JPH06135794A - Drouble-layered ceramic crucible - Google Patents

Drouble-layered ceramic crucible

Info

Publication number
JPH06135794A
JPH06135794A JP31290192A JP31290192A JPH06135794A JP H06135794 A JPH06135794 A JP H06135794A JP 31290192 A JP31290192 A JP 31290192A JP 31290192 A JP31290192 A JP 31290192A JP H06135794 A JPH06135794 A JP H06135794A
Authority
JP
Japan
Prior art keywords
crucible
layer
heat absorbing
thermal expansion
absorbing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31290192A
Other languages
Japanese (ja)
Other versions
JP2837049B2 (en
Inventor
Atsuo Kawada
敦雄 川田
Koji Hagiwara
浩二 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP4312901A priority Critical patent/JP2837049B2/en
Publication of JPH06135794A publication Critical patent/JPH06135794A/en
Application granted granted Critical
Publication of JP2837049B2 publication Critical patent/JP2837049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a double-layered ceramic crucible having a long service life because the heat absorbing layer made of pyrolytic graphite does not peel off the substrate of the crucible or the coating layer made of electric insulating ceramics does not peel off the heat absorbing layer even when the crucible is repeatedly heated and cooled. CONSTITUTION:When a heat absorbing layer made of pyrolytic graphite is joined to the surface of the substrate of a crucible made of pyrolytic boron nitride and a coating layer made of electric insulating ceramics is formed on the heat absorbing layer to obtain a double-layered ceramic crucible, the difference between the coefft. of thermal expansion of the heat absorbing layer and that of the substrate of the crucible and the difference between the coefft. of thermal expansion of the coating layer and that of the heat absorbing layer are regulated to <=1X10<-6>/ deg.C each.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複層セラミックスるつ
ぼ、特には化合物半導体の分子線エピタキシ−用に好適
とされる複層セラミックスるつぼに関するものである。
FIELD OF THE INVENTION The present invention relates to a multilayer ceramic crucible, and more particularly to a multilayer ceramic crucible suitable for molecular beam epitaxy of compound semiconductors.

【0002】[0002]

【従来の技術】従来、化合物半導体の分子線エピタキシ
−用に使用される蒸発源るつぼとしては、熱分解窒化ほ
う素などの高耐熱性セラミックスからなるるつぼが用い
られてきており、これについてはこの熱分解窒化ほう素
からなるるつぼ基材上に熱吸収率の高い熱分解グラファ
イトからなる熱吸収層を設け、これに電気絶縁性セラミ
ックスを被覆してなる複層セラミックスるつぼも開発さ
れている。
2. Description of the Related Art Conventionally, as an evaporation source crucible used for molecular beam epitaxy of a compound semiconductor, a crucible made of highly heat-resistant ceramics such as pyrolytic boron nitride has been used. A multi-layer ceramic crucible has also been developed in which a heat absorbing layer made of pyrolytic graphite having a high heat absorption rate is provided on a crucible substrate made of pyrolytic boron nitride, and the heat absorbing layer is coated with an electrically insulating ceramic.

【0003】[0003]

【発明が解決しようとする課題】しかし、この熱分解窒
化ほう素などからなる従来のるつぼでは、この熱分解窒
化ほう素が熱吸収率の低いものであるために、これを蒸
発源るつぼとして用いると開口部付近の温度が相対的に
低いものとなり、蒸発が不安定になるという欠点があ
る。そのため、これについてはこの低温部に熱分解グラ
ファイトなどからなる熱吸収層を設けて温度を均一化す
ることも行われているが、これは前記した電気絶縁性セ
ラミックスからなる被覆層とこの熱吸収層がるつぼ基材
とを一体化しているために、それらの熱膨張の差によっ
て温度が変化するとその接合部に熱応力が発生し、この
被覆層や熱吸収層がるつぼ基材から剥離してしまうとい
う欠点がある。
However, in a conventional crucible made of this pyrolytic boron nitride, etc., this pyrolytic boron nitride has a low heat absorption rate, so that it is used as an evaporation source crucible. The temperature around the opening is relatively low, and the evaporation becomes unstable. Therefore, for this, a heat absorption layer made of pyrolytic graphite or the like is provided in the low temperature part to make the temperature uniform. This is because the coating layer made of the electrically insulating ceramics and the heat absorption layer are formed. Since the layer is integrated with the crucible base material, when the temperature changes due to the difference in their thermal expansion, thermal stress is generated at the joint, and this coating layer or heat absorption layer separates from the crucible base material. There is a drawback that it ends up.

