JPH07226431A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH07226431A
JPH07226431A JP1520094A JP1520094A JPH07226431A JP H07226431 A JPH07226431 A JP H07226431A JP 1520094 A JP1520094 A JP 1520094A JP 1520094 A JP1520094 A JP 1520094A JP H07226431 A JPH07226431 A JP H07226431A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
insulating layer
temperature
room temperature
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1520094A
Other languages
Japanese (ja)
Other versions
JP3180998B2 (en
Inventor
Hiroshi Aida
比呂史 会田
Kazuhiko Mikami
一彦 三上
Kenji Kitazawa
謙治 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1520094A priority Critical patent/JP3180998B2/en
Priority to US08/385,774 priority patent/US5668524A/en
Publication of JPH07226431A publication Critical patent/JPH07226431A/en
Priority to US08/841,605 priority patent/US5777543A/en
Application granted granted Critical
Publication of JP3180998B2 publication Critical patent/JP3180998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To stabilize wafer attracting characteristic in a temperature region to prevent the generation of residual attracting force by providing at the surface the insulating layer consisting of aluminum nitride in the particular range having a volume natural resistance ranging from a room temperature to the particular temperature. CONSTITUTION:An electrostatic chuck is composed of a base material 1 consisting of an insulating material and an electrode 2 and insulating layer 3 formed at the surface of such base material 1. The insulating layer 3 is composed of aluminium nitride and is formed at the loading surface of a silicon wafer 4 or entire part of the base material exposed in a semiconductor manufacturing apparatus with the volume natural resistance in the temperature range of room temperature to 600 deg.C set to the range of 1X10<8> to 1X10<13>OMEGA-cm. Thereby, wafer attracting characteristic in the temperature region can be stabilized and the generation of residual attracting force can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置等にお
いてウエハーを静電的に吸着保持して処理したり、搬送
するための静電チャックで、特に常温から高温まで残留
吸着がなく、吸着特性と耐久性に優れた静電チャックに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck for electrostatically holding and processing a wafer in a semiconductor manufacturing apparatus or the like for processing or carrying, and there is no residual adsorption from room temperature to high temperature. The present invention relates to an electrostatic chuck having excellent characteristics and durability.

【0002】[0002]

【従来技術】従来より、半導体製造用装置において、シ
リコンウエハ等の半導体を成膜やエッチングするために
はシリコンウエハの平坦度を保ちながら保持する必要が
あり、このような手段としては機械式、真空吸着式、静
電吸着式が提案されている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus, in order to form and etch a semiconductor such as a silicon wafer, it is necessary to hold the silicon wafer while maintaining its flatness. A vacuum adsorption type and an electrostatic adsorption type have been proposed.

【0003】これらの保持手段の中で静電的にシリコン
ウエハを保持することのできる静電チャックはシリコン
ウエハの加工を行うに際して要求される加工面の平坦度
や平向度を容易に実現することができ、さらにシリコン
ウエハを真空中で加工処理することができるため、半導
体の製造に際して最も多用されている。
The electrostatic chuck capable of electrostatically holding the silicon wafer among these holding means easily realizes the flatness and the flatness of the processed surface required when processing the silicon wafer. Since it is possible to process a silicon wafer in a vacuum, it is most widely used in the manufacture of semiconductors.

【0004】従来の静電チャックは、電極板の上にアル
ミナ、サファイヤ等からなる絶縁層を形成したもの(特
開昭60ー261377号)、絶縁性基体の上に導電層
を形成しその上に絶縁層を形成したもの(特開平4ー3
4953号)、絶縁性基体内部に導電層を組み込んだも
の(特開昭62ー94953号)などが提案されてい
る。
A conventional electrostatic chuck is one in which an insulating layer made of alumina, sapphire or the like is formed on an electrode plate (JP-A-60-261377), and a conductive layer is formed on an insulating substrate. With an insulating layer formed on the surface (JP-A-4-3
No. 4953), a structure in which a conductive layer is incorporated inside an insulating substrate (Japanese Patent Laid-Open No. 62-94953), and the like.

