JPS62153189A - Boron nitride coated crucible and production thereof - Google Patents

Boron nitride coated crucible and production thereof

Info

Publication number
JPS62153189A
JPS62153189A JP29654985A JP29654985A JPS62153189A JP S62153189 A JPS62153189 A JP S62153189A JP 29654985 A JP29654985 A JP 29654985A JP 29654985 A JP29654985 A JP 29654985A JP S62153189 A JPS62153189 A JP S62153189A
Authority
JP
Japan
Prior art keywords
boron
crucible
boron nitride
film
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29654985A
Other languages
Japanese (ja)
Other versions
JPH0688866B2 (en
Inventor
Koichi Yamaguchi
浩一 山口
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29654985A priority Critical patent/JPH0688866B2/en
Publication of JPS62153189A publication Critical patent/JPS62153189A/en
Publication of JPH0688866B2 publication Critical patent/JPH0688866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve adhesivity of boron nitride film to substrate while preventing admixture of impurities, by applying pyrolytic boron nitride through a middle layer containing boron carbide and/or boron to the surface of substrate of molded crucible consisting of graphite. CONSTITUTION:A substrate of molded crucible consisting of graphite is set in a reaction tank, heated to 800-2,000 deg.C and a mixed gas of a boron-containing gas (e.g., BCl3, B2H5, etc.) and hydrogen is introduced into a reaction tank. Consequently, a middle layer containing boron carbide and/or boron is formed on the surface of the substrate. Then, a nitrogen-containing gas (e.g., NH3) is introduced and a pyrolytic boron nitride film is formed on the middle layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ホウ素でコーティングされたルツボに関し
、特に高純度半導体単結晶または蒸着用などに用いるル
ツボの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crucible coated with boron nitride, and more particularly to an improvement in a crucible used for high-purity semiconductor single crystals or vapor deposition.

〔従来技術〕[Prior art]

近年、半導体業界においては、良品質の半導体製品を製
造するに当たり、半導体材料である珪素、ゲルマニウム
、ヒ化ガリウム(GaAs)等の単結晶に対し、不純物
等の混入しない高純度のものが開発されつつある。
In recent years, in the semiconductor industry, in order to manufacture high-quality semiconductor products, high-purity single crystal semiconductor materials such as silicon, germanium, and gallium arsenide (GaAs) have been developed that do not contain impurities. It's coming.

通常、単結晶の製造は引き上げ法によって行われるが、
その時半導体素材を溶融状態となすため、各種セラミッ
ク、貴金属材料等からなるルツボが用いられている。
Usually, single crystals are produced by the pulling method,
In order to bring the semiconductor material into a molten state at this time, crucibles made of various ceramics, noble metal materials, etc. are used.

このようなルツボは、それ自体種々の焼結剤が配合され
ており、しかも若干の反応があることから、高純度半導
体単結晶の製造に際し、ルツボ材料が不純物として単結
晶に混入する等の問題が生じている。また、昨今の大型
半導体ウェハー製造工業においては、大容量のルツボを
要するため、ルツボ材料使用量は増大し、また、大容量
の内容物を安全に収容するためにはルツボ材料の強度も
高めなければならない。
These crucibles themselves contain various sintering agents and are subject to some reactions, so when producing high-purity semiconductor single crystals, there are problems such as crucible materials being mixed into the single crystal as impurities. is occurring. In addition, in the recent large semiconductor wafer manufacturing industry, large-capacity crucibles are required, so the amount of crucible material used has increased, and the strength of the crucible material must also be increased in order to safely accommodate large-capacity contents. Must be.

また、蒸着用ルツボあるいはボートにおいてもルツボか
らの不純物の混入は避けられないものであった。
Further, contamination of impurities from the crucible into the vapor deposition crucible or boat was unavoidable.