【0004】[0004]

【課題を解決するための手段】本発明はこのような不
利、欠点を解決した複層セラミックスるつぼに関するも
のであり、これは熱分解窒化ほう素からなるるつぼ基材
の表面に熱分解グラファイトからなる熱吸収層を接合
し、その上に電気絶縁性セラミックスからなる被覆層を
設けてなる複層セラミックスるつぼにおいて、該熱吸収
層と該るつぼ基材との熱膨張係数の差および該被覆層と
該熱吸収層との熱膨張係数の差を1×10-6/℃以下とし
てなることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a multi-layer ceramics crucible which solves the above disadvantages and drawbacks, which comprises a pyrolytic graphite on the surface of a crucible substrate made of pyrolytic boron nitride. In a multi-layer ceramic crucible obtained by joining a heat absorption layer and providing a coating layer made of electrically insulating ceramics thereon, a difference in coefficient of thermal expansion between the heat absorption layer and the crucible base material and the coating layer and the It is characterized in that the difference in coefficient of thermal expansion from the heat absorption layer is 1 × 10 −6 / ° C. or less.

【0005】すなわち、発明者らは従来公知の複層セラ
ミックスるつぼの欠点を解決した複層セラミックスるつ
ぼを開発すべく種々検討した結果、これについては熱分
解窒化ほう素からなるるつぼ基材の表面に熱吸収層とし
て熱分解グラファイト層を接合し、この上に電気絶縁性
セラミックスを被覆してなる公知の複層セラミックスる
つぼおいて、このるつぼ基材と熱吸収層との熱膨張係数
の差および被覆層と熱吸収層との熱膨張係数の差を1×
10-6/℃以下のものとすればこの被覆層や熱吸収層がる
つぼ基材から剥離することがなくなるということを見出
すと共に、これによればこのものを化合物半導体の分子
線エピタキシ−用に使用しても不純物による汚染が生ず
ることがなくなるということを確認して本発明を完成さ
せた。以下にこれをさらに詳述する。
That is, the inventors have conducted various studies to develop a multi-layer ceramic crucible that solves the drawbacks of the conventionally known multi-layer ceramic crucible. As a result, the multi-layer ceramic crucible is found on the surface of a crucible substrate made of pyrolytic boron nitride. In a known multi-layer ceramic crucible, in which a pyrolytic graphite layer is joined as a heat absorbing layer and which is coated with an electrically insulating ceramic, a difference in coefficient of thermal expansion between the crucible base material and the heat absorbing layer and coating The difference in the coefficient of thermal expansion between the layer and the heat absorption layer is 1 ×
It was found that the coating layer and the heat absorption layer would not be peeled off from the crucible base material if the temperature was 10 -6 / ° C or less, and it was found that this was used for molecular beam epitaxy of compound semiconductors. The present invention has been completed by confirming that contamination by impurities does not occur even when used. This will be described in more detail below.