【0005】近年、半導体素子の集積回路の集積度が向
上するに従い、静電チャックの精度が高度化し、さらに
耐食性、耐摩耗性、耐熱衝撃性に優れたセラミックス製
静電チャックが要求されるようになってきた。
In recent years, as the degree of integration of integrated circuits of semiconductor devices has improved, the accuracy of electrostatic chucks has become more sophisticated, and ceramic electrostatic chucks having excellent corrosion resistance, abrasion resistance, and thermal shock resistance are required. Has become.

【0006】一般に絶縁体の体積固有抵抗値は温度とと
もに低下し、例えば窒化アルミニウムの場合には室温か
ら600℃で1016Ω−cm から107 Ω−cm以下
まで激減し、安定した動作が不可能であり、使用温度に
制限があった。そこで、特開平2ー160444号には
絶縁層を2層以上積層するとともにそれぞれの層に対応
する電極及び電気回路、スイッチングを設けて、室温か
ら400℃までの使用に耐えられるような構造が開示さ
れている。また、特開平4ー300137号には静電チ
ャック内にヒータ、熱電対などの温度検出器を取付け、
外部に制御部を設けて温度変化にともなって電源部を制
御して吸着力を安定させ、使用温度範囲を広げることも
提案させている。
In general, the volume resistivity of an insulator decreases with temperature. For example, in the case of aluminum nitride, it drops drastically from 10 16 Ω-cm to 10 7 Ω-cm or less at room temperature to 600 ° C., and stable operation becomes unsuccessful. It was possible and there was a limit to the operating temperature. Therefore, Japanese Laid-Open Patent Publication No. 2-160444 discloses a structure in which two or more insulating layers are laminated and electrodes and electric circuits and switchings corresponding to the respective layers are provided to withstand use from room temperature to 400 ° C. Has been done. Further, in JP-A-4-300137, a temperature detector such as a heater or a thermocouple is attached in the electrostatic chuck,
It also suggests that an external control unit be provided to control the power supply unit in response to temperature changes to stabilize the adsorption force and widen the operating temperature range.

【0007】[0007]

【発明が解決しようとする問題点】静電チャックの表面
に形成する材料として、室温から高温まで安定した吸着
力を有する材料がなく、上述のように静電チャックの構
造を変えたり、電気的な制御により使用できる温度範囲
を広げようとしてきた。しかし、絶縁層を2層以上積層
して電極を増やしたものでは、電気回路も複雑となり、
静電チャック自体の構造が複雑になるために製造工程が
煩雑であり、そのために製品の信頼性が低下したり、コ
ストが高くなるといった欠点があった。また、ヒーター
を内蔵してその温度を検知し、印加電圧を制御する方法
においても静電チャック内に熱電対などの温度検知器を
内蔵するために検知器が故障すると使用不可能になると
いう問題があり、またこの方法においても材料の持つ特
性は本質的に変化しないことから、その使用範囲には自
ずと限界がある。
The material to be formed on the surface of the electrostatic chuck does not have a material having a stable adsorption force from room temperature to high temperature. I tried to widen the temperature range that can be used by various controls. However, if two or more insulating layers are laminated to increase the number of electrodes, the electric circuit becomes complicated,
Since the structure of the electrostatic chuck itself is complicated, the manufacturing process is complicated, which results in drawbacks such as reduced product reliability and increased cost. In addition, even in the method of detecting the temperature by incorporating a heater and controlling the applied voltage, the temperature detector such as a thermocouple is incorporated in the electrostatic chuck, so if the detector fails, it becomes unusable. However, since the characteristics of the material do not change essentially even in this method, the range of use is naturally limited.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して特に静電チャックを構成する材料の観点か
ら検討を重ねた結果、例えば化学気相合成法により形成
された窒化アルミニウムのうち、室温〜600℃におけ
る体積固有抵抗が1×108 〜1×1013Ω−cmであ
る窒化アルミニウム膜を絶縁層として表面に形成する
と、室温〜600℃という広範囲な温度域において安定
した吸着特性を実現するに至った。
The inventors of the present invention have made repeated studies on the above problems, particularly from the viewpoint of the material constituting the electrostatic chuck, and as a result, for example, nitriding formed by a chemical vapor deposition method. Among aluminum, when an aluminum nitride film having a volume resistivity of 1 × 10 8 to 1 × 10 13 Ω-cm at room temperature to 600 ° C. is formed on the surface as an insulating layer, it is stable in a wide temperature range of room temperature to 600 ° C. We have realized the adsorption characteristics.

