JP2948357B2 - Multilayer ceramic heater - Google Patents

Multilayer ceramic heater

Info

Publication number
JP2948357B2
JP2948357B2 JP3138286A JP13828691A JP2948357B2 JP 2948357 B2 JP2948357 B2 JP 2948357B2 JP 3138286 A JP3138286 A JP 3138286A JP 13828691 A JP13828691 A JP 13828691A JP 2948357 B2 JP2948357 B2 JP 2948357B2
Authority
JP
Japan
Prior art keywords
heater
layer
multilayer ceramic
ceramic heater
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3138286A
Other languages
Japanese (ja)
Other versions
JPH04337276A (en
Inventor
敦雄 川田
昇 木村
芳宏 久保田
今朝治 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3138286A priority Critical patent/JP2948357B2/en
Publication of JPH04337276A publication Critical patent/JPH04337276A/en
Application granted granted Critical
Publication of JP2948357B2 publication Critical patent/JP2948357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は複層セラミックスヒータ
ー、特には半導体用シリコンウエーハの加熱用や、化学
気相蒸着法、スパッタ−法によって薄膜を形成する際の
基材の加熱用に好適とされる複層セラミックスヒーター
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for heating a multilayer ceramic heater, especially for a silicon wafer for semiconductors, and for heating a substrate when forming a thin film by a chemical vapor deposition method or a sputtering method. The present invention relates to a multilayer ceramic heater to be used.

【0002】[0002]

【従来の技術】従来、半導体プロセスに使用されるヒー
ターとしてはアルミナ、窒化アルミニウム、ジルコニア
などの焼結セラミックスからなる支持体に、モリブデ
ン、タングステンなどの高融点金属の線や箔を発熱体と
して巻き付けるか、接着したものが用いられてきてい
る。また、この改良品としては電気絶縁性セラミックス
の支持基材上に導電性セラミックスの発熱層を設けたも
のも開発されている。
2. Description of the Related Art Conventionally, as a heater used in a semiconductor process, a wire or foil of a refractory metal such as molybdenum or tungsten is wound as a heating element on a support made of sintered ceramics such as alumina, aluminum nitride, and zirconia. Or, what is adhered has been used. Further, as this improved product, a product in which a heat generating layer made of conductive ceramics is provided on a support base material made of electrically insulating ceramics has also been developed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
公知のヒーターには、発熱体が金属製のものとされてい
るために変形や脆化が起こり易く、したがって短寿命で
あるし、また組立ても煩雑であるという問題点がある。
また、この改良品は発熱体がセラミックスであることか
ら長寿命であり、発熱体が支持基材と一体化しているた
めに組立ても容易であるという利点はあるが、これには
発熱体が支持基材の片面にしかないため、両者の熱膨張
の差を吸収する部分がなく、したがって温度が変化する
とヒーターに変形が起り、例えば半導体ウエーハ加熱用
の平面ヒーターの場合にはウエーハとの接触が不均一に
なり、温度の均一性が損なわれるという欠点があった。
However, since the heating element is made of a metal, the above-mentioned known heater is liable to be deformed or embrittled, and therefore has a short life and is difficult to assemble. Is also complicated.
In addition, this improved product has the advantage that it has a long life because the heating element is made of ceramics and is easy to assemble because the heating element is integrated with the supporting base material. Since there is only one surface of the base material, there is no portion that absorbs the difference in thermal expansion between the two.Therefore, when the temperature changes, the heater is deformed. There is a defect that the temperature becomes uniform and the temperature uniformity is impaired.

【0004】[0004]

【課題を解決するための手段】本発明はこのような不利
を解決した複層セラミックスヒーターに関するもので、
これは熱分解窒化ほう素または化学気相蒸着窒化けい素
である支持基材の両面に熱分解グラファイトまたは化学
気相蒸着炭化けい素である発熱層を設けてなることを特
徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a multilayer ceramic heater which has solved such disadvantages.
This is pyrolytic boron nitride or chemical vapor deposited silicon nitride
Pyrolytic graphite or chemical on both sides of the supporting substrate is
It is characterized in that a heat generating layer made of vapor deposited silicon carbide is provided.

