JPH0786379A - Semiconductor manufacturing suscepter - Google Patents

Semiconductor manufacturing suscepter

Info

Publication number
JPH0786379A
JPH0786379A JP22745993A JP22745993A JPH0786379A JP H0786379 A JPH0786379 A JP H0786379A JP 22745993 A JP22745993 A JP 22745993A JP 22745993 A JP22745993 A JP 22745993A JP H0786379 A JPH0786379 A JP H0786379A
Authority
JP
Japan
Prior art keywords
aluminum nitride
thin film
sintered body
susceptor
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22745993A
Other languages
Japanese (ja)
Inventor
Kenji Kitazawa
謙治 北澤
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP22745993A priority Critical patent/JPH0786379A/en
Publication of JPH0786379A publication Critical patent/JPH0786379A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a semiconductor manufacturing suscepter to be enhanced in plasma resistance, improved in thermal uniformity, and elongated in service life by a method wherein an aluminum nitride sintered body is used as a base body, and an aluminum nitride thin film is deposited on the surface of the base body. CONSTITUTION:An aluminum nitride thin film 3 is formed as thick as 0.001 to 1.0mm on a sintered base body 2 whose main component is aluminum nitride. Furthermore, a heat releasing circuit 4 and/or a conductive circuit 5 are formed inside the base body 2. If the thin film 3 is smaller than 0.0001mm in thickness, it is lessened in service life, and if it exceeds 1.0 in thickness, it deteriorates in productivity due to that it is elongated in deposition time. The aluminum nitride sintered body is an excellent insulator which is above 10<13>OMEGA-cm in volume resistivity and 4X10<-6> to 5X10<-6>/ deg.C or small in thermal expansion coefficient and excellent in resistance to a thermal shock, so that it hardly cracks even if it changes suddenly in temperature. The aluminum nitride sintered body is also excellent in thermal conductivity. An aluminum nitride thin film is formed through a vapor method, so that it, is uniform in structure, high in impurity, and excellent in plasma resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置に用い
られるサセプタの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a susceptor used in a semiconductor manufacturing apparatus.

【0002】[0002]

【従来技術】従来より、半導体製造用装置において、サ
セプタは、シリコンウエハーを支持するためのもので、
一般には黒鉛または炭化珪素焼結体からなる基体表面に
気相法により炭化珪素を被覆したもの、あるいは焼結助
剤を添加せずに焼成して形成された高純度炭化珪素焼結
体などが用いられている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus, a susceptor is for supporting a silicon wafer,
In general, a substrate surface made of graphite or a silicon carbide sintered body is coated with silicon carbide by a vapor phase method, or a high-purity silicon carbide sintered body formed by firing without adding a sintering aid is used. It is used.

【0003】また、半導体を製造する過程において、シ
リコンウエハー上にプラズマエッチングによりパターン
を形成することが行われているが、この時、サセプタは
常にプラズマ雰囲気に曝されることとなる。ところが、
このようなプラズマ雰囲気ではサセプタを構成する炭化
ケイ素自体もエッチングされ、サセプタの寿命が短いと
いう問題があった。
Further, in the process of manufacturing a semiconductor, a pattern is formed on a silicon wafer by plasma etching. At this time, the susceptor is always exposed to a plasma atmosphere. However,
In such a plasma atmosphere, the silicon carbide itself constituting the susceptor is also etched, and there is a problem that the life of the susceptor is short.

【0004】そのため、プラズマエッチングを行う場合
のサセプタとしては、耐プラズマに優れたアルミニウム
(Al)、またはアルミナ(Al2 3 )等で形成した
ものが用いられている。
Therefore, a susceptor used for plasma etching is formed of aluminum (Al) or alumina (Al 2 O 3 ) having excellent plasma resistance.

【0005】また、半導体素子の集積回路の集積化を向
上するにつれて、より微細なパターンを形成する必要が
あるため、サセプタ内部に発熱回路を形成しシリコンウ
エハーを加熱しながらプラズマエッチングすることが行
われつつある。
Further, as the integration of integrated circuits of semiconductor devices is improved, it is necessary to form a finer pattern. Therefore, a heating circuit may be formed inside the susceptor to perform plasma etching while heating the silicon wafer. I'm getting smashed.

