JPH07153820A - Susceptor for semiconductor process and its manufacture - Google Patents

Susceptor for semiconductor process and its manufacture

Info

Publication number
JPH07153820A
JPH07153820A JP29936893A JP29936893A JPH07153820A JP H07153820 A JPH07153820 A JP H07153820A JP 29936893 A JP29936893 A JP 29936893A JP 29936893 A JP29936893 A JP 29936893A JP H07153820 A JPH07153820 A JP H07153820A
Authority
JP
Japan
Prior art keywords
aluminum nitride
susceptor
sintered body
circuit
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29936893A
Other languages
Japanese (ja)
Inventor
Kenji Kitazawa
謙治 北澤
Hiroshi Aida
比呂史 会田
Kazuhiko Mikami
一彦 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29936893A priority Critical patent/JPH07153820A/en
Publication of JPH07153820A publication Critical patent/JPH07153820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a susceptor having high flatness and parallelism and uniform electrostatic attraction while ensuring plasma resistance, by forming a conducting circuit on the surface of a sintered body substrate whose main component is aluminum nitride, and forming a thin film composed of aluminum nitride so as to have a specified thickness on the circuit. CONSTITUTION:A substrate 2 consists of a sintered body whose main component is aluminum nitride, and the surface is flatly polished, fan which a conducting circuit 5 is formed. A heating circuit 4 is formed in the substrate 2. An aluminum nitride thin film 3 of 0.001-1.0mm in thickness is formed on the conducting circuit 5. Thereby the distance between the wafer mounting surface and the conducting circuit is not practically changed, so that the uniform attractive force can be obtained. Temperature irregularity in a susceptor can be reduced, and the temperature of a silicon wafer 1 can be kept uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内部に導電回路が形成
されるような半導体製造装置用サセプタおよびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a susceptor for a semiconductor manufacturing apparatus in which a conductive circuit is formed and a manufacturing method thereof.

【0002】[0002]

【従来技術】従来より、半導体製造用装置において、サ
セプタは、シリコンウエハを支持するためのもので、一
般には黒鉛または炭化珪素焼結体からなる基体表面に気
相法により炭化珪素を被覆したもの、あるいは焼結助剤
を添加せずに焼成して形成された高純度炭化珪素焼結体
などが用いられている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus, a susceptor has been used to support a silicon wafer, and generally has a substrate surface made of graphite or a silicon carbide sintered body coated with silicon carbide by a vapor phase method. Alternatively, a high-purity silicon carbide sintered body formed by firing without adding a sintering aid is used.

【0003】また、半導体を製造する過程において、シ
リコンウエハ上にプラズマエッチングによりパターンを
形成することが行われているが、この時、サセプタは常
にプラズマ雰囲気に曝されることになる。ところが、こ
のようなプラズマ雰囲気ではサセプタを構成する炭化珪
素自体もエッチングされ、サセプタの寿命が短いという
問題があった。
In the process of manufacturing a semiconductor, a pattern is formed on a silicon wafer by plasma etching. At this time, the susceptor is always exposed to a plasma atmosphere. However, in such a plasma atmosphere, the silicon carbide itself that constitutes the susceptor is also etched, and there is a problem that the life of the susceptor is short.

【0004】そのため、プラズマエッチングを行う場合
のサセプタとしては、耐プラズマに優れたアルミニウム
(Al)、またはアルミナ(Al2 3 )等で形成した
ものが用いられている。また、半導体素子の集積回路の
集積化を向上するにつれて、より微細なパターンを形成
する必要があるため、サセプタ内部に静電的にウエハを
吸着させるための導電回路や発熱回路を形成しシリコン
ウエハを加熱することも行われている。
Therefore, a susceptor used for plasma etching is formed of aluminum (Al) or alumina (Al 2 O 3 ) having excellent plasma resistance. Further, as the integration of integrated circuits of semiconductor devices is improved, it is necessary to form finer patterns. Therefore, a conductive circuit or a heat generating circuit for electrostatically adsorbing the wafer is formed inside the susceptor. It is also being heated.

【0005】[0005]

【発明が解決しようとする問題点】半導体製造用装置の
部品は、シリコンウエハ等に不純物が混入しないよう高
純度の物質で作製されたものであることが必要であり、
さらにプラズマエッチング用部品としては、それ自体耐
プラズマ性を有することが必要である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention It is necessary that parts of a semiconductor manufacturing apparatus are made of a high-purity substance so that impurities are not mixed into a silicon wafer or the like.
Furthermore, the plasma etching component itself must have plasma resistance.