【0009】即ち、本発明の静電チャックは、少なくと
も室温〜600℃における体積固有抵抗が1×108
1×1013Ω−cmの窒化アルミニウムを主体とする絶
縁層により表面を形成することにより、安定した吸着力
を有し、かつ印加電圧を切ったときには残留吸着力がな
く、静電チャックとして良好な特性を示した。
That is, the electrostatic chuck of the present invention has a volume resistivity of 1 × 10 8 to at least room temperature to 600 ° C.
By forming the surface with an insulating layer mainly composed of aluminum nitride of 1 × 10 13 Ω-cm, it has a stable attracting force and has no residual attracting force when the applied voltage is cut off, which is good as an electrostatic chuck. It showed various characteristics.

【0010】本発明の静電チャックの代表的な構造を図
1に示した。図1によれば、静電チャックは、絶縁体か
らなる基体1と、その基体1表面に形成された電極2お
よび絶縁層3により構成される。絶縁層3は、少なくと
もシリコンウエハ4の載置面、あるいは半導体製造装置
内に露出している基体面全体に形成される。なお、基体
1内にヒータを内蔵させても何ら差し支えない。
A typical structure of the electrostatic chuck of the present invention is shown in FIG. According to FIG. 1, the electrostatic chuck is composed of a base 1 made of an insulator, and an electrode 2 and an insulating layer 3 formed on the surface of the base 1. The insulating layer 3 is formed on at least the mounting surface of the silicon wafer 4 or the entire base surface exposed in the semiconductor manufacturing apparatus. It should be noted that there is no problem even if a heater is built in the base 1.

【0011】本発明において、絶縁層3は、窒化アルミ
ニウムからなり、しかも室温〜600℃における体積固
有抵抗が1×108 〜1×1013Ω−cm、好ましくは
1×109 〜1×1012Ω−cmの範囲にあるような特
性を有するものであることが重要である。これは、絶縁
層の体積固有抵抗が1×108 Ω−cmより小さいとリ
ーク電流が大きくなり、1×1013Ω−cmより大きい
と残留吸着力が発生するという問題が生じるためであ
る。このうち、漏れ電流や耐電圧、応答性を考慮すれば
1×1010〜5×1011Ω−cmが最も好ましい。更に
安定した動作を行なうためには体積固有抵抗の変化が室
温〜600℃の温度範囲において3桁以内、好ましくは
2桁以内が良い。
In the present invention, the insulating layer 3 is made of aluminum nitride and has a volume resistivity of 1 × 10 8 to 1 × 10 13 Ω-cm at room temperature to 600 ° C., preferably 1 × 10 9 to 1 × 10. It is important that it has such a characteristic that it is in the range of 12 Ω-cm. This is because if the volume resistivity of the insulating layer is smaller than 1 × 10 8 Ω-cm, the leak current becomes large, and if it is larger than 1 × 10 13 Ω-cm, the residual adsorption force occurs. Of these, 1 × 10 10 to 5 × 10 11 Ω-cm is most preferable in consideration of leakage current, withstand voltage, and response. In order to perform more stable operation, the change in volume resistivity should be within 3 digits, preferably within 2 digits within the temperature range of room temperature to 600 ° C.