【0005】すなわち、本発明者らは従来の不利を解決
した複層セラミックスヒーターを開発すべく種々検討し
た結果、電気絶縁性セラミックスからなる支持基材の両
面に導電性セラミックスの発熱層を設ければ、支持基材
と発熱層との熱膨張の差による変形がこの裏面の導電性
セラミックスに打消されるので温度が変化してもヒータ
ーに変形の起ることがなくなり、したがってこれを半導
体ウエーハの加熱に使用しても温度の均一性が損なわれ
ることがなくなるということを見出し、この導電性セラ
ミックスについてはこれと略々同等の熱膨張係数、ヤン
グ率、ポアソン比を有する他のセラミックスとしてもよ
いということを確認して本発明を完成させた。
That is, the present inventors have conducted various studies to develop a multilayer ceramic heater which has solved the conventional disadvantages. As a result, the heating layers of conductive ceramics are provided on both surfaces of a support base made of electrically insulating ceramics. For example, the deformation due to the difference in thermal expansion between the supporting base material and the heat generating layer is counteracted by the conductive ceramics on the back surface, so that even when the temperature changes, the deformation of the heater does not occur. It has been found that the uniformity of temperature is not impaired even when used for heating, and this conductive ceramic may be other ceramics having substantially the same thermal expansion coefficient, Young's modulus, and Poisson's ratio as this. After confirming that, the present invention was completed.

【0006】[0006]

【作用】本発明は積層セラミックスヒーターに関するも
のであり、これは支持基材と発熱層との間の熱膨張率の
差による変形を打消すために、支持基材の両面に導電性
セラミックスからなる発熱層を設けてなるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a laminated ceramic heater, which comprises conductive ceramics on both surfaces of a support substrate in order to cancel deformation due to a difference in thermal expansion coefficient between the support substrate and the heating layer. It is provided with a heating layer.

【0007】本発明の複層セラミックスヒーターは電気
絶縁性セラミックスからなる支持基材の両面に導電性セ
ラミックスを発熱層として設けたもの、支持基材を構
成する電気絶縁性のセラミックスを熱分解窒化ほう素ま
たは化学気相蒸着窒化けい素とし、発熱層の導電性セラ
ミックスを熱分解グラファイトまたは化学気相蒸着炭化
けい素とするものである
The multilayer ceramic heater according to the present invention is provided with conductive ceramics as heat generating layers on both sides of a support base made of electrically insulating ceramics. The electrically insulating ceramics constituting the support base is thermally decomposed and nitrided. Boron
Or chemical vapor deposition silicon nitride, and the conductive ceramic of the heating layer is made of pyrolytic graphite or chemical vapor deposition carbonization.
It should be silicon .

【0008】しかし、この種の複層セラミックスヒータ
ーにおいては、支持基材の表面に付着している発熱層が
十分に薄いものである場合には、これを加熱すると温度
変化に伴なって支持基材と表面層の間に次式 σ=Et(1−vt)・(αt−αs)・ΔT (ここにσ:熱応力、Et:表面層のヤング率、vt:
表面層のポアソン比、αt:表面層の熱膨張係数、α
s:基材の熱膨張係数、ΔT:温度変化)で示される熱
応力が生じ、この熱応力の大きさはこの式から判るよう
にその熱膨張係数、ヤング率、ポアソン比で決り、厚さ
には依存しないので、従来公知の複層セラミックスヒー
ターにおいては、支持基材を形成するセラミックスと発
熱層を形成するセラミックスとの熱膨張率、ヤング率、
ポアソン比の差によって加熱時に熱応力が発生し、これ
によってヒーターが変形する。
However, in this type of multilayer ceramic heater, if the heating layer adhering to the surface of the supporting substrate is sufficiently thin, heating the heating layer causes a change in the temperature of the supporting substrate. The following equation between the material and the surface layer: σ = Et (1-vt) · (αt−αs) · ΔT (where σ: thermal stress, Et: Young's modulus of the surface layer, vt:
Poisson's ratio of the surface layer, αt: coefficient of thermal expansion of the surface layer, α
s: thermal expansion coefficient of the substrate, ΔT: temperature change), and the magnitude of this thermal stress is determined by its thermal expansion coefficient, Young's modulus, and Poisson's ratio, as can be seen from this equation. Therefore, in the conventionally known multilayer ceramic heater, the coefficient of thermal expansion, Young's modulus, of the ceramics forming the supporting base material and the ceramics forming the heat generating layer,
Due to the difference in Poisson's ratio, thermal stress is generated during heating, which deforms the heater.