【0006】アルミナ(Al2 3 )からなるサセプタ
は、耐プラズマ性には優れているが、熱伝導性、耐熱衝
撃性が低く、均熱性に欠けるために、半導体製造過程で
急加熱、急冷することができないという問題があった。
A susceptor made of alumina (Al 2 O 3 ) has excellent plasma resistance, but has low thermal conductivity and thermal shock resistance and lacks thermal uniformity, so that it is rapidly heated and rapidly cooled in the semiconductor manufacturing process. There was a problem that I could not do it.

【0007】また、炭化珪素を用いても耐プラズマ性が
十分ではなく、炭化珪素焼結体自体、導電性を有するた
めにサセプタ内部に電気回路を形成することができず、
加熱手段を別途に設ける必要があるため、装置が複雑で
大きくなるという欠点を有していた。
Moreover, even if silicon carbide is used, the plasma resistance is not sufficient, and since the silicon carbide sintered body itself has conductivity, an electric circuit cannot be formed inside the susceptor,
Since it is necessary to separately provide a heating means, there is a drawback that the device becomes complicated and large.

【0008】そこで、耐プラズマ性にすぐれ、熱伝導率
が大きい窒化アルミニウム焼結体を用いたサセプタや、
窒化アルミニウム薄膜を所定の基体表面に形成すること
も提案されている。この窒化アルミニウム焼結体を用い
てその内部に導電回路を形成する場合には窒化アルミニ
ウム成形体中に導電ペーストを埋設して同時に焼成する
ことが行われる。しかしながら、このような導電回路を
形成した場合、両者の焼結挙動や熱膨張挙動が異なるた
めに、サセプタが変形し、サセプタのシリコンウエハ搭
載面の平坦度及び平向度が充分に得られなくなる。サセ
プタにおいてウエハ載置面は高い平坦性が要求されるた
め、基体表面を平坦研磨する必要があるが、その場合ウ
エハ載置面と導電回路との距離が場所により異なり、静
電吸着力がサセプタ表面で不均一になる等の問題があっ
た。
Therefore, a susceptor using an aluminum nitride sintered body having excellent plasma resistance and high thermal conductivity,
It has also been proposed to form an aluminum nitride thin film on a predetermined substrate surface. When a conductive circuit is formed in the aluminum nitride sintered body, the conductive paste is embedded in the aluminum nitride molded body and simultaneously fired. However, when such a conductive circuit is formed, since the sintering behavior and the thermal expansion behavior of the two are different, the susceptor is deformed, and the flatness and flatness of the silicon wafer mounting surface of the susceptor cannot be sufficiently obtained. . Since the wafer mounting surface of the susceptor is required to have high flatness, it is necessary to flatten the surface of the substrate. In that case, the distance between the wafer mounting surface and the conductive circuit differs depending on the location, and the electrostatic attraction force is increased. There were problems such as non-uniformity on the surface.

【0009】[0009]

【問題点を解決するための手段】本発明者等は、窒化ア
ルミニウムの優れた耐プラズマ性を生かしつつ、変形の
ない平坦度、平行度が高く、静電吸着性が均一なサセプ
タを得ることを目的として検討を重ねた結果、窒化アル
ミニウムを主体とする焼結体基体の表面を平面研磨した
後、基体表面に導電回路を形成しその上部に窒化アルミ
ニウムからなる薄膜を形成することを特徴とすることに
より、上記目的が達成されることを見いだし本発明に至
った。
DISCLOSURE OF THE INVENTION The inventors of the present invention can obtain a susceptor having high flatness and parallelism without deformation and uniform electrostatic attraction while utilizing the excellent plasma resistance of aluminum nitride. As a result of repeated studies for the purpose of, after the surface of the sintered compact base body mainly composed of aluminum nitride is planarly polished, a conductive circuit is formed on the surface of the base body, and a thin film made of aluminum nitride is formed on the conductive circuit. By doing so, they have found that the above objects can be achieved, and completed the present invention.