【0012】絶縁層を構成する窒化アルミニウムを主体
とする膜は、周知の気相法、例えば、スパッタリング、
イオンプレーティングなどの物理気相合成法(PVD
法)や、プラズマCVD、光CVD、MO(Metal
−organic)CVDなどの化学気相合成法(CV
D法)により形成されるが、これらの中でもCVD法が
よい。本発明により採用される体積固有抵抗が1×10
8 〜1×1013Ω−cmの膜は、CVD法において、例
えば原料ガスとしてN2 ガス、NH3 ガスとAlCl3
ガスを用いた場合、これらのガスの流量比をN2 /Al
Cl3 =5〜70、NH3 /AlCl3 =0.1〜10
とし、成膜温度を850℃以上の比較的高めに設定する
ことにより作製することができる。
The film mainly composed of aluminum nitride which constitutes the insulating layer is formed by a known vapor phase method such as sputtering,
Physical vapor phase synthesis methods such as ion plating (PVD
Method), plasma CVD, photo CVD, MO (Metal)
-Organic) chemical vapor deposition (CV) such as CVD
D method), but among these, the CVD method is preferable. The volume resistivity adopted by the present invention is 1 × 10.
The film having a thickness of 8 to 1 × 10 13 Ω-cm can be formed by using, for example, N 2 gas, NH 3 gas and AlCl 3 as source gases in the CVD method.
When gases are used, the flow rate ratio of these gases is N 2 / Al.
Cl 3 = 5-70, NH 3 / AlCl 3 = 0.1-10
Then, it can be manufactured by setting the film forming temperature to a relatively high temperature of 850 ° C. or higher.

【0013】一方、絶縁層3を形成する基体1として
は、最表面が上記窒化アルミニウムからなる絶縁層であ
ることを除き、あらゆるものが使用できるが、具体的に
はAl2 3 、AlON、Si3 4 、ダイヤモンド、
ムライト、ZrO2 などが挙げられるが、これらの中で
も半導体製造時の耐プラズマ性に優れる点で窒化アルミ
ニウムを主体とする焼結体が最も望ましい。さらに、電
圧を印加する電極2は、周知の金属材料が適用でき、例
えば、W、Mo、Mo−Mn、Agのいずれでも使用可
能である。また、導電性のセラミック材料、例えばTi
N、SiC、WC、カーボンやSi半導体材料(n型あ
るいはp型)も電極材料として使用が可能である。その
他、基体としては、電極層2が存在せず、それ自体が導
電性を有するSiC、TiN、WCなどの導電性セラミ
ックス、W、Moなどの金属単体およびこれらの合金な
どにより形成することも可能であり、その場合には導電
性基体そのものに直接電圧を印加する。
On the other hand, as the substrate 1 for forming the insulating layer 3, any one can be used except that the outermost surface is the above-mentioned insulating layer made of aluminum nitride. Specifically, Al 2 O 3 , AlON, Si 3 N 4 , diamond,
Mullite, ZrO 2 and the like can be mentioned, but among these, a sintered body containing aluminum nitride as a main component is most preferable in terms of excellent plasma resistance during semiconductor production. Further, a well-known metal material can be applied to the electrode 2 for applying a voltage, and for example, any of W, Mo, Mo-Mn, and Ag can be used. Also, a conductive ceramic material such as Ti
N, SiC, WC, carbon and Si semiconductor materials (n type or p type) can also be used as the electrode material. In addition, the base body may be formed of a conductive ceramic such as SiC, TiN, or WC which does not have the electrode layer 2 and has conductivity itself, a simple metal such as W or Mo, or an alloy thereof. In that case, a voltage is directly applied to the conductive substrate itself.