【0006】[0006]

【作用】本発明は複層セラミックスるつぼに関するもの
で、これは熱分解窒化ほう素からなるるつぼ基材の表面
に熱分解グラファイトからなる熱吸収層を接合し、その
上に電気絶縁性セラミックスからなる被覆層を設けてな
る複層セラミックスるつぼにおいて、該熱吸収層と該る
つぼ基材との熱膨張係数の差および該被覆層と該熱吸収
層との熱膨張係数の差を1×10-6/℃以下としてなるこ
とを特徴とするものであるが、このものはその被覆層と
熱吸収層がるつぼ基材から剥離することがなくなるの
で、これは長寿命なものとなり、このものは化合物半導
体の分子線エピタキシ−法に好適なものになるという有
利性をもつものになる。
The present invention relates to a multi-layer ceramic crucible, which comprises a crucible base material composed of pyrolytic boron nitride, and a heat absorbing layer composed of pyrolytic graphite bonded to the surface of the crucible substrate, and composed of an electrically insulating ceramic. In a multilayer ceramic crucible provided with a coating layer, the difference in the coefficient of thermal expansion between the heat absorption layer and the base of the crucible and the difference in the coefficient of thermal expansion between the coating layer and the heat absorption layer are 1 × 10 −6. However, since the coating layer and the heat absorption layer do not separate from the crucible substrate, it has a long life, and this is a compound semiconductor. Of the molecular beam epitaxy method.

【0007】本発明の複層セラミックスるつぼは熱分解
窒化ほう素からなるるつぼ基材の表面に熱分解グラファ
イトからなる熱吸収層を接合し、その上に電気絶縁性セ
ラミックスからなる被覆層を設けてなるものであること
から、これ自体の構成は公知のものとされる。しかし、
この複層セラミックスるつぼについてはこの熱分解グラ
ファイトからなる熱吸収層と熱分解窒化ほう素とからな
るるつぼ基材との熱膨張係数の差、またこの絶縁性セラ
ミックスからなる被覆層と該熱吸収層との熱膨張係数の
差が1×10-6/℃以上であると、使用時にその熱膨張係
数の差によって温度が変化するとこの接合部に熱応力が
発生して、この熱吸収層や被覆層がるつぼ基材から剥離
するということが見出された。
In the multi-layer ceramic crucible of the present invention, a heat absorbing layer made of pyrolytic graphite is bonded to the surface of a crucible base material made of pyrolytic boron nitride, and a coating layer made of electrically insulating ceramics is provided thereon. Therefore, the structure itself is known. But,
Regarding the multi-layer ceramic crucible, the difference in the coefficient of thermal expansion between the heat absorbing layer made of the pyrolytic graphite and the crucible base material made of the pyrolytic boron nitride, and the coating layer made of the insulating ceramic and the heat absorbing layer. If the difference in the coefficient of thermal expansion with the above is 1 × 10 -6 / ° C or more, when the temperature changes due to the difference in the coefficient of thermal expansion during use, thermal stress is generated in this joint, and this heat absorption layer or coating It has been found that the layers delaminate from the crucible substrate.

【0008】したがって、本発明ではこの熱吸収層とる
つぼ基材との熱膨張係数の差、および被覆層と熱吸収層
との熱膨張係数の差が1×10-6/℃以下とすることが必
要とされ、これによれば使用時に温度が変化したときで
もこれら両社の熱膨張係数の差により発生する接合部の
熱応力が接合強度より小さいものとなるので、この接合
部での被覆層、熱吸収層の剥離は起こらず、これは寿命
の長いものになるという有利性が与えられる。
Therefore, in the present invention, the difference in the coefficient of thermal expansion between the heat absorbing layer and the crucible base material and the difference in the coefficient of thermal expansion between the coating layer and the heat absorbing layer should be 1 × 10 −6 / ° C. or less. Therefore, even if the temperature changes during use, the thermal stress of the joint caused by the difference in the thermal expansion coefficients of these two companies will be smaller than the joint strength, so the coating layer at this joint is However, peeling of the heat absorption layer does not occur, which gives the advantage of a long life.

【0009】したがって、この複層セラミックスるつぼ
を構成するるつぼ基材と熱吸収層、および被覆層と熱吸
収層はこれらの熱膨張係数の差が1×10-6/℃以下のも
のとされる。このるつぼ基材はこれがIII.V 族化合物半
導体プロセスに使用されるものであることから、これと
は同族化合物である窒化ほう素からなるものとされる
が、このものは例えばアンモニアと三塩化ほう素とを1,
800 〜2,100 ℃、10ト−ルの条件下で反応させたものと
すればよく、このようにして得られた熱分解窒化ほう素
は熱膨張係数が2〜4×10-6/℃のものとなる。
Therefore, the difference in the coefficient of thermal expansion between the crucible base material and the heat absorption layer, and between the coating layer and the heat absorption layer, which constitute this multi-layer ceramic crucible, is 1 × 10 −6 / ° C. or less. . Since this crucible substrate is used in the III.V group compound semiconductor process, it is made of a homologous compound, boron nitride, which is, for example, ammonia and boron trichloride. 1 and
The reaction may be carried out under the conditions of 800 to 2,100 ° C and 10 torr, and the thermal decomposition boron nitride thus obtained has a thermal expansion coefficient of 2 to 4 × 10 -6 / ° C. Becomes

【0010】つぎにこのるつぼ基材と接合される熱吸収
剤は窒化ほう素との付着性が比較的よいということから
熱分解グラファイトからなるものとされるが、このもの
は例えばメタンガスを1,900 〜2,100 ℃、5ト−ルとい
う条件下で熱分解させることによって作ったものとすれ
ばよく、このようにして得られた熱分解グラファイトは
熱膨張係数が1〜3×10-6/℃のものとなる。
Next, the heat absorbent to be joined to the crucible base material is made of pyrolytic graphite because of its relatively good adhesion to boron nitride, and this is made of, for example, methane gas from 1,900 to It may be produced by thermal decomposition under the conditions of 2,100 ° C. and 5 torr, and the thermal expansion graphite thus obtained has a thermal expansion coefficient of 1 to 3 × 10 −6 / ° C. Becomes

【0011】また、この熱分解グラファイトの上に被覆
される被覆剤は電気絶縁性セラミックスからなるものと
されるが、これはこのるつぼ基材が熱分解窒化ほう素か
らなるものであることから、窒化ほう素からなるものと
することがよく、したがってこれはるつぼ基材としての
熱分解窒化ほう素と同様にアンモニアと三塩化ほう素と
を1,800 〜2,100 ℃、5〜10ト−ルという条件下で熱分
解して作ったものとすればよい。
Further, the coating agent coated on the pyrolytic graphite is made of electrically insulating ceramics, since this crucible base material is made of pyrolytic boron nitride. It is preferably made of boron nitride. Therefore, this is similar to the pyrolytic boron nitride used as the crucible base material, in the condition of ammonia and boron trichloride at 1,800 to 2,100 ° C and 5 to 10 Torr. It can be made by thermal decomposition.

【0012】このようにして作られたるつぼ基材として
の熱分解窒化ほう素、熱分解グラファイトからなる熱吸
収層および窒化ほう素からなる被覆層の熱膨張係数は上
記したようなものとなるが、このるつぼ基材と熱吸収
層、被覆層と熱吸収層とはそれらの熱膨張係数の差が1
×10-6/℃以下のものとすることが必要とされるので、
これらはそれを製造するときの温度、真空度などを調整
してその熱膨張係数の差が1×10-6/℃以下となるよう
にすればよい。
The thermal expansion coefficients of the pyrolytic boron nitride, the thermal absorbing layer made of pyrolytic graphite, and the coating layer made of boron nitride as the crucible substrate thus produced are as described above. , The difference in the coefficient of thermal expansion between the crucible base material and the heat absorption layer and between the coating layer and the heat absorption layer is 1
Since it is required that the density be less than × 10 -6 / ° C,
The difference in the coefficient of thermal expansion between these may be adjusted to 1 × 10 −6 / ° C. or less by adjusting the temperature, the degree of vacuum, etc. when manufacturing them.