【0010】即ち、本発明の半導体製造用サセプタは、
窒化アルミニウムを主体とする焼結体からなる基体表面
に導電性回路を形成し、さらにその上部に窒化アルミニ
ウム薄膜を0. 001〜1. 0mmの厚みで形成したこ
とを特徴とするものであり、その製造方法としては、窒
化アルミニウムを主体とする焼結体を作製する工程と、
該窒化アルミニウム焼結体の表面を平面研磨する工程
と、前記研磨後の表面に導電性回路を形成する工程と、
該導電性回路の上部に窒化アルミニウム薄膜を0.00
1〜1.0mmの厚みで形成する工程を具備してなるこ
とを特徴とするものである。
That is, the semiconductor manufacturing susceptor of the present invention is
The present invention is characterized in that a conductive circuit is formed on the surface of a base body made of a sintered body containing aluminum nitride as a main component, and an aluminum nitride thin film is further formed thereon to a thickness of 0.001 to 1.0 mm. As its manufacturing method, a step of producing a sintered body mainly composed of aluminum nitride,
A step of planarly polishing the surface of the aluminum nitride sintered body, a step of forming a conductive circuit on the surface after the polishing,
An aluminum nitride thin film is formed on the conductive circuit in an amount of 0.00
It is characterized by comprising a step of forming with a thickness of 1 to 1.0 mm.

【0011】以下、本発明を詳述する。本発明における
半導体製造用サセプタは、窒化アルミニウムを主体とす
る構造体からなるもので、少なくとも内部に導電回路を
有するものである。そこで、本発明のサセプタの具体的
な構造を図1に示した。図1中、2は基体、3は窒化ア
ルミニウム薄膜、5は導電回路である。本発明によれ
ば、基体2は窒化アルミニウムを主体とする焼結体から
構成され、導電回路3は窒化アルミニウム焼結体の基体
2の表面に形成されている。また、窒化アルミニウム焼
結体からなる基体2内部には発熱回路が4が形成されて
いる。窒化アルミニウム薄膜3は、シリコンウエハの載
置面、あるいは半導体製造装置内に露出している面全体
に形成される。
The present invention will be described in detail below. The semiconductor manufacturing susceptor of the present invention comprises a structure mainly composed of aluminum nitride, and has a conductive circuit at least inside. Therefore, a specific structure of the susceptor of the present invention is shown in FIG. In FIG. 1, 2 is a substrate, 3 is an aluminum nitride thin film, and 5 is a conductive circuit. According to the present invention, the base body 2 is made of a sintered body mainly composed of aluminum nitride, and the conductive circuit 3 is formed on the surface of the base body 2 of the aluminum nitride sintered body. Further, a heating circuit 4 is formed inside the base 2 made of an aluminum nitride sintered body. The aluminum nitride thin film 3 is formed on the mounting surface of the silicon wafer or the entire surface exposed in the semiconductor manufacturing apparatus.

【0012】基体2は、具体的には、窒化アルミニウム
を主成分とし、他にY,Er,Ybなどの周期律表第3
a族元素の化合物や、Caなどのアルカリ土類元素化合
物を20重量%以下の割合で含む場合もあるが、望まし
くはこれらの助剤成分は半導体製造装置内で半導体に対
して不純物的挙動を示すことがあるために、助剤成分は
極力少ないことがよく、例えば特開平5−117038
号に提案されるように助剤成分を添加することなく高純
度化したものが好適に使用される。また、窒化アルミニ
ウム焼結体は、サセプタの均熱性、速熱性などの点から
熱伝導率が80W/m・k以上、特に100W/m・k
以上であることが望ましく、導電回路の形成しやすさの
点から気孔率が1〜10%のものが望ましい。
Specifically, the base body 2 is mainly composed of aluminum nitride, and in addition, Y, Er, Yb, etc. are included in the third periodic table.
There may be a case where the compound of the group a element or the compound of the alkaline earth element such as Ca is contained in an amount of 20% by weight or less, but preferably, these auxiliary components have an impurity behavior with respect to the semiconductor in the semiconductor manufacturing apparatus. Therefore, it is preferable that the amount of the auxiliary component is as small as possible. For example, JP-A-5-117038.
A highly purified product without the addition of an auxiliary component is preferably used as proposed in No. In addition, the aluminum nitride sintered body has a thermal conductivity of 80 W / m · k or more, particularly 100 W / m · k, from the viewpoints of the uniform heating property and rapid heating property of the susceptor.
The porosity is preferably 1 to 10% from the viewpoint of ease of forming a conductive circuit.