【0006】[0006]

【発明が解決しようとする問題点】半導体製造用装置の
部品は、シリコンウエハー等に不純物が混入しないよう
高純度の物質で作製されたものであることが必要であ
り、さらにプラズマエッチング用部品としては、それ自
体耐プラズマ性を有することが必要である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Parts of semiconductor manufacturing equipment must be made of high-purity substances so that impurities such as silicon wafers will not be mixed. Needs to be plasma resistant in itself.

【0007】しかしながら、アルミナ(Al2 3 )か
らなるサセプタは、耐プラズマ性には優れているが、熱
伝導性、耐熱衝撃性が低く、均熱性に欠けるために、半
導体製造過程で急加熱、急冷することができないという
問題があった。
However, although the susceptor made of alumina (Al 2 O 3 ) has excellent plasma resistance, it has low thermal conductivity and thermal shock resistance, and lacks thermal uniformity, so that it is rapidly heated in the semiconductor manufacturing process. However, there was a problem that it could not be quenched.

【0008】また、炭化珪素を用いても耐プラズマ性は
十分ではなく、炭化珪素焼結体自体、導電性を有するた
めにサセプタ内部に電気回路を形成することができず、
加熱手段を別途に設ける必要があるため、装置が複雑で
大きくなるという欠点を有していた。
Further, even if silicon carbide is used, the plasma resistance is not sufficient, and since the silicon carbide sintered body itself has conductivity, an electric circuit cannot be formed inside the susceptor.
Since it is necessary to separately provide a heating means, there is a drawback that the device becomes complicated and large.

【0009】[0009]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して特にサセプタを構成する材料の観点から検
討を重ねた結果、窒化アルミニウム焼結体が、絶縁性を
有するとともに熱伝導性が優れていることに着目し、さ
らに検討し窒化アルミニウム焼結体を基体としてその表
面に窒化アルミニウムからなる薄膜を形成したものをサ
セプタとして用いることにより、高い耐プラズマ性を有
するとともに均熱性が向上し、長寿命化を図ることがで
きることを見出し、本発明に至った。
The inventors of the present invention have made extensive studies on the above problems from the viewpoint of the material forming the susceptor. As a result, the aluminum nitride sintered body has an insulating property and a heat resistance. By paying attention to its excellent conductivity, we further studied it, and by using an aluminum nitride sintered body as a substrate with a thin film of aluminum nitride formed on its surface as a susceptor, it has high plasma resistance and thermal uniformity. Therefore, the present invention has been accomplished, and the present invention has been completed, and the present invention has been completed.

【0010】即ち、本発明の半導体製造用サセプタは、
窒化アルミニウムを主体とする焼結体からなる基体の表
面に窒化アルミニウムからなる薄膜を0.001〜1.
0mmの厚みで形成してなることを特徴とするもので、
さらに、前記基体内部に、発熱回路及び/または導電回
路が形成されることを特徴とするものである。
That is, the semiconductor manufacturing susceptor of the present invention is
A thin film made of aluminum nitride is formed on the surface of a base body made of a sintered body containing aluminum nitride as a main component in the range of 0.001 to 1.
It is characterized by being formed with a thickness of 0 mm,
Further, a heat generating circuit and / or a conductive circuit are formed inside the base body.

【0011】以下、本発明を詳述する。本発明の半導体
製造用サセプタの代表的な構造を図1に示した。図1に
よれば、サセプタ1は、窒化アルミニウム焼結体からな
る基体2と、その基体2表面に形成された窒化アルミニ
ウム薄膜3により構成される。薄膜3は、シリコンウエ
ハの載置面、あるいは半導体製造装置内に露出している
面全体に形成される。
The present invention will be described in detail below. A typical structure of the semiconductor manufacturing susceptor of the present invention is shown in FIG. According to FIG. 1, the susceptor 1 is composed of a base 2 made of an aluminum nitride sintered body and an aluminum nitride thin film 3 formed on the surface of the base 2. The thin film 3 is formed on the mounting surface of the silicon wafer or the entire surface exposed in the semiconductor manufacturing apparatus.

【0012】具体的には、基体2は、窒化アルミニウム
を主成分とするもので、他にY,Er,Ybなどの周期
律表第3a族元素の化合物や、Caなどのアルカリ土類
元素化合物を20重量%以下の割合で含む場合もある
が、望ましくはこれらの助剤成分は半導体製造装置内で
半導体に対して不純物的挙動を示すことがあるために、
助剤成分は極力少ないことがよく、例えば特開平5−1
17038号に提案されるように助剤成分を添加するこ
となく高純度化したものが好適に使用される。また、窒
化アルミニウム焼結体は、サセプタの均熱性、速熱性な
どの点から熱伝導率が80W/m・k以上、特に100
W/m・k以上であることが望ましい。
Specifically, the substrate 2 is mainly composed of aluminum nitride, and in addition, a compound of a Group 3a element of the periodic table such as Y, Er, Yb, or an alkaline earth element compound such as Ca. May be contained in a proportion of 20% by weight or less, but desirably, since these auxiliary components may exhibit impurity behavior with respect to the semiconductor in the semiconductor manufacturing apparatus,
It is preferable that the amount of the auxiliary component is as small as possible.
A highly purified product without adding an auxiliary component as proposed in No. 17038 is preferably used. In addition, the aluminum nitride sintered body has a thermal conductivity of 80 W / m · k or more, particularly 100% from the viewpoint of the uniform heating property and the rapid heating property of the susceptor.
W / m · k or more is desirable.

【0013】このような窒化アルミニウム焼結体は、窒
化アルミニウム原料粉末に、前記助剤成分を添加混合し
たものを所望の形状に成形した後、窒素などの非酸化性
雰囲気中で1600〜1950℃の温度で焼成すること
により得られる。
Such an aluminum nitride sintered body is obtained by adding and mixing the above-mentioned auxiliary components to aluminum nitride raw material powder, and shaping the mixture into a desired shape, and then 1600 to 1950 ° C. in a non-oxidizing atmosphere such as nitrogen. It is obtained by firing at the temperature of.

【0014】一方、基体2の表面に形成される窒化アル
ミニウム薄膜3は、0.001〜1.0mm、特に0.
001〜0.3mmの厚みで形成されるのが望ましい。
これは、薄膜の厚みが0.001mmよりも薄いと薄膜
の寿命が短くなり、1.0mmを越えると薄膜の析出時
間が長くなって生産性が劣るためである。この窒化アル
ミニウム薄膜は、周知の気相法、例えば、スパッタリン
グ、イオンプレーティングなどのPVD法や、プラズマ
CVD、光CVD、MO(Metal−organi
c)CVDなどのCVD法により容易に形成されるもの
である。このような気相法により形成される薄膜は、純
度99%以上の高純度であるが、膜中には成膜過程で酸
素が含まれるAlONが含まれる場合もあるが、酸素量
が20原子%を越えると、基体である窒化アルミニウム
焼結体との密着性が低下する場合があるため、酸素含有
量は20原子%以下に制御することが望ましい。また、
窒化アルミニウム薄膜は、高純度で120W/m・k以
上の熱伝導率を有することが望ましい。
On the other hand, the aluminum nitride thin film 3 formed on the surface of the substrate 2 has a thickness of 0.001 to 1.0 mm, and particularly, a thickness of 0.
It is desirable to be formed with a thickness of 001 to 0.3 mm.
This is because if the thickness of the thin film is thinner than 0.001 mm, the life of the thin film becomes short, and if it exceeds 1.0 mm, the deposition time of the thin film becomes long and the productivity becomes poor. This aluminum nitride thin film is a well-known vapor phase method, for example, a PVD method such as sputtering or ion plating, plasma CVD, photo CVD, MO (Metal-organi).
c) It is easily formed by a CVD method such as CVD. The thin film formed by such a vapor phase method has a high purity of 99% or more. Although the film may contain AlON containing oxygen during the film formation process, the amount of oxygen is 20 atoms. If it exceeds 0.1%, the adhesion to the aluminum nitride sintered body that is the base may deteriorate, so it is desirable to control the oxygen content to 20 atomic% or less. Also,
It is desirable that the aluminum nitride thin film has a high purity and a thermal conductivity of 120 W / m · k or more.

【0015】さらに、本発明によれば、基体2の内部に
は、シリコンウエハーを固定し、保温するために必要な
発熱回路4やウエハーを静電吸着するための導電回路5
が組み込まれていても良い。これらの回路4、5は、A
g、W、Mo、C、TiN、Pd、WC、Ni等により
形成されるもので、特に発熱回路4は、シリコンウエハ
ーの保温にムラが生じないようにするため、基体2の全
体にほぼ均一になるように形成することが望ましい。ま
た、これらの回路は、基体と熱膨張率が近似する物質で
形成されることが望ましく、例えば、W、MoおよびN
i等があげられる。
Further, according to the present invention, the heat generating circuit 4 necessary for fixing the silicon wafer and keeping the temperature inside the substrate 2 and the conductive circuit 5 for electrostatically adsorbing the wafer are provided inside the substrate 2.
May be incorporated. These circuits 4 and 5 are
g, W, Mo, C, TiN, Pd, WC, Ni, etc. In particular, the heating circuit 4 is substantially uniform over the entire substrate 2 to prevent unevenness in heat retention of the silicon wafer. It is desirable to form so that. It is desirable that these circuits are formed of a material having a coefficient of thermal expansion similar to that of the base material, such as W, Mo and N.
i, etc.

【0016】このような回路は、例えば窒化アルミニウ
ムを主体とする成形体に金属ペーストとして所定のパタ
ーンに塗布した後、上記焼成条件で同時に焼成すること
により形成することができる。この時、金属ペースト中
には窒化アルミニウムや助剤成分を微量添加して回路と
窒化アルミニウム焼結体との密着性を高めることが効果
的である。
Such a circuit can be formed, for example, by applying a metal paste as a metal paste in a predetermined pattern on a molded body mainly composed of aluminum nitride, and then simultaneously firing it under the above firing conditions. At this time, it is effective to add a small amount of aluminum nitride or an auxiliary component to the metal paste to enhance the adhesion between the circuit and the aluminum nitride sintered body.

【0017】[0017]

【作用】本発明において基体材料として用いられる窒化
アルミニウム焼結体は、体積固有抵抗が1013Ω−cm
以上の良好な絶縁体であるとともに、熱膨張係数が4×
10-6〜5×10-6/℃と小さく、耐熱衝撃性に優れて
いるため、急激な温度変化を受けても割れにくい。また
熱伝導性にも優れているため、サセプタ内での温度のむ
らを少なくすることができるため、シリコンウエハーを
均一に保温することができる。
The aluminum nitride sintered body used as the base material in the present invention has a volume resistivity of 10 13 Ω-cm.
It is a good insulator and has a thermal expansion coefficient of 4 x
Since it is as small as 10 −6 to 5 × 10 −6 / ° C. and has excellent thermal shock resistance, it does not easily crack even when subjected to a rapid temperature change. In addition, since the thermal conductivity is also excellent, it is possible to reduce the temperature unevenness in the susceptor, so that it is possible to keep the temperature of the silicon wafer uniform.

【0018】また、基体表面に形成される窒化アルミニ
ウム薄膜は、気相法によって合成されることから、組織
が均質でかつ非常に純度が高いことから、耐プラズマ性
に優れ、プラズマエッチングを行う場合もサセプタ表面
のピンホールの発生やエッチングによる劣化を防止する
ことができる。しかも、基体表面が上記高純度の窒化ア
ルミニウム薄膜で被覆されていることから、基体の焼結
体中に僅かな不純物が含まれていたとしても系外に放出
されることがなく、半導体製造過程において不純物によ
る悪影響を及ぼすことを防止することができる。さら
に、高純度窒化アルミニウムは熱伝導率が120W/m
・k以上と優れているために、サセプタを窒化アルミニ
ウム焼結体のみから構成した場合に比較して、さらに均
熱性を高めることができる。
Further, since the aluminum nitride thin film formed on the surface of the substrate is synthesized by the vapor phase method, it has a uniform structure and a very high purity, so that it is excellent in plasma resistance and is used for plasma etching. Also, it is possible to prevent generation of pinholes on the surface of the susceptor and deterioration due to etching. Moreover, since the surface of the base is covered with the high-purity aluminum nitride thin film, even if a slight amount of impurities is contained in the sintered body of the base, it is not released to the outside of the system, and the semiconductor manufacturing process In the above, it is possible to prevent the adverse effect of impurities. Furthermore, high-purity aluminum nitride has a thermal conductivity of 120 W / m.
-Because it is excellent as k or more, the soaking property can be further enhanced as compared with the case where the susceptor is composed of only the aluminum nitride sintered body.

【0019】さらに、半導体製造用サセプタの多くは加
熱が必要であり、窒化アルミニウムを主成分とする基体
および膜を用いることによって均熱性が向上するが、発
熱回路あるいは静電チャックのような電気回路をサセプ
タ中に包含することによって小型化が図れ、信頼性も向
上することができる。
Furthermore, many semiconductor manufacturing susceptors require heating, and the uniform heating is improved by using a substrate and a film containing aluminum nitride as a main component, but a heat generating circuit or an electric circuit such as an electrostatic chuck is used. By including in the susceptor, miniaturization can be achieved and reliability can be improved.

