JPH0431309A - Production of thermally decomposed boron nitride formed article - Google Patents

Production of thermally decomposed boron nitride formed article

Info

Publication number
JPH0431309A
JPH0431309A JP13463490A JP13463490A JPH0431309A JP H0431309 A JPH0431309 A JP H0431309A JP 13463490 A JP13463490 A JP 13463490A JP 13463490 A JP13463490 A JP 13463490A JP H0431309 A JPH0431309 A JP H0431309A
Authority
JP
Japan
Prior art keywords
substrate
film
boron nitride
layer
formed article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13463490A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kubota
芳宏 久保田
Kesaji Harada
原田 今朝治
Tadakatsu Kimura
木村 忠且
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP13463490A priority Critical patent/JPH0431309A/en
Publication of JPH0431309A publication Critical patent/JPH0431309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce anchor effect between a substrate and the aimed P-BN film and prevent layer release of the P-BN formed article by using a material obtained by forming a P-BN layer on a substrate by chemical vapor phase reaction as a base and forming a P-BN film thereon. CONSTITUTION:A mixed gas of a boron halide and ammonia is subjected to chemical vapor phase reaction in <=20Torr at 1500-2400 deg.C and the resultant P-BN is formed into a P-BN film as a base. A P-BN film is prepared on the base by a CVD method of a boron halide with ammonia. The P-BN film is released from the base to provide the thermally decomposed boron (P-BN) nitride formed article. Thereby high-purity P-BN formed article having high mechanical strength is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱分解窒化ほう素の製造方法、特には基板との
剥離性がよく、高純度であることから、化合物半導体引
上げ用ルツボ、分子線エピタキシー用金属蒸着用ルツボ
、結晶育成用治具、放熱板、電気絶縁用部品などとして
有用とされる、熱分解窒化ほう集成形体の製造方法に関
するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing pyrolytic boron nitride, and in particular, to a crucible for pulling up compound semiconductors, a method for producing pyrolytic boron nitride, and a method for producing pyrolytic boron nitride. The present invention relates to a method for producing a pyrolytic nitrided aluminium molded body, which is useful as a crucible for metal evaporation for wire epitaxy, a jig for crystal growth, a heat sink, an electrical insulation component, and the like.

(従来の技術) 熱分解窒化ほう素(以下P−BNと略記する)は高純度
で不活性の窒化ほう素であることから、化合物半導体引
上げ用ルツボ、分子線エピタキシー用金属蒸着用ルツボ
、結晶育成用治具なと幅広い範囲で用いられている。
(Prior art) Pyrolytic boron nitride (hereinafter abbreviated as P-BN) is a highly pure and inert boron nitride, so it can be used in crucibles for pulling up compound semiconductors, crucibles for metal evaporation for molecular beam epitaxy, and crystallization. It is used in a wide range of areas, including growing jigs.

このP−BNの製造については、いくつかの方法が知ら
れているが、この中ではハロゲン化ほう素とアンモニア
ガスとを温度1,450〜2,300℃、圧力50ト一
ル未満という条件で化学気相反応法(以下CVD法と略
記)でP−BNを析出させる方法(米国特許第3,15
2,000号参照)が広く用いられており、これはP−
BNと熱膨張係数の異なる独自形状の基体を用い、この
基体にP−BNを析出させ、その後基体とP−BNgを
分離させて独自形状のP−BN成形体を得るという方法
で行なわれている。
Several methods are known for producing this P-BN, but among them, boron halide and ammonia gas are mixed at a temperature of 1,450 to 2,300°C and a pressure of less than 50 torr. A method of precipitating P-BN using a chemical vapor phase reaction method (hereinafter abbreviated as CVD method) (U.S. Patent No. 3,15
2,000) is widely used, and this is P-
This method uses a base body with a unique shape that has a different coefficient of thermal expansion from BN, deposits P-BN on this base body, and then separates the base body and P-BNg to obtain a P-BN molded body with a unique shape. There is.

(本発明が解決しようとする課題) しかし、この方法では基体とP−BN皮膜との間に、い
わゆるアンカー効果があるために分離する基体の一部が
P−BN成形体の一部に付着したり、P−BN成形体が
層状剥離することがあるために、P−BN層を基体と分
離したのちにP−8N膜に付着している基体部分を機械
加工または酸化処理によって除去しなければならないの
でP−BN層に損傷が与えられたり、その機械的強度が
劣化するという問題がある。
(Problem to be solved by the present invention) However, in this method, there is a so-called anchor effect between the base and the P-BN film, so a part of the base to be separated adheres to a part of the P-BN molded body. or the P-BN molded body may peel off, so after separating the P-BN layer from the substrate, the portion of the substrate adhering to the P-8N film must be removed by machining or oxidation treatment. As a result, there is a problem that the P-BN layer is damaged or its mechanical strength is deteriorated.