【0014】上記のような構成からなる静電チャックに
よりシリコンウエハを静電吸着するには、電極層あるい
は導電性基体におよそ0.2〜2.0kVの電圧を印加
することにより静電吸着を行うことができる。
In order to electrostatically adsorb a silicon wafer with the electrostatic chuck having the above structure, a voltage of about 0.2 to 2.0 kV is applied to the electrode layer or the conductive substrate to electrostatically adsorb the silicon wafer. It can be carried out.

【0015】[0015]

【作用】本発明において、絶縁層の電気特性を室温〜6
00℃の温度領域において安定させ、この温度範囲にお
ける体積固有抵抗が1×108 〜1×1013Ω−cmの
材料を表面に形成することにより、この温度領域におけ
るウエハの吸着特性を安定化し、また残留吸着力の発生
しない静電チャックが得られる。
In the present invention, the electrical characteristics of the insulating layer are from room temperature to 6
Stabilization in the temperature range of 00 ° C., and by forming a material having a volume resistivity of 1 × 10 8 to 1 × 10 13 Ω-cm in this temperature range on the surface, the adsorption characteristics of the wafer in this temperature range are stabilized. In addition, an electrostatic chuck that does not generate residual attraction force can be obtained.

【0016】また、本発明によれば、格別に複雑な構造
をとる必要がなく、本発明の材料を用いることによって
静電チャック自体の構造が簡単になり、低コストで広範
囲な温度領域における使用を可能とし、電気回路を含め
て組み込まれる装置自体の簡略化も実現でき、また静電
チャックとして信頼性、長期安定性が保証される。
Further, according to the present invention, it is not necessary to take a particularly complicated structure, and the use of the material of the present invention simplifies the structure of the electrostatic chuck itself, so that it can be used at a low cost in a wide temperature range. It is possible to realize the simplification of the device itself including the electric circuit, and the reliability and long-term stability of the electrostatic chuck are guaranteed.

【0017】[0017]

【実施例】【Example】

実施例1 窒化アルミニウム質焼結体からなる基体表面に電極層と
してMoとMnからなる合金をメタライズした後、その
電極層の表面に化学気相合成法によってAlN膜を形成
した。AlN膜の成膜は、基体を外熱式によって900
℃に加熱した炉に入れ、窒素を8SLM、アンモニアを
0.5SLMのガスを流して圧力を40torrとし
た。塩化アルミニウムを300sccm流して反応を開
始し、6時間の反応によって約400μmの膜厚のAl
N膜を形成した。AlN膜の表面を表面粗さRaが0.
02mmとなるように研磨し、膜の25℃〜600℃に
おける体積固有抵抗値と、電極に500Vの電圧を印加
した時の静電チャックとしての吸着力および30分間電
圧印加し、電圧印加を停止した直後の吸着力を真空中で
測定した。
Example 1 An alloy of Mo and Mn was metallized as an electrode layer on the surface of a substrate made of an aluminum nitride sintered material, and then an AlN film was formed on the surface of the electrode layer by a chemical vapor deposition method. The AlN film is formed on the substrate by an external heating method at 900
The furnace was heated to 0 ° C., and a gas of 8 SLM for nitrogen and 0.5 SLM for ammonia was passed to make the pressure 40 torr. The reaction was started by flowing 300 sccm of aluminum chloride, and the reaction was continued for 6 hours to form Al having a film thickness of about 400 μm
An N film was formed. The surface roughness Ra of the AlN film is 0.
The volume resistivity of the film at 25 ° C. to 600 ° C., the attraction force as an electrostatic chuck when a voltage of 500 V is applied to the electrode and the voltage for 30 minutes are applied, and the voltage application is stopped. Immediately after, the adsorption force was measured in vacuum.