そこで、従来から使用されている石英製、黒鉛製、炭化
珪素製、貴金属製ルツボに変わり、最近に至っては窒化
ホウ素(BN)、特に熱分解窒化ホウ素(PBN)を気
相反応によって、黒鉛等の基体上に被覆したもの、ある
いはルツボ全体を窒化ホウ素焼結体から構成したものが
、提案されている。この熱分解窒化ホウ素は、電気絶縁
性、熱伝導性、耐熱衝撃性に優れ、さらに高温下での化
学的安定性、耐酸化性、潤滑性にも優れており、しかも
高純度であることからルツボに対し、最適なものである
Therefore, instead of crucibles made of quartz, graphite, silicon carbide, or precious metals, which have been used in the past, recently crucibles have been made using boron nitride (BN), especially pyrolytic boron nitride (PBN), through a gas phase reaction to produce graphite, A crucible coated on a base body, or a crucible made entirely of a boron nitride sintered body have been proposed. This pyrolytic boron nitride has excellent electrical insulation, thermal conductivity, and thermal shock resistance, as well as chemical stability at high temperatures, oxidation resistance, and lubricity, and is highly pure. It is the most suitable for crucibles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のルツボを単結晶製造あるいは蒸着
用として使用しようとすると、PBN膜へ不純物として
不可避的に浸出する幾分かのカーボンが問題となること
と、また黒鉛とPBN膜の間には接合がないため密着性
は非常に弱く、しかもPBN膜は膜層に平行の方向の熱
膨張係数が〜2×1O−67−cと負の膨張であること
から黒鉛基体とPBN膜とは熱膨張率が大きく異なるた
め加熱−冷却サイクルを受けると、たちまち剥離が生じ
るといった問題が生じている。
However, when trying to use the above crucible for single crystal production or vapor deposition, there are problems with some carbon inevitably leaching into the PBN film as an impurity, and also because there is no bond between the graphite and the PBN film. The adhesion between the graphite substrate and the PBN film is very weak because there is no thermal expansion, and the thermal expansion coefficient of the PBN film in the direction parallel to the film layer is ~2 × 1 O-67-c, which is a negative expansion. Due to the large difference in rate, a problem arises in that delamination occurs quickly when subjected to heating-cooling cycles.

一方、ルツボ全体を窒化ホウ素質焼結体で構成する場合
、構造物として一定以上の厚みを必要とし、気相成長等
の手段によって製造する場合、長時間を要し、コストも
高くなるといった問題があった。
On the other hand, when the entire crucible is made of a boron nitride sintered body, the structure requires a certain thickness or more, and when manufactured by means such as vapor phase growth, it takes a long time and costs are high. was there.

〔発明の目的〕[Purpose of the invention]

従って本発明は畝上の問題を解決すべく完成されたもの
であって、その目的は不純物の混入を防止しつつ基体と
窒化ホウ素膜との密着性を向上させることによって、ル
ツボとしての強度を向上させて、加えて低コストの窒化
ホウ素被覆ルツボを提供することにある。
Therefore, the present invention was completed in order to solve the problem of ridges, and its purpose is to improve the strength of the crucible by improving the adhesion between the substrate and the boron nitride film while preventing the contamination of impurities. An object of the present invention is to provide a boron nitride coated crucible which is improved and also has a lower cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、黒鉛から成るルツボ状成形体基体の表
面に炭化ホウ素および、またはホウ素を含む中間層を介
して熱分解窒化ホウ素を被覆したことによって上記目的
を達成することができる。
According to the present invention, the above object can be achieved by coating the surface of a crucible-shaped molded substrate made of graphite with pyrolytic boron nitride via an intermediate layer containing boron carbide and/or boron.