【0013】一方、基体2の表面に形成される導電回路
は、室温〜800℃の範囲の熱膨張率が3〜10×10
-6/℃のW、Mo、TiN、WC、TiCなどの導電性
金属で形成されるもので、基体との密着性を高めるため
に、窒化アルミニウムや基体を構成する焼結体の助剤成
分を微量含む場合もある。この導電回路は、0.5〜
1.5kVの電圧を印加することにより静電的にウエハ
を吸着するためのものである。
On the other hand, the conductive circuit formed on the surface of the substrate 2 has a coefficient of thermal expansion in the range of room temperature to 800 ° C. of 3 to 10 × 10.
It is formed of a conductive metal such as W, Mo, TiN, WC, and TiC at -6 / ° C., and is an auxiliary component of aluminum nitride or a sintered body that constitutes the substrate in order to improve the adhesion to the substrate. May contain a small amount. This conductive circuit is 0.5 ~
This is for electrostatically adsorbing the wafer by applying a voltage of 1.5 kV.

【0014】窒化アルミニウム薄膜3は、0.001〜
1.0mm、特に0.01〜0.3mmの厚みで形成さ
れるのが望ましい。これは、薄膜の厚みが0.001m
mよりも薄いと、導電回路の厚みにもよるが、導電回路
パターンの凹凸が薄膜表面に反映されて平坦度が得られ
難く、1.0mmを越えるとウエハの吸着性が低下した
り薄膜の析出時間が長くなって生産性が劣るためであ
る。
The aluminum nitride thin film 3 has a thickness of 0.001 to
It is desirable to be formed with a thickness of 1.0 mm, particularly 0.01 to 0.3 mm. This has a thin film thickness of 0.001 m.
When the thickness is less than m, it is difficult to obtain flatness because the unevenness of the conductive circuit pattern is reflected on the surface of the thin film, which depends on the thickness of the conductive circuit. This is because the deposition time is long and the productivity is poor.

【0015】本発明の半導体製造用サセプタを製造する
には、まず、上述したように窒化アルミニウム質焼結体
を、場合によっては発熱回路と同時焼成によってサセプ
タ基体を作製する。具体的には、窒化アルミニウム原料
粉末に、前記助剤成分を添加混合したものを所望の形状
に成形した後、窒素などの非酸化性雰囲気中で1600
〜1950℃の温度で焼成することにより焼結体を得る
ことができるが、発熱回路を内蔵させる場合には、窒化
アルミニウム成形体中にW、Mo、TiN、WC、Ti
Cなどからなる導体ペーストによる発熱回路パターンを
内設し、上記焼成条件で同時に焼成することができる。
In order to manufacture the susceptor for semiconductor production of the present invention, first, as described above, an aluminum nitride sintered body is produced, and in some cases, a susceptor substrate is produced by co-firing with a heating circuit. Specifically, aluminum nitride raw material powder is mixed with the above-mentioned auxiliary components and shaped into a desired shape, which is then subjected to 1600 in a non-oxidizing atmosphere such as nitrogen.
Although a sintered body can be obtained by firing at a temperature of ˜1950 ° C., when a heating circuit is built in, W, Mo, TiN, WC, Ti are contained in the aluminum nitride molded body.
A heating circuit pattern made of a conductor paste such as C may be internally provided and simultaneously fired under the above firing conditions.

【0016】この時、導電回路も、前記発熱回路と同様
に同時焼成することにより製造工程の短縮化を図ること
ができるが、このような同時焼成によれば、基体の変形
などが生じやすく、平坦化が要求されるサセプタを作製
するには、焼成後の基体を平面研磨し平坦化することが
必要となる。そのため、最終的なサセプタのシリコンウ
エハ載置面と導電回路との距離が場所によって異なるた
め、均一に吸着力を得ることができないなどの不具合が
生じる。
At this time, the manufacturing process can be shortened by co-firing the conductive circuit similarly to the heating circuit. However, such co-firing tends to cause deformation of the substrate, etc. In order to manufacture a susceptor that requires flattening, it is necessary to flatten the substrate after firing by flattening. Therefore, since the distance between the silicon wafer mounting surface of the final susceptor and the conductive circuit varies depending on the location, a problem such as the inability to obtain a uniform suction force occurs.