【0018】測定の結果、上記気相合成法により得られ
たAlN膜の体積固有抵抗値は図2の黒丸に示すように
25℃(室温)〜600℃の温度域で5×108 〜5×
1011Ω−cm内にあり、吸着力は図3の黒丸で示すよ
うに比較例に比べて大きく、また25〜600℃の温度
域で同じ吸着力を持ち、かつ応答性が良好で、残留吸着
力は全く見られなかった。
As a result of the measurement, the volume resistivity of the AlN film obtained by the vapor phase synthesis method is 5 × 10 8 to 5 in the temperature range of 25 ° C. (room temperature) to 600 ° C. as shown by the black circle in FIG. ×
It is within 10 11 Ω-cm, the adsorption force is larger than that of the comparative example as shown by the black circles in FIG. 3, and the adsorption force is the same in the temperature range of 25 to 600 ° C., and the response is good, and the residual No adsorption power was observed.

【0019】実施例2 実施例1で用いた基体表面に電極層としてMoとMnか
らなる合金をメタライズした後、化学気相合成法によっ
てAlN膜を形成した。AlN膜は、基体を外熱式によ
って875℃に加熱した炉に入れ、窒素を8SLM、ア
ンモニアを0.5SLMのガスを流して圧力を40to
rrとした。そこに塩化アルミニウムを300sccm
流して反応を開始し、6時間の反応によって約400μ
mの膜厚を得た。表面をRaで0.02mmに研磨し、
実施例1と同様にして体積固有抵抗と吸着力および残留
吸着力を測定した。体積抵抗値は図2に有るように25
〜600℃の温度域で8×109 〜1×1011Ω−cm
内にあり、吸着力は図3のように比較例に比べて大き
く、また25〜600℃の温度域で同じ吸着力を持ち、
かつ応答性が良好で、残留吸着力は全く見られなかっ
た。特性は実施例1と同様であったが、室温での応答性
は実施例1に比べて30%早かった。
Example 2 After alloying Mo and Mn as an electrode layer on the surface of the substrate used in Example 1, an AlN film was formed by chemical vapor deposition. The AlN film is put into a furnace in which the substrate is heated to 875 ° C. by an external heating method, and a gas of 8 SLM for nitrogen and 0.5 SLM for ammonia is flowed to set the pressure at 40 to.
rr. 300 sccm of aluminum chloride there
The reaction is started by pouring and the reaction is continued for about 6 hours
A film thickness of m was obtained. Polish the surface with Ra to 0.02 mm,
The volume resistivity, adsorption force and residual adsorption force were measured in the same manner as in Example 1. The volume resistance is 25 as shown in Fig. 2.
8 × 10 9 to 1 × 10 11 Ω-cm in the temperature range of up to 600 ° C.
3, the adsorption force is larger than that of the comparative example as shown in FIG. 3, and has the same adsorption force in the temperature range of 25 to 600 ° C.
In addition, the response was good, and no residual adsorption force was observed. The characteristics were the same as in Example 1, but the response at room temperature was 30% faster than in Example 1.

【0020】比較例 実施例1と同様に電極層としてMoとMnからなる合金
をメタライズした窒化アルミニウム基体に化学気相合成
法によってAlN膜を形成した。この時のAlN膜は、
基体を外熱式によって825℃に加熱した炉に入れ、窒
素を8SLM、アンモニアを1SLMのガスを流して圧
力を40torrとした。塩化アルミニウムを300s
ccm流して反応を開始し、7時間の反応によって約4
00μmの膜厚のAlN膜を形成した。表面をRaで
0.2mmに研磨した後、実施例1と同様な方法で、体
積抵抗と吸着力および残留吸着力を測定した。測定の結
果、体積抵抗は200℃から400℃への変化により1
8 Ω−cmから1014Ω−cmまで急激に変化した。
そのため、吸着力は400℃以上では漏れ電流が大きく
なり使用不能の状態であり、また150、200℃では
吸着力が安定化するまでの時間が長く、また残留吸着力
が観察された。
Comparative Example As in Example 1, an AlN film was formed as an electrode layer on an aluminum nitride substrate metallized with an alloy of Mo and Mn by a chemical vapor deposition method. At this time, the AlN film is
The substrate was placed in a furnace heated to 825 ° C. by an external heating method, and gas of 8 SLM for nitrogen and 1 SLM for ammonia was supplied to adjust the pressure to 40 torr. 300 s of aluminum chloride
The reaction was started by flowing ccm, and after about 7 hours of reaction, about 4
An AlN film having a film thickness of 00 μm was formed. After polishing the surface with Ra to 0.2 mm, volume resistance, adsorption force and residual adsorption force were measured in the same manner as in Example 1. As a result of the measurement, the volume resistance was 1 when the temperature changed from 200 ° C to 400 ° C.
Rapidly changes from 0 8 Ω-cm to 10 14 Ω-cm.
Therefore, when the adsorption force was 400 ° C. or more, the leakage current was large and the state was unusable, and at 150 and 200 ° C., it took a long time until the adsorption force was stabilized, and the residual adsorption force was observed.