【0013】なお、このようにして作られた複層セラミ
ックスるつぼはその熱吸収層とるつぼ基材、また被覆層
と熱吸収層との熱膨張係数の差が1×10-6/℃以下とな
るのでこの被覆層と熱吸収層がるつぼ基材から剥離する
ことがなくなり、高い寿命をもつものになるが、このも
のはこれを化合物半導体の分子線エピタキシ−法に使用
してもこの被覆層が窒化ほう素とされているので、これ
がIV族元素で汚染されることはないし、このるつぼ基
材、熱吸収層も化学気相蒸着法で作られたもので、焼結
法で作られたものに比べて不純物を含んでいない高純度
のものであるので、これはこれを半導体プロセスに使用
しても半導体がこれらの不純物によって汚染することは
ないという有利性が与えられる。
The multi-layer ceramic crucible thus prepared has a heat absorption layer and a crucible base material, and a difference in coefficient of thermal expansion between the coating layer and the heat absorption layer is 1 × 10 −6 / ° C. or less. As a result, the coating layer and the heat absorption layer do not separate from the crucible base material and have a long life. However, even when this is used in the molecular beam epitaxy method of compound semiconductors, this coating layer Since it is made of boron nitride, it is not contaminated with group IV elements, and the crucible base material and heat absorption layer are also made by the chemical vapor deposition method and made by the sintering method. Since it is of a high purity which does not contain impurities as compared with that of the semiconductor, it has the advantage that the semiconductor is not contaminated by these impurities when it is used in a semiconductor process.

【0014】[0014]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1 アンモニアと三塩化ほう素とを2,100 ℃、10ト−ルとい
う条件下で反応させて、直径20mm、 厚さ1mmの熱分解窒
化ほう素のるつぼを作ったのち、このるつぼの表面でメ
タンガスを1,900 ℃、 5ト−ルという条件下で熱分解さ
せてここに厚さ40μm の熱分解グラファイトからなる熱
吸収層を形成させた。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Example 1 Ammonia and boron trichloride were reacted under the conditions of 2,100 ° C. and 10 torr to form a pyrolytic boron nitride crucible having a diameter of 20 mm and a thickness of 1 mm, and then, on the surface of this crucible. Methane gas was pyrolyzed under the conditions of 1,900 ° C. and 5 torr to form a heat absorbing layer made of pyrolytic graphite having a thickness of 40 μm there.

【0015】ついで、この熱吸収層の上でアンモニアと
三塩化ほう素とを2,100 ℃、10ト−ルという条件下で反
応させて、ここに厚さ100 μm の電気絶縁性セラミック
スとしての熱分解窒化ほう素からなる被複層を形成させ
て複層セラミックスるつぼを作ったところ、このるつぼ
はその熱吸収層とるつぼ基材との熱膨張係数の差と被覆
層と熱吸収層との熱膨張係数の差がいずれも1×10-6
℃であることから、このものは1,300 ℃まで100 回昇
温、降温をくり返しても、るつぼ基材と発熱層との接合
部には剥離が発生せず、長い寿命をもつものであり、こ
れは化合物半導体としてのGaAsの分子線エピタキシ−用
に使用したところ、6ケ月間毎日昇降温をくり返しても
剥離は発生せず、安定した蒸発を維持することができる
という好結果を与えた。
Then, ammonia and boron trichloride were reacted on the heat absorption layer under the conditions of 2,100 ° C. and 10 torr, and the thermal decomposition as an electrically insulating ceramic having a thickness of 100 μm was carried out. When a multi-layer ceramic crucible was made by forming multiple layers of boron nitride, the difference in the coefficient of thermal expansion between the heat absorption layer and the crucible substrate and the thermal expansion between the coating layer and the heat absorption layer Any coefficient difference is 1 × 10 -6 /
Since the temperature is ℃, even if the temperature is raised and lowered 100 times up to 1,300 ℃, no peeling occurs at the joint between the crucible base material and the heat generation layer, and it has a long life. When it was used for molecular beam epitaxy of GaAs as a compound semiconductor, peeling did not occur even if the temperature was raised and lowered daily for 6 months, and the stable evaporation could be maintained.