このため、これについてはハロゲン化ほう素とアンモニ
アガスとを導入した反応層内の圧力を5ト一ル未満とし
て、1.000〜1,400℃の温度でCVD法で反応
させて、膜厚10μm以上の非結晶性窒化ほう素または
低結晶性の窒化ほう素を基体上に堆積させたものを基板
として使用するという方法が提案されている(特開平1
−249406号公報)が、これにはこのようにして得
られた非結晶性窒化ほう素が強度の小さいものであるた
めに大形の型や構造の複雑な型に対しては効果がわるい
という欠点がある。
Therefore, for this purpose, the pressure in the reaction layer into which boron halide and ammonia gas are introduced is set to less than 5 torr, and the reaction is carried out by the CVD method at a temperature of 1.000 to 1,400°C. A method has been proposed in which amorphous boron nitride or low crystalline boron nitride with a thickness of 10 μm or more is deposited on a substrate and used as a substrate (Japanese Patent Application Laid-Open No.
249406), but it is said that because the amorphous boron nitride obtained in this way has low strength, it is not effective for large molds or molds with complex structures. There are drawbacks.

(課題を解決するための手段) 本発明はこのような不利を解決したP−BNの製造方法
に関するもので、これはハロゲン化ほう素とアンモニア
ガスとからCVD法によって基体上にP−BN層を形成
させたのち、該基体からP−BN層を剥離するP−BN
成形体の製造方法において、基体上でハロゲン化ほう素
とアンモニアガスとを圧力20トール以下、1,500
〜2,400℃の温度で化学気相反応させて、基体上に
膜厚10〜200μmのP−BN層を形成させたものを
基体として用いることを特徴とするものである。
(Means for Solving the Problems) The present invention relates to a method for producing P-BN that solves the above-mentioned disadvantages, and this invention involves forming a P-BN layer on a substrate using a CVD method from boron halide and ammonia gas. After forming the P-BN layer, the P-BN layer is peeled from the substrate.
In the method for producing a molded article, boron halide and ammonia gas are heated on a substrate at a pressure of 20 Torr or less at a pressure of 1,500 Torr or less.
This method is characterized in that a P-BN layer having a thickness of 10 to 200 μm is formed on the substrate by a chemical vapor phase reaction at a temperature of ~2,400° C. and is used as the substrate.

すなわち、本発明者らは基体表面とP−BNtL膜との
アンカー効果を低減させて、基板との剥離性がよく、高
純度、高品質のP−BN成形体を得る方法について種々
検討した結果、このP−BN成形体を形成させる基体と
して従来公知の基体上に公知の方法でP−BN層を形成
させたものを使用すればこの基体がP−BN層を予じめ
形成させたものであるので、基板と目的とするP−BN
層との間のアンカン−効果が著しく低減され、基体から
P−BN層を分離するときにP−BN成形体に基体の一
部が付着することがなくなり、P−BN成形体が層状剥
離することもなくなるということを見出すと共に、この
基体上に形成されたP−BN層は強度が大きいので、大
形の型や複雑な構造の型についても充分な効果を与える
ことができることを確認して本発明を完成させた。
That is, the present inventors have conducted various studies on methods of reducing the anchoring effect between the substrate surface and the P-BNtL film to obtain a P-BN molded body with good peelability from the substrate, high purity, and high quality. If a conventionally known substrate on which a P-BN layer is formed by a known method is used as the substrate on which this P-BN molded body is formed, then this substrate has a P-BN layer formed in advance. Therefore, the substrate and the target P-BN
The anchor effect between the layers is significantly reduced, and when the P-BN layer is separated from the substrate, a part of the substrate does not stick to the P-BN molded body, causing delamination of the P-BN molded body. In addition to discovering that the P-BN layer formed on this substrate has high strength, it has been confirmed that it can provide sufficient effects even for large molds and molds with complex structures. The present invention has been completed.

以下これをさらに詳述する。This will be explained in more detail below.

(作用) 本発明はハロゲン化ほう素とアンモニアガスとのCVD
法によるP−BN成形体製造方法の改良に関するもので
ある。
(Function) The present invention is based on CVD of boron halide and ammonia gas.
This invention relates to an improvement in a method for producing a P-BN molded body by a method.