【0017】従って、本発明においては導電回路は、窒
化アルミニウム焼結体からなる基体を平面研磨した後に
形成することが重要である。この導電回路は、研磨処理
された窒化アルミニウムを主体とする焼結体表面に金属
ペーストを所定のパターンに印刷した後、1000〜2
000℃で焼き付けることにより形成することができ
る。この時、金属ペースト中に導電性金属とともに窒化
アルミニウムや助剤成分を微量添加して回路と窒化アル
ミニウム焼結体との密着性を高めることが効果的であ
る。その他、スパッタリングなどのPVD法によりパタ
ーニングすることも可能である。
Therefore, in the present invention, it is important that the conductive circuit is formed after the substrate made of the aluminum nitride sintered body is flat-polished. This conductive circuit was formed by printing a metal paste in a predetermined pattern on the surface of a sintered aluminum nitride-based sintered body as a main component, and then 1000-2.
It can be formed by baking at 000 ° C. At this time, it is effective to add a small amount of aluminum nitride or an auxiliary component together with the conductive metal to the metal paste to enhance the adhesion between the circuit and the aluminum nitride sintered body. In addition, it is also possible to pattern by a PVD method such as sputtering.

【0018】そして、上記のようにして導電回路を形成
した表面に窒化アルミニウム薄膜を0.0015〜1.
0mmの厚みで形成する。この窒化アルミニウム薄膜
は、周知の気相法、例えば、スパッタリング、イオンプ
レーティングなどのPVD法や、プラズマCVD、光C
VD、MO(Metal−organic)CVDなど
のCVD法により容易に形成されるものである。このよ
うな気相法により形成される薄膜は、純度99%以上の
高純度であるが、膜中には成膜過程で酸素が含まれAl
ONが含まれる場合もあるが、酸素量が20原子%を越
えると、基体である窒化アルミニウム焼結体との密着性
が低下する場合があるため、酸素含有量は20原子%以
下に制御することが望ましい。また、窒化アルミニウム
薄膜は、高純度で120W/m・K以上の熱伝導率を有
することが望ましい。
Then, an aluminum nitride thin film of 0.0015-1 ..
It is formed with a thickness of 0 mm. This aluminum nitride thin film is formed by a known vapor phase method, for example, a PVD method such as sputtering or ion plating, plasma CVD, or light C.
It is easily formed by a CVD method such as VD or MO (Metal-organic) CVD. The thin film formed by such a vapor phase method has a high purity of 99% or more, but oxygen is contained in the film during the film formation process and
Although it may contain ON, when the oxygen content exceeds 20 atomic%, the adhesion with the aluminum nitride sintered body as the base may decrease, so the oxygen content is controlled to 20 atomic% or less. Is desirable. Further, it is desirable that the aluminum nitride thin film has a high purity and a thermal conductivity of 120 W / m · K or more.

【0019】[0019]

【作用】本発明によれば、シリコンウエハを静電的に吸
着するための導電回路を窒化アルミニウム焼結体の基体
表面に形成したことによって、その上部に窒化アルミニ
ウム薄膜を形成してもウエハ載置面と導電回路との距離
が実質不変であることから、均一な吸着力を得ることが
できる。
According to the present invention, the conductive circuit for electrostatically adsorbing the silicon wafer is formed on the surface of the base of the aluminum nitride sintered body, so that even if the aluminum nitride thin film is formed on the upper surface of the base, the wafer can be mounted on the wafer. Since the distance between the placement surface and the conductive circuit is substantially unchanged, a uniform suction force can be obtained.

【0020】また、サセプタの基体材料として用いられ
る窒化アルミニウム焼結体は、体積固有抵抗が1013Ω
−cm以上の良好な絶縁体であるとともに、熱膨張係数
が4×10-6〜5×10-6/℃と小さく、耐熱衝撃性に
優れているため、急激な温度変化を受けても割れにく
い。また熱伝導性にも優れているため、サセプタ内での
温度のむらを少なくすることができるため、シリコンウ
エハを均一に保温することができる。
The aluminum nitride sintered body used as the base material of the susceptor has a volume resistivity of 10 13 Ω.
-Since it is a good insulator of -cm or more, has a small coefficient of thermal expansion of 4 x 10 -6 to 5 x 10 -6 / ° C, and is excellent in thermal shock resistance, it cracks even when subjected to a sudden temperature change. Hateful. Further, since the thermal conductivity is also excellent, it is possible to reduce the temperature unevenness in the susceptor, so that it is possible to keep the temperature of the silicon wafer uniform.

【0021】さらに、上記基体表面に形成される窒化ア
ルミニウム薄膜は、気相法によって合成されることか
ら、組織が均質でかつ非常に純度が高く、耐プラズマ性
に優れ、プラズマエッチングを行う場合もサセプタ表面
のピンホールの発生やエッチングによる劣化を防止する
ことができる。しかも、基体表面が上記高純度の窒化ア
ルミニウム薄膜で被覆されているため、基体の焼結体中
に僅かな不純物が含まれていたとしても系外に放出され
ることがなく、半導体製造過程において不純物による悪
影響を防止することができる。さらに、熱伝導率が12
0W/m・k以上と優れているために、サセプタを窒化
アルミニウム焼結体のみから構成した場合に比較して、
さらに均熱性を高めることができる。
Further, since the aluminum nitride thin film formed on the surface of the substrate is synthesized by the vapor phase method, it has a uniform structure, is very high in purity, is excellent in plasma resistance, and can be used for plasma etching. Generation of pinholes on the surface of the susceptor and deterioration due to etching can be prevented. Moreover, since the surface of the base is covered with the high-purity aluminum nitride thin film, even if a slight amount of impurities is contained in the sintered body of the base, it is not released to the outside of the system, and in the semiconductor manufacturing process. The adverse effect of impurities can be prevented. Furthermore, the thermal conductivity is 12
Compared to the case where the susceptor is made of only an aluminum nitride sintered body, it is excellent at 0 W / m · k or more,
Further, the soaking property can be improved.

【0022】[0022]

【実施例】以下、本発明を次の例で説明する。 実施例1 窒化アルミニウム粉末にY2 3 を2重量%添加した混
合体をシート状に成形した後、シート成形体表面に窒化
アルミニウムを2重量%含むWペーストを25μmの厚
みでスクリーン印刷法により発熱回路パターンに塗布し
たものを他のシート成形体ではさんで積層し、これを窒
素雰囲気中で1750℃で焼成し、内部に発熱回路を組
み込んだ厚さ5mmの気孔率5.0%の窒化アルミニウ
ム焼結体円板を得た。この焼結体円板を平面研磨して平
坦化処理した後、焼結体表面にAlNを3重量%含むW
の導電性ペーストを塗布し1750℃で焼き付けをおこ
ない静電チャックの導電回路を形成した。
The present invention will be described below with reference to the following examples. Example 1 A mixture obtained by adding 2% by weight of Y 2 O 3 to aluminum nitride powder was formed into a sheet, and then a W paste containing 2% by weight of aluminum nitride was formed on the surface of the sheet formed body by a screen printing method with a thickness of 25 μm. What was applied to the heating circuit pattern was laminated by sandwiching it between other sheet moldings, and this was fired at 1750 ° C. in a nitrogen atmosphere, and the heating circuit was incorporated inside and nitriding with a thickness of 5 mm and a porosity of 5.0%. An aluminum sintered body disk was obtained. This sintered disc was flat-polished and flattened, and then W containing 3% by weight of AlN on the surface of the sintered body was added.
The conductive paste was applied and baked at 1750 ° C. to form a conductive circuit of the electrostatic chuck.

【0023】これを熱CVD処理炉に入れ、AlCl3
15sccm、NH3 90sccm、N2 2500sc
cmのガスを炉内圧力40torrで導入し基体温度9
50℃で成膜時間を調整し膜厚の異なる数種の窒化アル
ミニウム膜を形成し、サセプタを製造した。成膜した窒
化アルミニウム膜中の酸素量はいずれも0.5原子%以
下であった。
This was placed in a thermal CVD treatment furnace and AlCl 3
15sccm, NH 3 90sccm, N 2 2500sc
cm gas was introduced at a furnace pressure of 40 torr and the substrate temperature was 9
The susceptor was manufactured by adjusting the film forming time at 50 ° C. and forming several kinds of aluminum nitride films having different film thicknesses. The oxygen amount in each of the formed aluminum nitride films was 0.5 atom% or less.

【0024】得られた各サセプタについて、窒化アルミ
ニウム膜と、基体との密着性について、サセプタを70
0℃まで加熱した後、室温まで冷却し、これを5回繰り
返した後、サセプタを切断し切断面を実体顕微鏡と走査
型電子顕微鏡(SEM)で観察して薄膜の剥離や亀裂の
有無を調べた。なお、耐プラズマ性について、半導体製
造装置内でプラズマ中に100時間保持した後のサセプ
タ表面の状態を観察した。さらに0.8kVの電圧を導
電回路に印加し、シリコンウエハの静電吸着力を測定し
た。
Regarding each of the obtained susceptors, regarding the adhesion between the aluminum nitride film and the substrate, the susceptor was
After heating to 0 ° C, cooling to room temperature, repeating this 5 times, cutting the susceptor and observing the cut surface with a stereoscopic microscope and a scanning electron microscope (SEM) to check the presence or absence of peeling or cracks in the thin film. It was Regarding the plasma resistance, the state of the susceptor surface after being kept in plasma for 100 hours in the semiconductor manufacturing apparatus was observed. Further, a voltage of 0.8 kV was applied to the conductive circuit, and the electrostatic attraction force of the silicon wafer was measured.