【0009】本発明の複層セラミックスヒーターは、支
持基材と、この支持基材の両表面に設けられた発熱層と
からなるもので、支持基材の裏面に表面の発熱層と同種
の発熱層が設けられているので、これを加熱すると支持
基材と裏面の発熱層との間にも熱応力が発生し、この熱
応力が支持基材と表面の発熱層との間に発生する熱応力
と同じ値でバランスするので、ヒーターの変形が防止さ
れる。
[0009] The multilayer ceramic heater of the present invention comprises a support base material, and heat generating layers provided on both surfaces of the support base material.
Since a heat generation layer of the same type as the front surface heat generation layer is provided on the back surface of the support base material, when this is heated, thermal stress is also generated between the support base material and the heat generation layer on the back surface, This thermal stress occurs between the supporting base material and the heat generating layer on the surface.
Since the balance is made at the same value as above, the deformation of the heater is prevented.

【0010】なお、この場合、支持基材の裏面に設けら
れる発熱層は、支持基材の表面に設けられた発熱層の導
電性セラミックスと同種のものとされるが、支持基材と
表面の発熱層との間に発生する熱応力と同じ熱応力が発
生するものであればよく、したがって支持基材の裏面に
設けられる発熱層の導電性セラミックス層は表面のセラ
ミックス層と同じ程度の熱膨張率、ヤング率、ポアソン
比をもつものであれば必ずしも同のものとする必要は
ない。
[0010] In this case, the heat generating layer provided on the back surface of the supporting substrate is are those of conductive ceramic and the same kind of heat-generating layer provided on the surface of the supporting substrate, the supporting substrate and the surface As long as the same thermal stress as that generated between the heat generating layer and the heat generating layer is generated, the conductive ceramic layer of the heat generating layer provided on the back surface of the supporting base material has the same thermal expansion as the ceramic layer on the front surface. rate, Young's modulus, it is not always necessary to those of the same kind as long as it has a Poisson's ratio.

【0011】なお、本発明の複層セラミックスヒーター
の支持基材は前記のセラミックスからなるもので、化学
気相蒸着法で製造された熱分解窒化ほう素、窒化けい素
とするもので、焼結法で製造されたものにくらべてバイ
ンダーなどに起因する不純物を含まないので高純度なも
のになるという効果が得られる。
The supporting substrate of the multilayer ceramic heater according to the present invention is made of the above ceramics, and is composed of pyrolytic boron nitride or silicon nitride manufactured by a chemical vapor deposition method.
As compared with the one manufactured by the sintering method, there is no impurity caused by the binder and the like, so that an effect of high purity can be obtained.

【0012】また、発熱層の導電性セラミックスも支持
基材と同様に化学気相蒸着法で製造された炭化けい素、
メタンガスなどの熱分解で得られた熱分解炭素や熱分解
グラファイトとする。これによれば発熱層を高純度のも
のとすることができる。
The conductive ceramic of the heat generating layer is also made of silicon carbide produced by a chemical vapor deposition method, like the supporting substrate.
Pyrolytic carbon or pyrolytic obtained by thermal decomposition such as methane
Graphite . According to this, the heat generation layer can be made of high purity.

【0013】また、このようにして製造された本発明の
複層セラミックスヒーターはこれが高純度のもので、し
かもヒーターに変形がないことから、半導体プロセスに
おける半導体ウエーハ加熱用に好適とされるが、これ
を、 III・V 族化合物半導体プロセスに使用する場合に
は、支持基材として同族化合物である熱分解窒化ほう素
とし、発熱層および補償層を熱分解窒化ほう素との付着
性のよい熱分解炭素とし、さらに全体を熱分解窒化ほう
素でコーティングするとIV族元素やアルカリ金属、重金
属などによる汚染を防止することができるという有利性
が与えられるし、これをシリコン半導体プロセスに使用
するときには支持基材を III族金属元素を含まない化学
気相蒸着窒化けい素とし、発熱層および補償層をIV族化
合物である化学気相蒸着炭化けい素または熱分解炭素と
すると III族金属元素やアルカリ金属、重金属などによ
る汚染を防止することができる。
Further, the multilayer ceramic heater of the present invention thus manufactured is suitable for heating a semiconductor wafer in a semiconductor process, since the heater is of high purity and has no deformation. When this is used in a III / V compound semiconductor process, pyrolytic boron nitride, which is a homologous compound, is used as the supporting base material, and the heat generating layer and the compensation layer are formed of heat having good adhesion to the pyrolytic boron nitride. The use of pyrolytic carbon and the entire coating with pyrolytic boron nitride has the advantage that contamination by group IV elements, alkali metals, heavy metals, etc. can be prevented, and is supported when used in silicon semiconductor processes. Substrate is made of chemical vapor deposited silicon nitride containing no group III metal element, and the heat generating layer and compensation layer are made of chemical vapor deposited by group IV compound. Garbled have a homo or pyrolytic carbon the group III metal element or an alkali metal, it is possible to prevent contamination by heavy metals.

【0014】[0014]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1、比較例1 アンモニアと三塩化ほう素とを10トールの真空下に
2,000℃で反応させて直径80mmφ、厚さ1mm
の熱分解窒化ほう素製内板を作り、ついでこの両面にメ
タンガスを5トールに真空下に2,200℃に加熱して
得た熱分解炭素を厚さ10μmに付着させたのち、この
両面にこのヒーターパターンを加工して複層セラミック
スヒーターを作った。
Next, examples of the present invention and comparative examples will be described. Example 1 and Comparative Example 1 Ammonia and boron trichloride were reacted at 2,000 ° C. under a vacuum of 10 Torr to obtain a diameter of 80 mm and a thickness of 1 mm.
The pyrolytic boron nitride inner plate is made, and pyrolytic carbon obtained by heating methane gas to 2,200 ° C. under a vacuum of 5 torr at 2,200 ° C. is adhered on both surfaces to a thickness of 10 μm. This heater pattern was processed to produce a multilayer ceramic heater.

【0015】つぎにこの円板状ヒーターを用いて直径3
インチのガリウム砒素ウエーハを室温から1,000℃
まで加熱したところ、円板状ヒーターには全く変形が認
められず、ウエーハの温度均一性も±2℃と良好であっ
たが、比較のために裏面に発熱層を設けない以外は同様
にして製造したヒーターを用いて同様の試験を行なった
ところ、このヒーターには0.4mmの反りが発生し、
ウエーハの温度均一性も±9℃と悪かった。
Next, a diameter of 3
Inch gallium arsenide wafer from room temperature to 1,000 ° C
When heated, the disk-shaped heater did not show any deformation, and the temperature uniformity of the wafer was good as ± 2 ° C. However, in the same manner except that no heat-generating layer was provided on the back surface for comparison. When a similar test was performed using the manufactured heater, the heater was warped by 0.4 mm.
The temperature uniformity of the wafer was also poor at ± 9 ° C.

【0016】実施例2、比較例2 アンモニアと四塩化けい素とを5トールの真空下に1,
400℃で反応させて直径110mmφ、厚さ1mmの
化学気相蒸着窒化けい素円板を作り、ついでこの両面に
メチルトリクロロシランを3トールの真空下に1,25
0℃で反応させて得た化学気相蒸着炭化けい素層を厚さ
5μmで設け、この両面にヒーターパターンを加工して
複層セラミックスヒーターを作った。
Example 2, Comparative Example 2 Ammonia and silicon tetrachloride were added under vacuum of 5 torr,
The reaction was carried out at 400 ° C. to produce a chemical vapor deposited silicon nitride disk having a diameter of 110 mmφ and a thickness of 1 mm.
A chemical vapor deposited silicon carbide layer obtained by reacting at 0 ° C. was provided with a thickness of 5 μm, and a heater pattern was processed on both sides to produce a multilayer ceramic heater.

【0017】つぎにこの円板状ヒーターを用いて直径4
インチのシリコンウエーハを室温から1,000℃まで
加熱したところ、円板状ヒーターには全く変形が認めら
れず、ウエーハの温度均一性も±1℃と良好であった
が、比較のために裏面に発熱層を設けない以外は同様に
して製造したヒーターを用いて同様の試験を行なったと
ころ、このヒーターには0.5mmの反りが発生し、ウ
エーハの温度均一性も±10℃と悪かった。
Next, a diameter of 4
When an inch silicon wafer was heated from room temperature to 1,000 ° C., no deformation was observed in the disk-shaped heater, and the temperature uniformity of the wafer was as good as ± 1 ° C. When a similar test was performed using a heater manufactured in the same manner except that no heat generating layer was provided, the heater was warped by 0.5 mm, and the temperature uniformity of the wafer was poor at ± 10 ° C. .

【0018】実施例3、比較例3 アンモニアと四塩化けい素とを5トールの真空下に1,
400℃で反応させて直径110mmφ、厚さ1mmの
化学気相蒸着窒化けい素製円板を作り、ついでこの両面
にメタンガスを8トールの真空下に1,700℃に加熱
して得た熱分解炭素層を厚さ12μmに設け、両面にヒ
ーターパターンを加工して発熱層として複層セラミック
スヒーターを作った。
Example 3, Comparative Example 3 Ammonia and silicon tetrachloride were added under vacuum of 5 torr,
The reaction was carried out at 400 ° C. to produce a disk made of chemical vapor deposited silicon nitride having a diameter of 110 mm and a thickness of 1 mm, and then pyrolysis obtained by heating methane gas on both sides to 1,700 ° C. under a vacuum of 8 Torr. A carbon layer was provided with a thickness of 12 μm, and a heater pattern was processed on both sides to produce a multilayer ceramic heater as a heating layer.

【0019】つぎにこの円板状ヒーターを用いて直径4
インチのシリコンウエーハを室温から1,000℃まで
加熱したところ、円板状ヒーターには全く変形が認めら
れず、ウエーハの温度均一性も±1℃と良好であった
が、比較のために裏面に発熱層を設けない以外は同様に
して製造したヒーターを用いて同様の試験を行なったと
ころ、このヒーターには0.5mmの反りが発生し、ウ
エーハの温度均一性も±10℃と悪かった。
Next, using this disk-shaped heater,
When an inch silicon wafer was heated from room temperature to 1,000 ° C., no deformation was observed in the disk-shaped heater, and the temperature uniformity of the wafer was as good as ± 1 ° C. When a similar test was performed using a heater manufactured in the same manner except that no heat generating layer was provided, the heater was warped by 0.5 mm, and the temperature uniformity of the wafer was poor at ± 10 ° C. .

【0020】[0020]

【発明の効果】本発明によれば、支持基材の裏面にも
面と同じ発熱層が設けられているので、ヒーターを加熱
したときに支持基材と表面の発熱層との間に発生した熱
応力と同じ大きさの熱応力が支持基材と裏面の発熱層と
の間にも発生し、この二つの熱応力がバランスするので
ヒーターが変形することがなく、これをを半導体プロセ
スのウエーハの熱処理に使用したときのウエーハの温度
均一性がよくなり、また支持基材、発熱層が高純度のも
のになるという効果が得られる。
According to the present invention, the table on the back surface of the supporting substrate
Since the same heat generation layer as the surface is provided, the same heat stress as the heat stress generated between the support substrate and the heat generation layer on the front surface when the heater is heated causes the heat generation layer on the support substrate and the heat generation layer on the back surface. also occurs between this because two thermal stress is balanced without heater is deformed, the wafer temperature uniformity better of when using this to heat treatment of the semiconductor process wafer, also support Base material and heat generating layer with high purity
The effect that becomes becomes .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 芳宏 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 精密機能材料研究所 内 (72)発明者 原田 今朝治 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 精密機能材料研究所 内 (58)調査した分野(Int.Cl.6,DB名) H05B 3/14 C04B 41/87 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiro Kubota 2-13-1 Isobe, Annaka-shi, Gunma Prefecture Shin-Etsu Chemical Co., Ltd.Precision Functional Materials Laboratory (72) Inventor Imada Harada Isobe, Annaka-shi, Gunma Prefecture No. 2-13-1 Shin-Etsu Chemical Co., Ltd. Precision Functional Materials Laboratory (58) Field surveyed (Int. Cl. 6 , DB name) H05B 3/14 C04B 41/87

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱分解窒化ほう素または化学気相蒸着窒化
けい素である支持基材の両面に熱分解グラファイトまた
は化学気相蒸着炭化けい素である発熱層を設けてなるこ
とを特徴とする複層セラミックスヒーター。
1. Pyrolytic boron nitride or chemical vapor deposition nitriding
Pyrolytic graphite or both sides of a silicon support substrate
Is a multi-layer ceramic heater characterized by having a heating layer made of chemical vapor deposited silicon carbide .
JP3138286A 1991-05-14 1991-05-14 Multilayer ceramic heater Expired - Lifetime JP2948357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138286A JP2948357B2 (en) 1991-05-14 1991-05-14 Multilayer ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138286A JP2948357B2 (en) 1991-05-14 1991-05-14 Multilayer ceramic heater

Publications (2)

Publication Number Publication Date
JPH04337276A JPH04337276A (en) 1992-11-25
JP2948357B2 true JP2948357B2 (en) 1999-09-13

Family

ID=15218351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138286A Expired - Lifetime JP2948357B2 (en) 1991-05-14 1991-05-14 Multilayer ceramic heater

Country Status (1)

Country Link
JP (1) JP2948357B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014333A1 (en) * 2007-07-20 2009-01-29 Lg Electronics Inc. Electric heater
JP7465771B2 (en) * 2020-09-15 2024-04-11 日本碍子株式会社 Compound sintered body, semiconductor manufacturing equipment member, and method for manufacturing compound sintered body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894028A (en) * 1972-03-14 1973-12-04
JPS5543751A (en) * 1978-09-21 1980-03-27 Tokyo Shibaura Electric Co Plane heating element
JPS5661783A (en) * 1979-10-25 1981-05-27 Tdk Electronics Co Ltd Heating unit and method of manufacturing same
JPS57210605A (en) * 1981-06-21 1982-12-24 Tdk Electronics Co Ltd Infrared radiation element
JPS61104581A (en) * 1984-10-26 1986-05-22 株式会社デンソー Ceramic heater and manufacture thereof
JPS63136485A (en) * 1986-11-27 1988-06-08 京セラ株式会社 Ceramic heater
JPH02234402A (en) * 1989-03-08 1990-09-17 Seiko Instr Inc Manufacture of resistor
JPH02239536A (en) * 1989-01-23 1990-09-21 Varian Assoc Inc Quick preheating cathod for high output vacuum tube
JPH039847A (en) * 1989-05-22 1991-01-17 Xerox Corp Ink jet printing head and manufacture thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535301Y2 (en) * 1973-08-22 1980-08-20
JPS6375986U (en) * 1986-11-06 1988-05-20

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894028A (en) * 1972-03-14 1973-12-04
JPS5543751A (en) * 1978-09-21 1980-03-27 Tokyo Shibaura Electric Co Plane heating element
JPS5661783A (en) * 1979-10-25 1981-05-27 Tdk Electronics Co Ltd Heating unit and method of manufacturing same
JPS57210605A (en) * 1981-06-21 1982-12-24 Tdk Electronics Co Ltd Infrared radiation element
JPS61104581A (en) * 1984-10-26 1986-05-22 株式会社デンソー Ceramic heater and manufacture thereof
JPS63136485A (en) * 1986-11-27 1988-06-08 京セラ株式会社 Ceramic heater
JPH02239536A (en) * 1989-01-23 1990-09-21 Varian Assoc Inc Quick preheating cathod for high output vacuum tube
JPH02234402A (en) * 1989-03-08 1990-09-17 Seiko Instr Inc Manufacture of resistor
JPH039847A (en) * 1989-05-22 1991-01-17 Xerox Corp Ink jet printing head and manufacture thereof

Also Published As

Publication number Publication date
JPH04337276A (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JP2749759B2 (en) Ceramic heater with electrostatic chuck
US5665260A (en) Ceramic electrostatic chuck with built-in heater
JPS6169116A (en) Susceptor for continuous cvd coating on silicon wafer
JPH07297268A (en) Ceramic heater with electrostatic chuck
US5350720A (en) Triple-layered ceramic heater
JP2948357B2 (en) Multilayer ceramic heater
JP3481717B2 (en) Wafer heating device with electrostatic suction function
JP2763239B2 (en) Multi-layer ceramic crucible
JP3297571B2 (en) Electrostatic chuck
JPH05198355A (en) Double ceramic heater
JPH07153370A (en) Discharge tube
JPH0940481A (en) Ceramic heater
JP3057670B2 (en) Multilayer ceramic heater
JP3519744B2 (en) Multilayer ceramic heater
JP3835491B2 (en) Wafer heating apparatus having electrostatic adsorption function
JPH0492447A (en) Formation method of inorganic thin film
JP3869160B2 (en) Multilayer ceramic heater and manufacturing method thereof
JP2997357B2 (en) Glass optical element molding die and manufacturing method thereof
JP2740607B2 (en) Glass forming mold and manufacturing method thereof
JPH05194046A (en) Double-layer ceramic heater
JPH07297267A (en) Ceramic heater with electrostatic chuck
JPH0786379A (en) Semiconductor manufacturing suscepter
JP3812600B2 (en) Wafer heating apparatus having electrostatic adsorption function
JP3022190U (en) Atmospheric pressure chemical vapor deposition tray
JPH0845651A (en) Double-layered ceramic heater

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

EXPY Cancellation because of completion of term