride coated carbon material
JPH01252780A (en) Boron nitride coated body and production thereof
JP2708612B2 (en) Method for producing pyrolytic boron nitride compact
JPS61242945A (en) Manufacture of high purity ceramic product
JPS61236655A (en) Pyrolytic boron nitirde product and manufacture
JPH0410904A (en) Mold and molding method
JPH0310562B2 (en)
JPH0337109A (en) Graphite material
JPH0431309A (en) Production of thermally decomposed boron nitride formed article