【0025】[0025]

【表1】 [Table 1]

【0026】比較例1 窒化アルミニウム粉末にY2 3 を2重量%添加した混
合体をシート状に成形した後、窒化アルミニウムを2重
量%含むWペーストを25μmの厚みでスクリーン印刷
法により発熱回路と導電回路パターンを印刷したシート
をはさみこんで積層し、これを窒素雰囲気中で1750
℃で焼成し、厚さ5mmの窒化アルミニウム焼結体円板を
得た。この焼結体円板を表面研磨して平坦化処理したの
ち、実施例1と同様な成膜条件にて300μmの厚みの
窒化アルミニウム膜を形成し、サセプタを製造した。製
造したサセプタに対して実施例1と同様な方法で各種特
性評価を行なった結果、膜の密着性、耐プラズマ性につ
いては良好な結果を得たが、シリコンウエハの吸着、脱
着を行った時、シリコンウエハが本来の固定位置からず
れたり、サセプタ表面で吸着力が場所により異なるなど
サセプタ表面の静電的吸着力にバラツキが存在すること
がわかった。
Comparative Example 1 A mixture containing 2% by weight of Y 2 O 3 added to aluminum nitride powder was formed into a sheet, and a W paste containing 2% by weight of aluminum nitride was formed in a thickness of 25 μm by a screen printing method to produce a heating circuit. And the conductive circuit pattern printed sheets are sandwiched and laminated, and this is 1750 in a nitrogen atmosphere.
It was fired at a temperature of ℃ to obtain an aluminum nitride sintered body disk having a thickness of 5 mm. After surface-polishing and flattening the surface of this sintered disk, an aluminum nitride film having a thickness of 300 μm was formed under the same film forming conditions as in Example 1 to manufacture a susceptor. As a result of performing various characteristic evaluations on the manufactured susceptor in the same manner as in Example 1, good results were obtained for film adhesion and plasma resistance, but when adsorption and desorption of silicon wafers were performed. It was found that the electrostatic attraction force on the surface of the susceptor varies because the silicon wafer is displaced from its original fixed position or the attraction force on the surface of the susceptor differs depending on the location.

【0027】[0027]

【発明の効果】以上詳述した通り、本発明の半導体製造
用サセプタは、優れた耐プラズマ性を有し、半導体製造
時に不純物の混入を抑制するとともに、シリコンウエハ
に対してサセプタ面で均一な吸着力を得ることができ
る。また、サセプタ内部に発熱回路を形成した場合にお
いてサセプタ内での温度のむらを少なくすることができ
るため、シリコンウエハを均一に保温することができ
る。
As described in detail above, the semiconductor manufacturing susceptor of the present invention has excellent plasma resistance, suppresses the mixing of impurities during semiconductor manufacturing, and has a uniform susceptor surface with respect to a silicon wafer. Adsorption force can be obtained. Further, when the heat generating circuit is formed inside the susceptor, it is possible to reduce unevenness in temperature inside the susceptor, so that the silicon wafer can be kept warm evenly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体製造用サセプタの構造を示す断
面図である。
FIG. 1 is a cross-sectional view showing a structure of a susceptor for semiconductor manufacturing of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコンウエハ 2 基体 3 薄膜 4 発熱回路 5 導電回路 1 Silicon Wafer 2 Substrate 3 Thin Film 4 Heating Circuit 5 Conducting Circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウムを主体とする焼結体から
なる基体表面に導電性回路を形成し、さらにその上部に
窒化アルミニウム薄膜を0. 001〜1. 0mmの厚み
で形成したことを特徴とする半導体製造用サセプタ。
1. A conductive circuit is formed on the surface of a base body made of a sintered body containing aluminum nitride as a main component, and an aluminum nitride thin film having a thickness of 0.001 to 1.0 mm is formed on the conductive circuit. Susceptor for semiconductor manufacturing.
【請求項2】窒化アルミニウムを主体とする焼結体を作
製する工程と、該窒化アルミニウム焼結体の表面を平面
研磨する工程と、前記研磨後の表面に導電性回路を形成
する工程と、該導電性回路の上部に窒化アルミニウム薄
膜を0.001〜1.0mmの厚みで形成する工程を具
備してなることを特徴とする半導体製造用サセプタの製
造方法。
2. A step of producing a sintered body mainly composed of aluminum nitride, a step of planarly polishing the surface of the aluminum nitride sintered body, and a step of forming a conductive circuit on the polished surface. A method of manufacturing a susceptor for manufacturing a semiconductor, comprising a step of forming an aluminum nitride thin film with a thickness of 0.001 to 1.0 mm on the conductive circuit.
JP29936893A 1993-11-30 1993-11-30 Susceptor for semiconductor process and its manufacture Pending JPH07153820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29936893A JPH07153820A (en) 1993-11-30 1993-11-30 Susceptor for semiconductor process and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29936893A JPH07153820A (en) 1993-11-30 1993-11-30 Susceptor for semiconductor process and its manufacture