【0021】[0021]

【発明の効果】以上詳述した通り、本発明の静電チャッ
クは、半導体製造過程において室温(25℃)から60
0℃の広い温度領域において安定した吸着特性を有し、
残留吸着力がなく吸着力も大きい静電チャックを提供で
きる。したがって、静電チャックとして優れた信頼性と
長期安定性が得られ、静電チャックの製造コストの低減
を図ることができる。
As described above in detail, the electrostatic chuck of the present invention is used in the semiconductor manufacturing process from room temperature (25 ° C.) to 60 ° C.
Has stable adsorption characteristics in a wide temperature range of 0 ° C,
It is possible to provide an electrostatic chuck that has no residual attraction force and a high attraction force. Therefore, excellent reliability and long-term stability as the electrostatic chuck can be obtained, and the manufacturing cost of the electrostatic chuck can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静電チャックの構造を示す断面図であ
る。
FIG. 1 is a sectional view showing a structure of an electrostatic chuck of the present invention.

【図2】実施例において作製した絶縁層の体積抵抗値の
温度依存性を示す図である。
FIG. 2 is a diagram showing temperature dependence of a volume resistance value of an insulating layer manufactured in an example.

【図3】実施例において作製した絶縁層の吸着力の温度
依存性を示す図である。
FIG. 3 is a diagram showing the temperature dependence of the adsorption force of the insulating layer produced in the example.

【符号の説明】[Explanation of symbols]

1 基体 2 電極 3 絶縁層 4 シリコンウエハ 1 substrate 2 electrode 3 insulating layer 4 silicon wafer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも室温〜600℃における体積固
有抵抗が1×108 〜1×1013Ω−cmの窒化アルミ
ニウムからなる絶縁層を表面に有することを特徴とする
静電チャック。
1. An electrostatic chuck having an insulating layer made of aluminum nitride having a volume resistivity of 1 × 10 8 to 1 × 10 13 Ω-cm at least at room temperature to 600 ° C. on its surface.
【請求項2】前記絶縁層が化学気相合成法により被覆さ
れたものであることを特徴とする請求項1記載の静電チ
ャック。
2. The electrostatic chuck according to claim 1, wherein the insulating layer is coated by a chemical vapor deposition method.
JP1520094A 1994-01-09 1994-02-09 Electrostatic chuck Expired - Fee Related JP3180998B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1520094A JP3180998B2 (en) 1994-02-09 1994-02-09 Electrostatic chuck
US08/385,774 US5668524A (en) 1994-02-09 1995-02-09 Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase
US08/841,605 US5777543A (en) 1994-01-09 1997-04-30 Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1520094A JP3180998B2 (en) 1994-02-09 1994-02-09 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JPH07226431A true JPH07226431A (en) 1995-08-22
JP3180998B2 JP3180998B2 (en) 2001-07-03