【0020】[0020]

【実施例】以下、本発明を次の例で説明する。 実施例1 窒化アルミニウム粉末にY2 3 を2重量%添加した混
合体をシート状に成形した後、シート成形体表面に窒化
アルミニウムを2重量%含むWペーストを25μmの厚
みでスクリーン印刷法により発熱回路パターンおよび静
電チャックのパターンに塗布したものを他のシート成形
体ではさんで積層し、これを窒素雰囲気中で1750℃
で焼成し、内部に発熱回路および静電チャック回路を組
み込んだ厚さ5mmの窒化アルミニウム焼結体円板を得
た。得られた窒化アルミニウム焼結体の熱伝導率をレー
ザーフラッシュ法(厚み3mm)で測定したところ17
2W/m・kであった。
The present invention will be described below with reference to the following examples. Example 1 A mixture obtained by adding 2% by weight of Y 2 O 3 to aluminum nitride powder was formed into a sheet, and then a W paste containing 2% by weight of aluminum nitride was formed on the surface of the sheet formed body by a screen printing method with a thickness of 25 μm. What was applied to the heating circuit pattern and electrostatic chuck pattern was sandwiched between other sheet moldings and laminated, and this was laminated at 1750 ° C in a nitrogen atmosphere.
Was fired to obtain an aluminum nitride sintered body disk having a thickness of 5 mm and having a heat generating circuit and an electrostatic chuck circuit incorporated therein. The thermal conductivity of the obtained aluminum nitride sintered body was measured by the laser flash method (thickness: 3 mm).
It was 2 W / m · k.

【0021】この焼結体円板をCVD処理炉に入れ、表
1に示すような原料ガスおよび温度条件下で熱CVD法
により各種の薄膜を形成し、サセプタを製造した。な
お、得られた薄膜については基体を研磨除去した後燃焼
分析法で膜中の酸素量を測定した。
This sintered disk was put in a CVD processing furnace, and various thin films were formed by the thermal CVD method under the conditions of raw material gas and temperature as shown in Table 1 to manufacture a susceptor. Regarding the obtained thin film, the amount of oxygen in the film was measured by a combustion analysis method after the substrate was polished and removed.

【0022】また、薄膜の基体との密着性について、基
体とともに切断した後切断面を実体顕微鏡と走査型電子
顕微鏡(SEM)で観察することにより調べたところ、
いずれも膜剥離や亀裂の発生は認められなかった。
Further, the adhesion of the thin film to the substrate was examined by cutting it together with the substrate and observing the cut surface with a stereoscopic microscope and a scanning electron microscope (SEM).
Neither film peeling nor cracking was observed.

【0023】さらに、得られた各種サセプタをプラズマ
エッチング装置内に配置して、フッ素プラズマを行い、
エッチング開始後サセプタ表面にピンホールが発生する
までの時間を寿命として表1に記載した。
Further, the obtained various susceptors are placed in a plasma etching apparatus to perform fluorine plasma,
The time until pinholes are generated on the surface of the susceptor after the start of etching is shown in Table 1 as the life.

【0024】また、均熱性については、発熱回路に通電
し、サセプタ中央が200℃になるように加熱した状態
で、サセプタ端部(基板直径210mm)を測定し、そ
の温度差を示した。
Regarding the soaking property, the susceptor end portion (substrate diameter 210 mm) was measured while the heating circuit was energized and the center of the susceptor was heated to 200 ° C., and the temperature difference was shown.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、従来法に基づき、窒化
アルミニウム基体にSiC膜を形成した試料No.11で
は、ある程度の均熱性を有するものの、耐プラズマ性が
低く、寿命は230時間と短いものであった。また、窒
化アルミニウム焼結体のみからなる試料No.1では、比
較的耐プラズマ性は優れるものの、焼結体からの不純物
により汚染が生じた。
As shown in Table 1, the sample No. 11 in which the SiC film was formed on the aluminum nitride substrate based on the conventional method had a certain degree of soaking property, but had low plasma resistance and a short life of 230 hours. It was a thing. Further, in sample No. 1 consisting of only the aluminum nitride sintered body, although the plasma resistance was relatively excellent, contamination was caused by impurities from the sintered body.