また黒鉛から成るルツボ状成形体基体を反応槽内に配置
して800乃至2000℃に加熱した後肢反応槽内にホ
ウ素含有ガスと水素との混合ガスを導入して該基体表面
に炭化ホウ素および、またはホウ素を含む中間層を形成
し、その後さらに窒素含有ガスを導入して該中間上に熱
分解窒化ホウ素膜を形成することによって上記の窒化ホ
ウ素被覆ルツボが得られる。
Further, a crucible-shaped molded base made of graphite is placed in a reaction tank, and a mixed gas of boron-containing gas and hydrogen is introduced into the hindlimb reaction tank heated to 800 to 2000°C to coat the surface of the base with boron carbide and Alternatively, the boron nitride-coated crucible described above can be obtained by forming an intermediate layer containing boron, and then further introducing a nitrogen-containing gas to form a pyrolytic boron nitride film on the intermediate layer.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明によれば、低コストで加工性に優れた黒鉛基体と
PBN膜との間に炭化ホウ素および、またはホウ素から
成る中間層を設けることが重要である。炭化ホウ素およ
びホウ素はそれ自体黒鉛の熱膨張係数と近似しており、
PBN膜との間の熱膨張差による歪の発生を緩和する働
きを持つ。特にこの中間層の形成を公知の気相成長法に
よれば、後述するように中間層を基体との反応ガスとし
て形成することができ、PBN膜の形成まですべて単一
反応槽内で連続的に行うことができ、形成される膜も境
界のない連′Ifjt層として形成される。ゆえに、各
層間の密着性を顕著に向上させることができる。
According to the present invention, it is important to provide an intermediate layer made of boron carbide and/or boron between the graphite substrate and the PBN film, which is low in cost and has excellent processability. Boron carbide and boron themselves have a coefficient of thermal expansion similar to that of graphite;
It has the function of alleviating distortion caused by the difference in thermal expansion between the film and the PBN film. In particular, if this intermediate layer is formed using a known vapor phase growth method, the intermediate layer can be formed as a reaction gas with the substrate, as described later, and all processes up to the formation of the PBN film can be performed continuously in a single reaction tank. The resulting film is also formed as a continuous layer without boundaries. Therefore, the adhesion between each layer can be significantly improved.

本発明において設けられる中間層の厚みは0.1乃至5
0μmが望ましく、一方PBN膜は10乃至1000μ
mの範囲で設けられる。
The thickness of the intermediate layer provided in the present invention is 0.1 to 5
0 μm is preferable, while PBN film has a thickness of 10 to 1000 μm.
It is provided within a range of m.

特にその製造方法を説明すると黒鉛から成るルツボ状成
形体を反応槽内に配置して800乃至2000℃の温度
に加熱する。そして、該反応槽内にまずBCl3、B、
H,等のホウ素含有ガスと水素から成る混合ガスを導入
する。この時、黒鉛基体表面では、例えばBCl、を導
入すると、下記式(1)%式%(1) の反応が進行し、ホウ素が生成される。さらに、これが
基体成分であるカーボンと、下記式(2)%式%(2) の反応が進行し、基体の界面には炭化ホウ素(84C)
膜が形成され、さらに時間が経過すると反応(1)によ
るホウ素が過剰となり、ホウ素膜が中間層として形成さ
れる。
Specifically, the manufacturing method thereof will be explained by placing a crucible-shaped molded body made of graphite in a reaction tank and heating it to a temperature of 800 to 2000°C. Then, first, BCl3, B,
A mixed gas consisting of a boron-containing gas such as H, and hydrogen is introduced. At this time, when BCl, for example, is introduced on the surface of the graphite substrate, a reaction according to the following formula (1) % formula % (1) proceeds and boron is produced. Furthermore, the reaction of the following formula (2)% formula (2) with carbon, which is a base component, proceeds, and boron carbide (84C) is formed at the interface of the base body.
After the film is formed, as time passes, boron becomes excessive due to reaction (1), and a boron film is formed as an intermediate layer.

次に、反応槽内にNH,等の窒素含有ガスを導入すると
中間層上にPBN膜が形成される。この時中間層とPB
N膜は、同一反応槽内で、はぼ連続的に生成されるため
、中間層およびPBN膜はほとんど境界のない連続層と
なる。
Next, when a nitrogen-containing gas such as NH is introduced into the reaction tank, a PBN film is formed on the intermediate layer. At this time, the middle class and PB
Since the N film is produced almost continuously in the same reaction tank, the intermediate layer and the PBN film form a continuous layer with almost no boundaries.

即ち、本製造方法によれば、基体上に基体成分との反応
による生成物から成る中間層が設けられ、該中間層との
連続層であるPBN膜が設けられることから、基体の成
分であるカーボンは中間層によって封止され、PBN層
への混入を防止することができ、よってルツボからの不
純物の混入を防止できる。
That is, according to the present manufacturing method, an intermediate layer made of a product resulting from a reaction with a base component is provided on the base, and a PBN film that is a continuous layer with the intermediate layer is provided, so that the PBN film is a component of the base. Carbon is sealed by the intermediate layer and can be prevented from entering the PBN layer, thereby preventing impurities from entering the crucible.