Publications (1)

Publication Number Publication Date
JPH07153820A true JPH07153820A (en) 1995-06-16

Family

ID=17871663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29936893A Pending JPH07153820A (en) 1993-11-30 1993-11-30 Susceptor for semiconductor process and its manufacture

Country Status (1)

Country Link
JP (1) JPH07153820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237826A (en) * 1996-02-29 1997-09-09 Kyocera Corp Electrostatic chuck
JPH11251104A (en) * 1998-02-27 1999-09-17 Hokuriku Electric Ind Co Ltd Heat generating thin-film element sensor and its manufacture
JP2000058631A (en) * 1998-03-02 2000-02-25 Sumitomo Electric Ind Ltd Holder for manufacturing semiconductor and manufacture thereof
US7446284B2 (en) 2005-12-21 2008-11-04 Momentive Performance Materials Inc. Etch resistant wafer processing apparatus and method for producing the same
JP2009302346A (en) * 2008-06-13 2009-12-24 Shinko Electric Ind Co Ltd Substrate temperature-control securing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237826A (en) * 1996-02-29 1997-09-09 Kyocera Corp Electrostatic chuck
JPH11251104A (en) * 1998-02-27 1999-09-17 Hokuriku Electric Ind Co Ltd Heat generating thin-film element sensor and its manufacture
JP2000058631A (en) * 1998-03-02 2000-02-25 Sumitomo Electric Ind Ltd Holder for manufacturing semiconductor and manufacture thereof
US7446284B2 (en) 2005-12-21 2008-11-04 Momentive Performance Materials Inc. Etch resistant wafer processing apparatus and method for producing the same
JP2009302346A (en) * 2008-06-13 2009-12-24 Shinko Electric Ind Co Ltd Substrate temperature-control securing device
US8641825B2 (en) 2008-06-13 2014-02-04 Shinko Electric Industries Co., Ltd. Substrate temperature regulation fixed apparatus

Similar Documents

Publication Publication Date Title
JP4417197B2 (en) Susceptor device
JP3975944B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP4744855B2 (en) Electrostatic chuck
US5958813A (en) Semi-insulating aluminum nitride sintered body
EP0896362B1 (en) Semiconductor supporting device
JP3176219B2 (en) Electrostatic chuck
EP1513191B1 (en) Heating apparatus having electrostatic adsorption function
JPH07153820A (en) Susceptor for semiconductor process and its manufacture
KR20080059501A (en) Ceramic heater with electrostatic chuck
KR20230042679A (en) Composite sintered body and method of manufacturing composite sintered body
JP3152847B2 (en) Electrostatic chuck
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
JPH0786379A (en) Semiconductor manufacturing suscepter
JP3623107B2 (en) Electrostatic chuck
JP3152857B2 (en) Electrostatic chuck
JP3370532B2 (en) Electrostatic chuck
JP3652862B2 (en) Electrostatic chuck and plasma generator
JPH10189698A (en) Electrostatic chuck
JPH07226431A (en) Electrostatic chuck
JP3667077B2 (en) Electrostatic chuck
JP3527840B2 (en) Electrostatic chuck
JPH07153821A (en) Susceptor for semiconductor process and its manufacture
JPH07135246A (en) Electrostatic chuck
US20080083979A1 (en) Wafer holder and semiconductor manufacturing apparatus equipped with wafer holder
JP3683044B2 (en) Electrostatic chuck plate and manufacturing method thereof