【0027】これらの従来例に対して、窒化アルミニウ
ム焼結体表面に窒化アルミニウム薄膜を被覆した発明品
は、いずれも高い耐プラズマ性を示し、寿命は500時
間以上を示した。
In contrast to these conventional examples, the invention products in which the aluminum nitride thin film was coated on the surface of the aluminum nitride sintered body exhibited high plasma resistance and a life of 500 hours or more.

【0028】実施例2 実施例1と同様にして、作製した窒化アルミニウム焼結
体に対して表2に示す条件でプラズマCVD法により薄
膜を形成し、サセプタを製造した。プラズマCVD法に
よる窒化アルミニウム薄膜は結晶質で純度は99.99
9%以上であった。製造したサセプタに対して実施例1
と同様な方法で各種特性評価を行い、結果を表2に示し
た。また、比較のため高純度SiC焼結体(純度99.
8%)からなるサセプタに対しても同様に特性評価を行
った。表2によれば、高純度SiC焼結体に対して、本
発明品は、プラズマ中で約4倍の寿命を示した。
Example 2 In the same manner as in Example 1, a thin film was formed on the produced aluminum nitride sintered body by the plasma CVD method under the conditions shown in Table 2 to manufacture a susceptor. The aluminum nitride thin film formed by the plasma CVD method is crystalline and has a purity of 99.99.
It was 9% or more. Example 1 for the manufactured susceptor
Various characteristics were evaluated in the same manner as in, and the results are shown in Table 2. For comparison, a high-purity SiC sintered body (purity 99.
The characteristics were similarly evaluated for a susceptor composed of 8%). According to Table 2, the product of the present invention showed about 4 times the life in plasma as compared with the high-purity SiC sintered body.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例3 実施例1と同様にして作製した窒化アルミニウム焼結体
に対して、スパッタ法によりアルゴンと窒素の混合雰囲
気でアルミナターゲットを使用し、表3の条件で薄膜を
形成した。なお、比較のため純度99%以上のAl2
3 焼結体からなるサセプタに対して同様に特性の評価を
行った。その結果、表3に示すように、高純度Al2
3 焼結体に比較しても本発明品は耐プラズマ性に優れ、
長寿命を有し、かつ均熱性に優れたものであった。
Example 3 A thin film was formed on the aluminum nitride sintered body produced in the same manner as in Example 1 under the conditions shown in Table 3 by using an alumina target in a mixed atmosphere of argon and nitrogen by a sputtering method. For comparison, Al 2 O having a purity of 99% or more is used.
The characteristics of the susceptor composed of three sintered bodies were evaluated in the same manner. As a result, as shown in Table 3, high-purity Al 2 O
3 Even when compared with the sintered body, the product of the present invention has excellent plasma resistance,
It had a long life and was excellent in heat uniformity.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】以上詳述した通り、本発明の半導体製造
用サセプタは、耐プラズマ性に優れるためプラズマエッ
チングを行う場合もサセプタ表面のピンホールの発生や
エッチングによる劣化を防止し、サセプタの長寿命化が
達成できる。また、基体および薄膜とも高熱伝導性を有
することから高い均熱性を有し、発熱回路などを内蔵す
る場合において、半導体の加熱の均一化を達成すること
ができる。しかも、薄膜が高純度でしかも基体との発着
性に優れることから半導体製造過程において不純物など
の混入などがないなど多くの利点を有するものである。
As described above in detail, the semiconductor manufacturing susceptor of the present invention is excellent in plasma resistance and therefore prevents pinholes from being generated on the surface of the susceptor and deterioration due to etching even when plasma etching is performed. A longer life can be achieved. Further, since both the base and the thin film have high thermal conductivity, they have high thermal uniformity, and when a heat generating circuit or the like is built in, uniform heating of the semiconductor can be achieved. In addition, since the thin film has a high purity and is excellent in adhesion to the substrate, it has many advantages such as no inclusion of impurities in the semiconductor manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体製造用サセプタの構造を示す断
面図である。
FIG. 1 is a cross-sectional view showing a structure of a susceptor for semiconductor manufacturing of the present invention.

【符号の説明】[Explanation of symbols]

1 サセプタ 2 基体 3 薄膜 4 発熱回路 5 導電回路 1 Susceptor 2 Base 3 Thin film 4 Heating circuit 5 Conducting circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウムを主体とする焼結体から
なる基体の表面に、窒化アルミニウムからなる薄膜を
0.001〜1.0mmの厚みで形成してなることを特
徴とする半導体製造用サセプタ。
1. A susceptor for semiconductor production, characterized in that a thin film made of aluminum nitride is formed in a thickness of 0.001 to 1.0 mm on a surface of a base body made of a sintered body containing aluminum nitride as a main component. .
【請求項2】前記基体内部に、発熱回路および/または
導電回路が形成される請求項1記載の半導体製造用サセ
プタ。
2. The semiconductor manufacturing susceptor according to claim 1, wherein a heat generating circuit and / or a conductive circuit is formed inside the base.
JP22745993A 1993-09-13 1993-09-13 Semiconductor manufacturing suscepter Pending JPH0786379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22745993A JPH0786379A (en) 1993-09-13 1993-09-13 Semiconductor manufacturing suscepter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22745993A JPH0786379A (en) 1993-09-13 1993-09-13 Semiconductor manufacturing suscepter

Publications (1)

Publication Number Publication Date
JPH0786379A true JPH0786379A (en) 1995-03-31

Family

ID=16861209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22745993A Pending JPH0786379A (en) 1993-09-13 1993-09-13 Semiconductor manufacturing suscepter

Country Status (1)

Country Link
JP (1) JPH0786379A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051303A (en) * 1997-08-06 2000-04-18 Ngk Insulators, Ltd. Semiconductor supporting device
JP2007317756A (en) * 2006-05-24 2007-12-06 Sumitomo Electric Ind Ltd Semiconductor manufacturing equipment, wafer holder therefor, and manufacturing method therefor
KR100809500B1 (en) * 1999-11-23 2008-03-04 모멘티브 퍼포먼스 머티리얼즈 인크. Articles coated with aluminum nitride by chemical vapor deposition
JP2010228965A (en) * 2009-03-27 2010-10-14 Shin-Etsu Chemical Co Ltd Corrosion resistant member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051303A (en) * 1997-08-06 2000-04-18 Ngk Insulators, Ltd. Semiconductor supporting device
KR100809500B1 (en) * 1999-11-23 2008-03-04 모멘티브 퍼포먼스 머티리얼즈 인크. Articles coated with aluminum nitride by chemical vapor deposition
JP2007317756A (en) * 2006-05-24 2007-12-06 Sumitomo Electric Ind Ltd Semiconductor manufacturing equipment, wafer holder therefor, and manufacturing method therefor
JP2010228965A (en) * 2009-03-27 2010-10-14 Shin-Etsu Chemical Co Ltd Corrosion resistant member

Similar Documents

Publication Publication Date Title
US7446284B2 (en) Etch resistant wafer processing apparatus and method for producing the same
JP5524213B2 (en) Wafer processing apparatus with adjustable electrical resistivity
US6239402B1 (en) Aluminum nitride-based sintered bodies, corrosion-resistant members, metal-buried articles and semiconductor-holding apparatuses
US7760484B2 (en) Electrostatic chuck
JPH04277648A (en) Electrostatic chuck coated with diamond
JP2005343733A (en) Method for manufacturing sintered compact with built-in electrode
US20070212567A1 (en) Aluminum Nitride Junction Body And Method Of Producing The Same
JP3176219B2 (en) Electrostatic chuck
JPH0786379A (en) Semiconductor manufacturing suscepter
JP2002517084A (en) Resistor having low temperature coefficient of resistance and method of manufacturing the same
JP4566213B2 (en) Heating apparatus and manufacturing method thereof
JP3152847B2 (en) Electrostatic chuck
JP3370489B2 (en) Electrostatic chuck
JPH07153820A (en) Susceptor for semiconductor process and its manufacture
JP3297571B2 (en) Electrostatic chuck
JP3152857B2 (en) Electrostatic chuck
JP3965469B2 (en) Electrostatic chuck
JPH07226431A (en) Electrostatic chuck
JP2000129388A (en) Corrosion resisting member
JPH07135246A (en) Electrostatic chuck
WO2023223646A1 (en) Wafer support
JP2023170164A (en) wafer support
JP3683044B2 (en) Electrostatic chuck plate and manufacturing method thereof
KR20230096465A (en) Method for Manufacturing Ceramic Susceptor
JP2000012665A (en) Ceramics component