【0016】実施例2 アンモニアと三塩化ほう素とを1,800 ℃、10ト−ルとい
う条件下で反応させて、直径40mm、 厚さ1mmの熱分解窒
化ほう素のるつぼをつくったのち,このるつぼの表面で
メタンガスを2,100 ℃、 5ト−ルという条件下で熱分解
させて、ここに厚さ50μm の熱分解グラファイトからな
る熱吸収層を形成させた。
Example 2 Ammonia and boron trichloride were reacted under the conditions of 1,800 ° C. and 10 torr to form a pyrolytic boron nitride crucible having a diameter of 40 mm and a thickness of 1 mm. Methane gas was pyrolyzed on the surface of the above under the condition of 2,100 ° C. and 5 Torr to form a heat absorbing layer made of pyrolytic graphite having a thickness of 50 μm there.

【0017】ついで、この熱吸収層の上でアンモニアと
三塩化ほう素とを1,900 ℃、10ト−ルという条件下で反
応させて、ここに厚さ90μm の電気絶縁性セラミックス
としての熱分解窒化ほう素からなる被複層を形成させて
複層セラミックスるつぼを作ったところ、このるつぼは
その熱吸収層とるつぼ基材との熱膨張係数の差が0.5×1
0-6/℃であり、被複層と熱吸収層との熱膨張係数の差
が0.4 ×10-6/℃であることから、室温から1,300 ℃ま
で100 回の昇温、降温をくり返してもるつぼ基材と発熱
層の接合部に剥離は発生しなかった。
Then, ammonia and boron trichloride are reacted on the heat absorbing layer under the conditions of 1,900 ° C. and 10 torr, and then pyrolytic nitriding as a 90 μm thick electrically insulating ceramic is carried out. When a multi-layer ceramic crucible was made by forming multiple layers of boron, the difference in coefficient of thermal expansion between the heat absorption layer and the crucible substrate was 0.5 × 1
Since it is 0 -6 / ° C, and the difference in the coefficient of thermal expansion between the layer to be laminated and the heat absorption layer is 0.4 × 10 -6 / ° C, heating and cooling are repeated 100 times from room temperature to 1,300 ° C. No peeling occurred at the joint between the crucible base material and the heat generating layer.

【0018】比較例 アンモニアと三塩化ほう素とを2,100 ℃、10ト−ルとい
う条件下で反応させて、直径が50mm、 厚さが1mmの熱分
解窒化ほう素製るつぼを作ったのち、このるつぼの表面
でメタンガスを2,100 ℃、5ト−ルという条件下で熱分
解させて、ここに厚さが10μm の熱分解グラファイトか
らなる熱吸収層を形成させた。
Comparative Example Ammonia and boron trichloride were reacted under the conditions of 2,100 ° C. and 10 Torr to prepare a pyrolytic boron nitride crucible having a diameter of 50 mm and a thickness of 1 mm. Methane gas was pyrolyzed on the surface of the crucible under the conditions of 2,100 ° C. and 5 torr to form a heat absorbing layer made of pyrolytic graphite having a thickness of 10 μm there.