Family

ID=11882233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1520094A Expired - Fee Related JP3180998B2 (en) 1994-01-09 1994-02-09 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3180998B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771772A3 (en) * 1995-11-01 1997-10-08 Ngk Insulators Ltd Aluminium nitride sintered bodies and their manufacture
US5993699A (en) * 1997-06-06 1999-11-30 Ngk Insulators, Ltd. Aluminum nitride based composite body electronic functional material, electrostatic chuck and method of producing aluminum nitride based composite body
JP2008103753A (en) * 2007-12-10 2008-05-01 Canon Anelva Corp Electrostatic stage for semiconductor manufacturing device
US7929269B2 (en) 2008-09-04 2011-04-19 Momentive Performance Materials Inc. Wafer processing apparatus having a tunable electrical resistivity
US10403535B2 (en) 2014-08-15 2019-09-03 Applied Materials, Inc. Method and apparatus of processing wafers with compressive or tensile stress at elevated temperatures in a plasma enhanced chemical vapor deposition system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771772A3 (en) * 1995-11-01 1997-10-08 Ngk Insulators Ltd Aluminium nitride sintered bodies and their manufacture
US5998320A (en) * 1995-11-01 1999-12-07 Ngk Insulators, Ltd. Aluminum nitride sintered body, metal including member, electrostatic chuck, method of producing aluminum nitride sintered body, and method of producing metal including member
US6174583B1 (en) 1995-11-01 2001-01-16 Ngk Insulators, Ltd. Aluminum nitride sintered body, metal including member, electrostatic chuck, method of producing aluminum nitride sintered body, and method of producing metal including member
US5993699A (en) * 1997-06-06 1999-11-30 Ngk Insulators, Ltd. Aluminum nitride based composite body electronic functional material, electrostatic chuck and method of producing aluminum nitride based composite body
JP2008103753A (en) * 2007-12-10 2008-05-01 Canon Anelva Corp Electrostatic stage for semiconductor manufacturing device
US7929269B2 (en) 2008-09-04 2011-04-19 Momentive Performance Materials Inc. Wafer processing apparatus having a tunable electrical resistivity
US10403535B2 (en) 2014-08-15 2019-09-03 Applied Materials, Inc. Method and apparatus of processing wafers with compressive or tensile stress at elevated temperatures in a plasma enhanced chemical vapor deposition system

Also Published As

Publication number Publication date
JP3180998B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US7446284B2 (en) Etch resistant wafer processing apparatus and method for producing the same
JPH0779122B2 (en) Electrostatic chuck with diamond coating
JP4811608B2 (en) Wafer heating apparatus having electrostatic adsorption function
JPH08227933A (en) Wafer heater with electrostatic attracting function
US20030047283A1 (en) Apparatus for supporting a substrate and method of fabricating same
JP2004158492A (en) Heating device with electrostatic attracting function and its manufacturing method
JPH07326655A (en) Electrostatic chuck
JP2008042140A (en) Electrostatic chuck device
JP3152847B2 (en) Electrostatic chuck
JP3180998B2 (en) Electrostatic chuck
JPH06151332A (en) Ceramic heater
JP3181006B2 (en) Electrostatic chuck
JP2002517084A (en) Resistor having low temperature coefficient of resistance and method of manufacturing the same
JP3152857B2 (en) Electrostatic chuck
JP2000306986A (en) Electrostatic chuck
JP2005093723A (en) Electrostatic chuck
JP3370489B2 (en) Electrostatic chuck
JPH11135602A (en) Electrostatic attraction device
JP2756944B2 (en) Ceramic electrostatic chuck
JP3618032B2 (en) Electrostatic chuck
JP3623102B2 (en) Electrostatic chuck
JP3667077B2 (en) Electrostatic chuck
JPH09232409A (en) Wafer holding apparatus
JP3965469B2 (en) Electrostatic chuck
JPH07153821A (en) Susceptor for semiconductor process and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees