JPS61219787A - Crucible for producing single crystal for high-purity semiconductor - Google Patents

Crucible for producing single crystal for high-purity semiconductor

Info

Publication number
JPS61219787A
JPS61219787A JP5936085A JP5936085A JPS61219787A JP S61219787 A JPS61219787 A JP S61219787A JP 5936085 A JP5936085 A JP 5936085A JP 5936085 A JP5936085 A JP 5936085A JP S61219787 A JPS61219787 A JP S61219787A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
semiconductor
purity
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5936085A
Other languages
Japanese (ja)
Inventor
Koichi Yamaguchi
浩一 山口
Hiroshi Aida
比呂史 会田
Kazunori Koga
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5936085A priority Critical patent/JPS61219787A/en
Publication of JPS61219787A publication Critical patent/JPS61219787A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled crucible which is large-sized and excellent in the strength without the leaching of the impurities by coating the surface of a crucible-shaped molded base material consisting of a specified nonoxide ceramic or a metallic material having high m.p. with the thermally decomposable boron nitride. CONSTITUTION:The thermally decomposable boron nitride is coated on the surface of a crucible-shaped molded body consisting of one or more kinds of nonoxide ceramics selected from among SiC, Si3N4, TiN and AlN, or one or more kinds of metallic materials having high m.p. selected from among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W in about 0.01-1.0mm thickness by a CVD method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化ほう素でコーティングされたルツボ、特に
高純度半導体単結晶製造用ルツボに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a crucible coated with boron nitride, particularly to a crucible for producing high-purity semiconductor single crystals.

(従来の技術及び問題点) 半導体業界においては、良品質の半導体製品を作成する
に当たって、まず高純度の珪素、デルマニウム、ひ化〃
リウム(G aA s)等の単結晶を製造することが重
要である。
(Conventional technology and problems) In the semiconductor industry, when creating high-quality semiconductor products, the first step is to use high-purity silicon, dermanium, and arsenide.
It is important to produce single crystals such as GaAs.

それには、原料に不純物が混入しないように為すことば
かりでなく、得られた半導体物質を熔融して引き上げ法
により大径の単結晶を製造する際にその装置自体の損傷
などによりそれが不純物となって該単結晶に混入される
ことのないようにする必要がある。
In order to do this, it is necessary not only to prevent impurities from entering the raw materials, but also to prevent impurities from being introduced due to damage to the equipment itself when melting the obtained semiconductor material and manufacturing large-diameter single crystals by the pulling method. It is necessary to prevent this from becoming mixed into the single crystal.

熔融状態の半導体素材から引き上げ法によって単結晶を
得る方法においては、熔融のためのルツボを半導体材料
と反応性のない高純度の材料で構成すべきであり、各種
セラミック、貴金属材料等が用いられている。しかしな
がら、それらルツボ材料には種々の焼結剤が配合されて
いることや若干の反応性があることなどの理由から、高
純度半導体単結晶の製造、特にfiLsI用GaAs半
導体単結晶の製造に際してはルツボ材料が不純物となっ
て該単結晶に混入してくることが重大な問題となってい
る。また、昨今の大型半導体ウェハー製造工業において
は、大容量のルツボを要し、よっでルツボ材料使用量は
増大し、そしてまた大容量の内容物を安全に収容するた
めにはルツボ材料の強度も高めなければならない。
In the method of obtaining a single crystal from a molten semiconductor material by the pulling method, the crucible for melting should be made of a high-purity material that is not reactive with the semiconductor material, and various ceramics, precious metal materials, etc. can be used. ing. However, because these crucible materials contain various sintering agents and have some reactivity, it is difficult to manufacture high-purity semiconductor single crystals, especially GaAs semiconductor single crystals for fiLsI. A serious problem is that the crucible material becomes an impurity and mixes into the single crystal. In addition, the current large semiconductor wafer manufacturing industry requires large-capacity crucibles, which increases the amount of crucible material used, and also requires the strength of the crucible material to safely accommodate large-volume contents. Must be raised.

ところで、窒化ほう素は電気絶縁性、熱伝導性、耐熱衝
撃性に優れ、高温下での化学的安定性、耐酸化性、潤滑
性等が優れていることから、その用途は多分野にわたっ
て賞月されているが、前記半導体の製造用ルツボとして
も好適なものとして使用されつつある。
By the way, boron nitride has excellent electrical insulation, thermal conductivity, and thermal shock resistance, as well as chemical stability at high temperatures, oxidation resistance, and lubricity, so it has been used in many fields and has received awards. However, it is now being used as a suitable crucible for manufacturing the semiconductors.

窒化ホウ素の製造法にはホウ素酸化物をアンモニア中で
炭素で還元窒化する方法や、ハロゲン化ホウ素とアンモ
ニアを高温で気相反応させる方法(CV D法)等があ
るが、後者の気相反応による方法では熱分解窒化ホウ素
(P B N )が得られ、高純度なものであるので、
半導体製造用ルツボ用には特に良い。
There are several methods for producing boron nitride, such as reducing and nitriding boron oxide with carbon in ammonia, and reacting boron halide and ammonia in the vapor phase at high temperatures (CVD method). Pyrolytic boron nitride (P B N ) is obtained by the method, and it is highly pure.
It is particularly suitable for crucibles used in semiconductor manufacturing.

しかしそのCVD法による製造は容易でなく、大型のも
のの製造はコストも莫大なものとなり、実際上不可能に
近いものである。
However, manufacturing using the CVD method is not easy, and manufacturing large-sized products requires enormous costs and is practically impossible.

更に半導体製造用ルツボとしては石英製、黒鉛製、炭化
珪素製、計金属製等のものが使用されていて、サイズ、
強度の点では好適なルツボが提供されてはいるが、内容
物の熔融時にそれらルツボ材料がしばしば不純物として
半導体に導入される結果、優良な半導体単結晶が得られ
難いという問題点がある。
Furthermore, crucibles for semiconductor manufacturing are made of quartz, graphite, silicon carbide, metal, etc., and the size and
Although crucibles that are suitable in terms of strength have been provided, there is a problem in that it is difficult to obtain high-quality semiconductor single crystals as a result of the crucible materials often being introduced into semiconductors as impurities when the contents are melted.

一方、PBNの薄膜でコーティングされたグラファイト
(黒鉛)からなる蒸着のための金属蒸気生成用ルツボあ
るいはボートが公知であり(例えば、特公昭59−19
192号公報)、この場合PBN薄膜は保I膜として、
金属蒸気発生用熔融金属によってグラファイトが侵食さ
れないようにするためかつ同時にグラファイトから浸出
する不純物によって該熔融金属が汚染されないようにす
るために作用している。しかしながら、高純度半導体単
結晶!!造馬用ルツボ該公知ルツボを使用しようとする
と、PBNコーティング層へ不純物として不可避的に導
入される幾分がのグラ7フイトが問題となることと、ま
たグラ7フイトとPBNの密着性は非常に弱く、モして
PBNIllJは膜層に平行の方向の熱膨張係数が−2
,9X10−8/”Cと負の膨張であることからグラフ
ァイト基体とPBN薄膜とは熱膨張率が大きく異なるた
め加熱−冷却サイクルを受けると、たちまち剥離現象が
生じるといった問題がある。
On the other hand, metal vapor generation crucibles or boats for vapor deposition made of graphite coated with a thin film of PBN are known (for example, Japanese Patent Publication No. 59-19
No. 192), in this case the PBN thin film is used as an I-retaining film,
It serves to prevent the graphite from being attacked by the molten metal for generating metal vapor, and at the same time to prevent the molten metal from being contaminated by impurities leached from the graphite. However, high purity semiconductor single crystal! ! Crucible for Horse Making If you try to use this known crucible, there will be a problem that some graphite will inevitably be introduced into the PBN coating layer as an impurity, and the adhesion between graphite and PBN will be very poor. PBNIllJ has a thermal expansion coefficient of -2 in the direction parallel to the film layer.
, 9X10-8/''C, which is a negative expansion, and the thermal expansion coefficients of the graphite substrate and the PBN thin film are greatly different. Therefore, there is a problem that peeling occurs immediately when subjected to a heating-cooling cycle.

従って、実用品となるルツボを製造するには、グラファ
イト自体が低強度のものであることとも相まって、PB
Nを長時間の蒸着により分厚く、実際にはグラファイト
基体よりも厚層にコーティングしなければならない状況
である。
Therefore, in order to manufacture crucibles that can be used as practical products, it is necessary to use PB.
The situation is such that N is deposited thickly over a long period of time, and in fact needs to be coated in a thicker layer than the graphite substrate.

(問題を解決するための手段) 本発明者らは前記問題点を解決すべく、鋭意研究の結果
、ここに大型であってしかも強度も充分に保証できる高
純度半導体単結晶製造用ルツボを提供し得ることとなっ
たのである。
(Means for Solving the Problem) In order to solve the above-mentioned problems, the present inventors, as a result of intensive research, have provided a crucible for manufacturing high-purity semiconductor single crystals that is large in size and has sufficient strength. It became possible.

即ち、本発明は炭化珪素、窒化珪素、窒化チタニウム及
び窒化アルミニウムより選ばれる1種以上の非酸化物セ
ラミック又はTi、Zr%Hf、V、Nb。
That is, the present invention uses one or more non-oxide ceramics selected from silicon carbide, silicon nitride, titanium nitride, and aluminum nitride, or Ti, Zr%Hf, V, and Nb.

T aSCr%Mo、Wより選ばれる1種以上の高融点
金属素材からなるルツボ状成形体の表面が熱分解窒化ほ
う素でコーティングされてなることを特徴とする高純度
半導体単結晶製造用ルツボである。
A crucible for producing a high-purity semiconductor single crystal, characterized in that the surface of a crucible-shaped molded body made of one or more high-melting point metal materials selected from T aSCr%Mo and W is coated with pyrolytic boron nitride. be.

本発明においては、ルツボ状成形体基体として、高融点
を有し、そして熔融半導体に対する耐食性の良い炭化珪
素、窒化珪素、窒化チタニウム、窒化アルミニウム等の
非酸化物セラミック材や、Ti、Zr、HfCWa族)
、V t N b * T a (V a族)、Cr 
s M o *W (Vl a族)金属が採用され、そ
れら基体の表面に熱分解窒化ほう素(P B N )が
CVD法により、通常0.01〜1.On++a程度コ
ーティングされる。
In the present invention, non-oxide ceramic materials such as silicon carbide, silicon nitride, titanium nitride, and aluminum nitride, which have a high melting point and good corrosion resistance against molten semiconductors, as well as Ti, Zr, and HfCWa are used as the base of the crucible-shaped molded body. family)
, V t N b * T a (V a group), Cr
s M o *W (Vla group) metals are employed, and pyrolytic boron nitride (P B N ) is deposited on the surface of these substrates by the CVD method, usually in a concentration of 0.01 to 1. It is coated to the extent of On++a.

これら基体材料は、グラ7フイトと違って強度も高く、
壁厚を薄くしてもルツボの強度は充分であり、軽量で大
型のものとすることができる。
These base materials have high strength unlike graphite,
Even if the wall thickness is reduced, the strength of the crucible is sufficient, and the crucible can be made lightweight and large.

特に、前記基体の非酸化物セラミックのうち、炭化珪素
はPBNとの密着性が非常に良好であり、また、熱伝導
性ら優れているので最適な材料として推奨されるもので
ある。
In particular, among the non-oxide ceramics for the base, silicon carbide is recommended as the most suitable material because it has very good adhesion to PBN and also has excellent thermal conductivity.

本発明は、特に、超LSIのICなどに用いられる高純
度GaAs半導体の製造のためのルツボとして好適なも
のであり、ルツボからの不純物の浸出がなく、また、加
熱・冷却サイクルによるPBNコーティング層の剥離が
ない、そして強度も充分でかつまた製造コストも安価で
あるという有利性がある。
The present invention is particularly suitable as a crucible for manufacturing high-purity GaAs semiconductors used in ultra-LSI ICs, etc., and there is no leaching of impurities from the crucible, and the PBN coating layer is formed by heating and cooling cycles. It has the advantages of no peeling, sufficient strength, and low manufacturing cost.

(実施例) 例  1 : 漬込成形の後乾燥、焼成して得られた直径20am、高
さ20c++1、肉厚11aの炭化珪素製ルツボ状成形
体基体を作成した。
(Examples) Example 1: A silicon carbide crucible-shaped molded body base having a diameter of 20 am, a height of 20 c++1, and a wall thickness of 11 a was prepared by immersion molding, drying, and firing.

前記成形体基体を炉内に配置し、昇温しで基体温度を1
200℃とし、該炉内にB C1,、N H、。
The molded body substrate is placed in a furnace and heated to bring the temperature of the substrate to 1.
The temperature was set at 200° C., and B C1,, N H, were placed in the furnace.

H2からなる反応ガスを圧力20 Torrで導入し、
5時間にわたって接触反応をさせ、基体表面全面に厚さ
0.1ml11の熱分解窒化ほう素(P B N )コ
ーティングを施した。
Introducing a reaction gas consisting of H2 at a pressure of 20 Torr,
A contact reaction was carried out for 5 hours, and a pyrolytic boron nitride (P B N ) coating with a thickness of 0.1 ml was applied to the entire surface of the substrate.

得られた本発明製品を引き上げ法による半導体GaAs
単結晶製造ルツボとして使用した結果、10回の使用(
加熱−冷却サイクル付与1回)によりても、PBNコー
ティング膜には剥離やクラ・ツクが生ぜず、そしてルツ
ボから不純物がGaAs1融体へ混入することも全くな
く、良品の高純度半導体GaAs単結晶をsi!造する
ことができた。
The obtained product of the present invention is made into a semiconductor GaAs by a pulling method.
As a result of using it as a single crystal manufacturing crucible, it was used 10 times (
Even after one heating-cooling cycle), no peeling or cracking occurred in the PBN coating film, and no impurities were mixed into the GaAs melt from the crucible, resulting in a high-purity semiconductor GaAs single crystal of good quality. si! I was able to build it.

なお、該ルツボはPBNコーティング膜により良耐食性
が発揮されるばかりでなく、炭化珪素は熱伝導性の優良
なものであるため、ルツボ全体の温度を常に均一に維持
することができ、したがってルツボ内の試料は均一に溶
解されるので優良な単結晶の製造に好適である。
In addition, this crucible not only exhibits good corrosion resistance due to the PBN coating film, but also because silicon carbide has excellent thermal conductivity, the temperature of the entire crucible can be maintained uniformly at all times, and therefore the inside of the crucible This sample is suitable for producing high-quality single crystals because it is uniformly dissolved.

例  2: 鋳込成形の後、乾燥、焼成して得られた直径20cm、
高さ20cm、肉厚1111[+1の窒化珪素製ルツボ
状成形体基体を作成した。
Example 2: A diameter of 20 cm obtained by casting, drying, and firing.
A silicon nitride crucible-shaped molded body base having a height of 20 cm and a wall thickness of 1111 [+1] was prepared.

前記成形体基体を炉内に配置し、昇温しで基体温度を1
200℃とし、該炉内にB 、N 、H6(ボラゾール
)を反応ガスとして、圧力20 Torrで導入し、4
時間にわたって、基体表面の全面に厚さ0゜11のPB
Nコーティングを均一に施した。
The molded body substrate is placed in a furnace and heated to bring the temperature of the substrate to 1.
The temperature was set at 200°C, and B, N, and H6 (borazole) were introduced into the furnace as reaction gases at a pressure of 20 Torr.
Over time, PB with a thickness of 0°11 was applied to the entire surface of the substrate.
N coating was applied uniformly.

得られた本発明製品を引き上げ法による半導体GaAs
単結晶製造ルツボとして使用した結果、PBNコーティ
ング膜には剥離やクラックが生じることなく、そしてル
ツボから不純物がGaAs熔融体へ混入することは全く
なく、高純度半導体GaAs単結晶が得られた。
The obtained product of the present invention is made into a semiconductor GaAs by a pulling method.
When used as a single crystal production crucible, the PBN coating film did not peel or crack, and no impurities were mixed into the GaAs melt from the crucible, resulting in a high purity semiconductor GaAs single crystal.

該ルツボはPBNコーティング膜により良耐食性が発揮
されるばかりでなく、窒化珪素は強度が非常に高く、ま
た耐熱衝撃性に優れたものであるため、ルツボを大型と
することができ、また、加熱−冷却のサイクルに対して
も強いので、大径の優良な単結晶製造用ルツボとして好
ましい。
This crucible not only exhibits good corrosion resistance due to the PBN coating film, but also silicon nitride has extremely high strength and excellent thermal shock resistance, so the crucible can be made large and can be heated. - Since it is resistant to cooling cycles, it is preferred as a large-diameter, high-quality crucible for producing single crystals.

(発明の効果) 本発明のものは、高純度半導体単結晶製造用ルツボとし
て適当であり特に、超LSIのICなどに用いられる高
純度GaAs半導体の製造用ルツボとして好適なもので
あって、基体にグラファイトを使用していないためにル
ツボがらの不純物浸出がなく、また基体とPBNとは密
着性が良いために、加熱・冷却サイクルによってもPB
Nコーティング層が剥離することがない。そして基体は
高強度であるため、ルツボの壁厚を薄くしても強度が充
分で軽量、大型のものとすることができ、かつまたPB
N層を厚層としなくてもよいので製造コストも安価であ
るという優れた有利性がある。
(Effects of the Invention) The crucible of the present invention is suitable as a crucible for manufacturing high-purity semiconductor single crystals, and is particularly suitable as a crucible for manufacturing high-purity GaAs semiconductors used in VLSI ICs, etc. Since graphite is not used in the process, there is no impurity leaching from the crucible, and since the substrate and PBN have good adhesion, even during heating and cooling cycles, PB
The N coating layer will not peel off. Since the base has high strength, even if the wall thickness of the crucible is made thinner, it can still be strong, lightweight, and large.
Since the N layer does not need to be a thick layer, the manufacturing cost is low, which is an excellent advantage.

Claims (1)

【特許請求の範囲】[Claims] 炭化珪素、窒化珪素、窒化チタニウム及び窒化アルミニ
ウムより選ばれる1種以上の非酸化物セラミック又はT
i、Zr、Hf、V、Nb、Ta、Cr、Mo、Wより
選ばれる1種以上の高融点金属素材からなるルツボ状成
形体基体の表面が熱分解窒化ほう素でコーティングされ
てなることを特徴とする高純度半導体単結晶製造用ルツ
ボ。
One or more non-oxide ceramics selected from silicon carbide, silicon nitride, titanium nitride and aluminum nitride or T
i, Zr, Hf, V, Nb, Ta, Cr, Mo, W. A crucible for producing high-purity semiconductor single crystals.
JP5936085A 1985-03-26 1985-03-26 Crucible for producing single crystal for high-purity semiconductor Pending JPS61219787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5936085A JPS61219787A (en) 1985-03-26 1985-03-26 Crucible for producing single crystal for high-purity semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5936085A JPS61219787A (en) 1985-03-26 1985-03-26 Crucible for producing single crystal for high-purity semiconductor