【0019】ついで、この熱吸収層の上でアンモニアと
三塩化ほう素とを1,800 ℃、5ト−ルという条件下で反
応させて、ここに厚さ100 μm の電気絶縁性セラミック
スとしての熱分解窒化ほう素からなる被覆層を形成させ
て複層セラミックスるつぼを作ったところ、このるつぼ
は熱吸収層とるつぼ基材との熱膨張係数の差が2×10-6
/℃であり、被覆層と熱吸収層との熱膨張係数の差が1.
2 ×10-6/℃でいずれも1×10-6/℃以上であることか
ら、室温から1,300 ℃まで28回の昇温、降温をくり返し
た時点でるつぼ基材と発熱層との接合部に剥離が発生し
た。
Then, ammonia and boron trichloride are reacted on the heat absorption layer under the conditions of 1,800 ° C. and 5 torr, and then pyrolyzed as a 100 μm thick electrically insulating ceramic. When a multi-layer ceramic crucible was formed by forming a coating layer made of boron nitride, the difference in the coefficient of thermal expansion between the heat absorbing layer and the crucible substrate was 2 × 10 -6.
/ ° C, and the difference in the coefficient of thermal expansion between the coating layer and the heat absorption layer is 1.
At 2 × 10 -6 / ° C, both are 1 × 10 -6 / ° C or higher. Therefore, the temperature between room temperature and 1,300 ° C is increased and decreased 28 times. Peeling occurred.

【0020】[0020]

【発明の効果】本発明は複層セラミックスるつぼに関す
るものであり、これは前記したように熱分解窒化ほう素
からなるるつぼ基材の表面に熱分解グラファイトからな
る熱吸収層と接合し、その上に電気絶縁性セラミックス
からなる被覆層を設けてなる積層セラミックスるつぼに
おいて、該熱吸収層とるつぼ基材との熱膨張係数の差お
よび該被覆層と該熱吸収層との熱膨張係数の差を1×10
-6/℃以下としてなることを特徴とするものであるが、
このものはその熱吸収層とるつぼ基材およびその被覆層
と熱吸収層との熱膨張係数の差がいずれも1×10-6/℃
以下とされているので使用時に温度差が生じてもその接
合部に発生する熱応力がこの接合強度より小さいので、
この接合部で熱吸収層や被覆層が剥離することがなくな
って寿命の長いものとなるし、これはIV族元素などで汚
染されることもないので、これはIII-V 族化合物半導体
の分子線エピタキシ−法などに使用することができると
う有利性が与えられる。
The present invention relates to a multi-layer ceramic crucible, which, as described above, is bonded to the surface of a crucible substrate made of pyrolytic boron nitride with a heat absorption layer made of pyrolytic graphite, and In a laminated ceramic crucible in which a coating layer made of electrically insulating ceramics is provided, the difference in coefficient of thermal expansion between the heat absorbing layer and the crucible substrate and the difference in coefficient of thermal expansion between the coating layer and the heat absorbing layer 1 x 10
It is characterized by being -6 / ° C or less,
This product has a thermal expansion coefficient of 1 × 10 −6 / ° C. for both the heat absorbing layer, the crucible base material, and the coating layer and the heat absorbing layer.
Since it is set as below, the thermal stress generated in the joint is smaller than this joint strength even if there is a temperature difference during use.
Since the heat absorption layer and the coating layer do not peel off at this joint and the life is long, and it is not contaminated by group IV elements, etc., this is the molecule of the III-V group compound semiconductor. It offers the advantage that it can be used in line epitaxy methods and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱分解窒化ほう素からなるるつぼ基材の表
面に熱分解グラファイトからなる熱吸収層を接合し、そ
の上に電気絶縁性セラミックスからなる被覆層を設けて
なる複層セラミックスるつぼにおいて、該熱吸収層と該
るつぼ基材との熱膨張係数の差および該被覆層と該熱吸
収層との熱膨張との差をともに1×10-6/℃以下とし
てなることを特徴とする複層セラミックスるつぼ。
1. A multi-layer ceramic crucible in which a heat absorbing layer made of pyrolytic graphite is bonded to the surface of a crucible substrate made of pyrolytic boron nitride, and a coating layer made of electrically insulating ceramics is provided on the heat absorbing layer. A difference in thermal expansion coefficient between the heat absorbing layer and the crucible base material and a difference in thermal expansion between the coating layer and the heat absorbing layer are both 1 × 10 −6 / ° C. or less. Multi-layer ceramic crucible.
JP4312901A 1992-10-28 1992-10-28 Method for producing multilayer ceramic crucible Expired - Lifetime JP2837049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4312901A JP2837049B2 (en) 1992-10-28 1992-10-28 Method for producing multilayer ceramic crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4312901A JP2837049B2 (en) 1992-10-28 1992-10-28 Method for producing multilayer ceramic crucible