なお、中間層における炭化ホウ素の厚みを厚くする場合
には反応ガスとにさらに炭化水素などを導入すれば良い
Incidentally, in order to increase the thickness of boron carbide in the intermediate layer, it is sufficient to further introduce a hydrocarbon or the like into the reaction gas.

実施例1 黒鉛から成るルツボ状成形体を配置して1500℃に加
熱し圧力5 Torr及・びBCl、 10cc/mi
n、 Hz 150cc/winの流速で混合ガスを導
入して、1時間のホウ化反応を行いB、Cの10μ麟の
中間層を形成した。さらに連続して、同一条件でN1(
3ガスを10cc/minの流速で導入し3時間後60
μmのPBN膜を形成した。
Example 1 A crucible-shaped molded body made of graphite was placed and heated to 1500°C under a pressure of 5 Torr and BCl at 10 cc/mi.
A mixed gas was introduced at a flow rate of 150 cc/win, Hz, and a boriding reaction was performed for 1 hour to form an intermediate layer of B and C with a thickness of 10 μm. Furthermore, under the same conditions, N1(
3 gases were introduced at a flow rate of 10 cc/min, and after 3 hours 60
A .mu.m PBN film was formed.

得られたサンプルを引き上げ法による半導体GaAs単
結晶製造用ルツボとして使用した結果、10回の使用(
加熱−冷却サイクル付与1回)によっても、PBN膜に
は剥離やクランクが生ぜず、しかもルツボから不純物が
GaAs溶融体へ混入することも全くなく、良品の高純
度半導体GaAs単結晶を製造することができた。
The obtained sample was used as a crucible for producing semiconductor GaAs single crystals by the pulling method, and as a result, it was used 10 times (
To produce a high-purity semiconductor GaAs single crystal of good quality without peeling or cranking in the PBN film even after applying one heating-cooling cycle, and without any impurities being mixed into the GaAs melt from the crucible. was completed.

実施例2 実施例1と同一条件で6分間、炭化ホウ素膜を1μ鋼設
けた後、Nlhを100cc/n+inで導入して窒素
過剰状態で15分間PBNを成長させ、NH3を10c
c/minに落としてさらに、5時間PBN膜を成長さ
せ、最終的に120μmのPBN膜を形成した。
Example 2 After applying a boron carbide film of 1μ steel for 6 minutes under the same conditions as Example 1, Nlh was introduced at 100cc/n+in, PBN was grown for 15 minutes in a nitrogen excess state, and NH3 was added at 10c/n+in.
The PBN film was further grown for 5 hours with the growth rate reduced to c/min, and a PBN film with a thickness of 120 μm was finally formed.

得られたサンプルを蒸着用ルツボとしてA1の蒸着を行
ったところ、ルツボからの不純物の混入はなく高純度の
AIの蒸着膜が得られた。
When A1 was vapor-deposited using the obtained sample as a crucible for vapor deposition, a highly pure vapor-deposited film of AI was obtained without any contamination of impurities from the crucible.

比較例 黒鉛のルツボ状成形体基体を1500℃に設定し、NH
zlOcc/lll1n SBC1zlocc/m1n
(NH*/BCj! != 1 )、Hz150cc/
minの流速で反応ガスを導入し、圧力ITorrの条
件で5時間反応を行い、115μmのPBN膜を形成し
た。
Comparative Example A graphite crucible-shaped molded body was set at 1500°C, and NH
zlOcc/lll1n SBC1zlocc/m1n
(NH*/BCj! != 1), Hz150cc/
A reaction gas was introduced at a flow rate of min., and the reaction was carried out for 5 hours at a pressure of ITorr to form a PBN film with a thickness of 115 μm.

得られたサンプルの破断面を観察したところ、PBN膜
が基体から剥離している部分があり、密着性が悪いもの
であった。
When the fractured surface of the obtained sample was observed, it was found that there were parts where the PBN film had peeled off from the base, and the adhesion was poor.