Publications (1)

Publication Number Publication Date
JPS61219787A true JPS61219787A (en) 1986-09-30

Family

ID=13111019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5936085A Pending JPS61219787A (en) 1985-03-26 1985-03-26 Crucible for producing single crystal for high-purity semiconductor

Country Status (1)

Country Link
JP (1) JPS61219787A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132145A (en) * 1987-04-27 1992-07-21 Societe Anonyme Method of making composite material crucible for use in a device for making single crystals
CN103774209A (en) * 2012-10-26 2014-05-07 阿特斯(中国)投资有限公司 Crucible for silicon ingoting and preparation method of crucible coating
WO2020077846A1 (en) * 2018-10-16 2020-04-23 山东天岳先进材料科技有限公司 Semi-insulating silicon carbide single crystal doped with small amount of vanadium, substrate prepared therefrom, and preparation method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156400A (en) * 1981-03-23 1982-09-27 Hitachi Metals Ltd Crucible for preparing single crystal
JPS5919192A (en) * 1982-07-26 1984-01-31 Ricoh Co Ltd Multicolor pressure sensitive copy material
JPS59217700A (en) * 1983-05-20 1984-12-07 Sumitomo Electric Ind Ltd Device for producing compound semiconductor and method for manufacturing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156400A (en) * 1981-03-23 1982-09-27 Hitachi Metals Ltd Crucible for preparing single crystal
JPS5919192A (en) * 1982-07-26 1984-01-31 Ricoh Co Ltd Multicolor pressure sensitive copy material
JPS59217700A (en) * 1983-05-20 1984-12-07 Sumitomo Electric Ind Ltd Device for producing compound semiconductor and method for manufacturing thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132145A (en) * 1987-04-27 1992-07-21 Societe Anonyme Method of making composite material crucible for use in a device for making single crystals
CN103774209A (en) * 2012-10-26 2014-05-07 阿特斯(中国)投资有限公司 Crucible for silicon ingoting and preparation method of crucible coating
CN103774209B (en) * 2012-10-26 2016-06-15 阿特斯(中国)投资有限公司 Silicon crucible for casting ingots and coating production thereof
WO2020077846A1 (en) * 2018-10-16 2020-04-23 山东天岳先进材料科技有限公司 Semi-insulating silicon carbide single crystal doped with small amount of vanadium, substrate prepared therefrom, and preparation method therefor

Similar Documents

Publication Publication Date Title
JPS6047202B2 (en) Super hard high purity oriented polycrystalline silicon nitride
JPH06206718A (en) Extra-high purity silicon carbide and high temperature semiconductor processing device produced by said silicon carbide
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
JP3793157B2 (en) MoSi2-Si3N4 composite coating layer and method for producing the same
US4717693A (en) Process for producing beta silicon nitride fibers
JP3638345B2 (en) Pyrolytic boron nitride container
JPS61251593A (en) Crucible for production of high-purity semiconductor single crystal
JPS61236604A (en) Synthesizing method for beta-si3n4
JPS62153189A (en) Boron nitride coated crucible and production thereof
JPS62176981A (en) Boron nitride-coated crucible
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
TW202128558A (en) Tantalum carbonate-coated graphite member and method for producing same
JP2002097092A (en) Glassy carbon material coated with silicon carbide film and method for producing the same
JPH03146470A (en) Silicon carbide-based material
JPH03243776A (en) Graphite member for cvd
JPH0456766B2 (en)
JP2982823B2 (en) Mold for manufacturing molded article and method for producing molded article
JPH0784357B2 (en) Boron nitride coated crucible
JPH0789776A (en) Production of boron nitride coated carbon material
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS61236672A (en) Pyrolytic boron nitride coated products and manufacture
JP2708612B2 (en) Method for producing pyrolytic boron nitride compact
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPS61291484A (en) Graphite crucible