Publications (2)

Publication Number Publication Date
JPH06135794A true JPH06135794A (en) 1994-05-17
JP2837049B2 JP2837049B2 (en) 1998-12-14

Family

ID=18034827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4312901A Expired - Lifetime JP2837049B2 (en) 1992-10-28 1992-10-28 Method for producing multilayer ceramic crucible

Country Status (1)

Country Link
JP (1) JP2837049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759416A3 (en) * 1995-08-22 1997-06-04 Shinetsu Chemical Co Vessel of pyrolytic boron nitride

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153189A (en) * 1985-12-24 1987-07-08 Kyocera Corp Boron nitride coated crucible and production thereof
JPS62176981A (en) * 1986-01-29 1987-08-03 Kyocera Corp Boron nitride-coated crucible
JPH04231459A (en) * 1990-06-06 1992-08-20 Union Carbide Coatings Service Technol Corp Boron nitride crucible and method for manufacturing same
JPH04285086A (en) * 1991-03-14 1992-10-09 Fujitsu Ltd Boron nitride laminated material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153189A (en) * 1985-12-24 1987-07-08 Kyocera Corp Boron nitride coated crucible and production thereof
JPS62176981A (en) * 1986-01-29 1987-08-03 Kyocera Corp Boron nitride-coated crucible
JPH04231459A (en) * 1990-06-06 1992-08-20 Union Carbide Coatings Service Technol Corp Boron nitride crucible and method for manufacturing same
JPH04285086A (en) * 1991-03-14 1992-10-09 Fujitsu Ltd Boron nitride laminated material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759416A3 (en) * 1995-08-22 1997-06-04 Shinetsu Chemical Co Vessel of pyrolytic boron nitride
US5759646A (en) * 1995-08-22 1998-06-02 Shin-Etsu Chemical Co., Ltd. Vessel of pyrolytic boron nitride

Also Published As

Publication number Publication date
JP2837049B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
JP2749759B2 (en) Ceramic heater with electrostatic chuck
US5665260A (en) Ceramic electrostatic chuck with built-in heater
US4892788A (en) Graphite brazing fixture coated with composite layers of titanium carbide and titanium nitride
JPH0826863A (en) Formed body of pyrolized boron nitride-coated double layers and method for producing the same
JP2763239B2 (en) Multi-layer ceramic crucible
JPH06135794A (en) Drouble-layered ceramic crucible
JPS605233B2 (en) Method for manufacturing high melting point compound thin film
JP2779052B2 (en) Multilayer ceramic heater
JPH0536847A (en) Manufacture of diamond multilayer wiring board
JP4907017B2 (en) Method for producing carbon nanotube film body
JPH06140132A (en) Layered ceramic heater
JPS6027699A (en) Preparation of single crystal film of silicon carbide
JPH0310076A (en) Method for forming pyrolytic boron nitride film
JP2915750B2 (en) Ceramic heater with electrostatic chuck
JPH06140133A (en) Layered ceramic heater
JPH03115572A (en) Improvement of adhesive property of synthetic diamond film on a base
JPH05194046A (en) Double-layer ceramic heater
JPH0789776A (en) Production of boron nitride coated carbon material
JP2948357B2 (en) Multilayer ceramic heater
JPH01145400A (en) Jig for heating silicon wafer
JP2001278691A (en) Substrate for single crystal diamond synthesis
JP2000012665A (en) Ceramics component
JP3519744B2 (en) Multilayer ceramic heater
JP2582426B2 (en) Heat-resistant container made of pyrolytic boron nitride and method for producing the same
JPH07297267A (en) Ceramic heater with electrostatic chuck

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091009

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091009

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20121009