〔発明の効果〕〔Effect of the invention〕

以上、述べたように、本発明の窒化ホウ素被覆ルツボは
黒鉛基体状に基体のカーボンとホウ素の反応によって炭
化ホウ素もしくはホウ素の膜を介して連続的に熱分解B
N膜(PBN膜)を設けることによって、PBN膜と基
体間の熱膨張差による剥離を防止し、PBN膜と基体の
密着性を向上させることができるとともに、基体成分が
密封され基体からの不純物の浸出を防止することができ
る。
As described above, the boron nitride-coated crucible of the present invention continuously decomposes B on a graphite substrate through a film of boron carbide or boron by the reaction of carbon and boron in the substrate.
By providing the N film (PBN film), it is possible to prevent peeling due to the difference in thermal expansion between the PBN film and the substrate, improve the adhesion between the PBN film and the substrate, and seal the substrate components to prevent impurities from the substrate. leaching can be prevented.

よって、加熱、冷却サイクルによってPBN膜が剥離す
ることがない。さらに本発明のルツボは高強度であるた
め、ルツボの壁厚を薄<シても強度が充分で軽量、大型
のものとすることができ且つ安価な黒鉛を使用するのに
加えPBN層の厚みを大きくする必要もないため、製造
コストを低減できるという優れた有利性がある。
Therefore, the PBN film does not peel off due to heating and cooling cycles. Furthermore, since the crucible of the present invention has high strength, it is possible to make the crucible strong enough, lightweight, and large even if the wall thickness of the crucible is thinned.In addition to using inexpensive graphite, the thickness of the PBN layer Since there is no need to increase the size of , there is an excellent advantage that manufacturing costs can be reduced.

なお、本発明のルツボは、半導体単結晶製造用ルツボ、
金属蒸着用ルツボあるいはボートなどに応用できるもの
である。
Note that the crucible of the present invention is a crucible for producing semiconductor single crystals,
It can be applied to crucibles or boats for metal deposition.

Claims (2)

【特許請求の範囲】[Claims] (1)黒鉛から成るルツボ状成形基体の表面に炭化ホウ
素膜および、またはホウ素膜を介して熱分解窒化ホウ素
を被覆したことを特徴とする窒化ホウ素被覆ルツボ。
(1) A boron nitride-coated crucible characterized in that the surface of a crucible-shaped molded substrate made of graphite is coated with pyrolytic boron nitride via a boron carbide film and/or a boron film.
(2)黒鉛から成るルツボ状成形体基体を反応槽内に配
置して800乃至2000℃に加熱した後、該反応槽内
にホウ素含有ガスと水素との混合ガスを導入して該基体
表面に炭化ホウ素および、またはホウ素を含む中間層を
形成し、その後さらに窒素含有ガスを導入して該中間層
上に熱分解窒化ホウ素膜を形成したことを特徴とする窒
化ホウ素被覆ルツボの製造方法。
(2) After placing a crucible-shaped molded base made of graphite in a reaction tank and heating it to 800 to 2000°C, a mixed gas of boron-containing gas and hydrogen is introduced into the reaction tank to coat the surface of the base. A method for manufacturing a boron nitride-coated crucible, comprising forming an intermediate layer containing boron carbide and/or boron, and then further introducing a nitrogen-containing gas to form a pyrolytic boron nitride film on the intermediate layer.
JP29654985A 1985-12-24 1985-12-24 Boron nitride coated crucible and method of manufacturing the same Expired - Lifetime JPH0688866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29654985A JPH0688866B2 (en) 1985-12-24 1985-12-24 Boron nitride coated crucible and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29654985A JPH0688866B2 (en) 1985-12-24 1985-12-24 Boron nitride coated crucible and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS62153189A true JPS62153189A (en) 1987-07-08
JPH0688866B2 JPH0688866B2 (en) 1994-11-09

Family

ID=17834971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29654985A Expired - Lifetime JPH0688866B2 (en) 1985-12-24 1985-12-24 Boron nitride coated crucible and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0688866B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231459A (en) * 1990-06-06 1992-08-20 Union Carbide Coatings Service Technol Corp Boron nitride crucible and method for manufacturing same
JPH06135794A (en) * 1992-10-28 1994-05-17 Shin Etsu Chem Co Ltd Drouble-layered ceramic crucible
WO1996010100A1 (en) * 1994-09-28 1996-04-04 Advanced Ceramics Corporation Evaporator having multiple coating
WO1996021749A1 (en) * 1994-09-28 1996-07-18 Advanced Ceramics Corporation High density flash evaporator
RU2482215C1 (en) * 2011-11-25 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Method for application of ceramic coating onto parts from cast iron and steel
JP2013234369A (en) * 2012-05-10 2013-11-21 Shin-Etsu Chemical Co Ltd Method for coating graphite material with pyrolytic boron nitride and coated article obtained by that method
JP2014528888A (en) * 2011-08-05 2014-10-30 クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc Crucible material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331699B1 (en) * 2012-07-16 2013-11-20 주식회사 엘지실트론 Crucible for growing large diameter silicon single crystal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231459A (en) * 1990-06-06 1992-08-20 Union Carbide Coatings Service Technol Corp Boron nitride crucible and method for manufacturing same
JPH06135794A (en) * 1992-10-28 1994-05-17 Shin Etsu Chem Co Ltd Drouble-layered ceramic crucible
GB2313846B (en) * 1994-09-28 1999-05-26 Advanced Ceramics Corp High density flash evaporator
WO1996021749A1 (en) * 1994-09-28 1996-07-18 Advanced Ceramics Corporation High density flash evaporator
GB2313845A (en) * 1994-09-28 1997-12-10 Advanced Ceramics Corp Evaporator having multiple coating
GB2313846A (en) * 1994-09-28 1997-12-10 Advanced Ceramics Corp High density flash evaporator
WO1996010100A1 (en) * 1994-09-28 1996-04-04 Advanced Ceramics Corporation Evaporator having multiple coating
GB2313845B (en) * 1994-09-28 1999-05-26 Advanced Ceramics Corp Evaporator having multiple coating
CN1046971C (en) * 1994-09-28 1999-12-01 先进陶瓷公司 Evaporator having multiple coating
JP2014528888A (en) * 2011-08-05 2014-10-30 クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc Crucible material
US10107550B2 (en) 2011-08-05 2018-10-23 Crucible Intellectual Property, LLC. Crucible materials
RU2482215C1 (en) * 2011-11-25 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Method for application of ceramic coating onto parts from cast iron and steel
JP2013234369A (en) * 2012-05-10 2013-11-21 Shin-Etsu Chemical Co Ltd Method for coating graphite material with pyrolytic boron nitride and coated article obtained by that method

Also Published As

Publication number Publication date
JPH0688866B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JPS62153189A (en) Boron nitride coated crucible and production thereof
JP3638345B2 (en) Pyrolytic boron nitride container
JPS62176981A (en) Boron nitride-coated crucible
JPH0686352B2 (en) Crucible for manufacturing high-purity semiconductor single crystal
JPS62153190A (en) Boron nitride coated crucible
US3413090A (en) Preparation of silicon nitride whiskers
JPS6272505A (en) Preparation of article comprising pyrolytic boron nitride
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor
JPS61236672A (en) Pyrolytic boron nitride coated products and manufacture
JPH03243776A (en) Graphite member for cvd
JPH0789776A (en) Production of boron nitride coated carbon material
JP2708612B2 (en) Method for producing pyrolytic boron nitride compact
JPS6117910B2 (en)
JPS61236655A (en) Pyrolytic boron nitirde product and manufacture
JPS61291484A (en) Graphite crucible
JPH01252780A (en) Boron nitride coated body and production thereof
JPH05255848A (en) Production of thin aluminum nitride film
JPH0410904A (en) Mold and molding method
JP2614870B2 (en) Manufacturing method of polycrystalline diamond sintered body
JPH05124864A (en) Production of high purity silicon carbide body
JPH03252307A (en) Polycrystal silicon carbide
JPS6386872A (en) Production of silicon nitride
JPH0431309A (en) Production of thermally decomposed boron nitride formed article
JPS6350320B2 (en)
CN114214605A (en) Novel two-dimensional boron nitride material based on silicon substrate and sapphire substrate and preparation method thereof