本発明によるP−BN成形体の製造方法はハロゲン化ほ
う素とアンモニアガスとをCVD法で反応させるという
公知の方法で行なわれるが、ここに使用される基体をそ
の表面に予じめP−BN層を形成させたものとするもの
である。
The method for producing a P-BN molded body according to the present invention is carried out by a known method of reacting boron halide and ammonia gas by CVD method. A BN layer is formed thereon.

ここに使用されるハロゲン化ほう素は通常この種の方法
で使用される三塩化ほう素(BeIL、)や三フッ化ほ
う素(BF3)などとすればよく、アンモニアガスも従
来公知のものとすればよい。
The boron halide used here may be boron trichloride (BeIL) or boron trifluoride (BF3), which are normally used in this type of method, and ammonia gas may also be of conventionally known types. do it.

また、ここに使用される基体は高温に耐えるものである
ことが必要とされることから、通常これは黒鉛、ほう化
チタンなどで製られたものとすればよく、その形状は使
用目的に応じた任意の寸法、形状を有するものとすれば
よい。
In addition, since the substrate used here needs to be able to withstand high temperatures, it is usually made of graphite, titanium boride, etc., and its shape depends on the purpose of use. It may have any size and shape.

しかし、本発明で使用される基体は予じめP−BN層で
被覆されたものとすることが必要とされる。
However, it is necessary that the substrate used in the present invention be previously coated with a P-BN layer.

このP−BN層の被覆は公知の方法にしたがって、基体
をハロゲン化ほう素とアンモニアガスとのCVD法によ
る反応装置内に置くことによって行えばよい。このCV
D法による反応条件は反応圧力が20トール以下である
反応装置において高温下に反応させればよいが、この反
応温度については第1図に示したように1,000℃以
下では生成するP−BNが不安定なものとなり、1,5
00℃以上の高温となると緻密で安定なものとなるし、
この引張強度も第2図に示したように高温になる稚内上
するが、1,500℃未満では生成したP−BNが不安
定なものとなって第2図に示したように引張強度の弱い
ものどなリ、2,400℃より高くすると生成したP−
BNのカーボン混入による不純物の増加や、P−ONの
変色などのP−BNの変質原因となるので1,500〜
2,400℃とする必要があり、これはさらに好ましく
は1,600〜2400℃とすることがよい。
The P-BN layer may be coated in accordance with a known method by placing the substrate in a reactor using a CVD method using boron halide and ammonia gas. This CV
The reaction conditions for Method D are to carry out the reaction at high temperature in a reactor with a reaction pressure of 20 Torr or less, but as shown in Figure 1, if the reaction temperature is 1,000°C or less, the P- BN becomes unstable and 1,5
At high temperatures above 00℃, it becomes dense and stable,
As shown in Figure 2, this tensile strength also increases as Wakkanai becomes hotter, but below 1,500℃, the generated P-BN becomes unstable and the tensile strength decreases as shown in Figure 2. Although it is weak, the P- generated when heated above 2,400℃
1,500~ to avoid deterioration of P-BN such as an increase in impurities due to carbon contamination in BN and discoloration of P-ON.
The temperature should be 2,400°C, more preferably 1,600 to 2,400°C.

また、この反応系に導入されるハロゲン化ほう素とアン
モニアガスとの混合比はこの混合比が1未満ではP−B
N層中へのB(ボロン)単体の混入によるP−BN中へ
の不純物の混入やそわによる黒い着色の発生があり、ハ
ロゲン化ほう素1モルに対してアンモニアを15モルよ
り多くするとアンモニアを多く消費するばかりでなく、
成膜速度が小さくなり、収率も低くなるので、1〜15
モルの範囲となるようにすればよいが、この好ましい範
囲は2〜10モルの範囲とされる。
In addition, if the mixing ratio of boron halide and ammonia gas introduced into this reaction system is less than 1, P-B
When B (boron) alone is mixed into the N layer, impurities may be mixed into the P-BN, and black coloration may occur due to warping. In addition to consuming more
1 to 15, since the film formation rate will be low and the yield will be low.
The amount may be within a molar range, but the preferred range is 2 to 10 moles.

したがって本発明によるP−BN成形体の製造は、ハロ
ゲン化ほう素1モルとアンモニアガス2〜10モルの混
合ガスを圧力20トール以下、温度1,500〜2.4
00℃という条件で化学気相反応させ、生成したP−B
Nを基体上にP−BN膜として形成させて表面にP−B
N膜を形成した基体を作り、ついでこの基体の上に公知
の方法でハロゲン化ほう素とアンモニアガスとのCVD
法によってP−BN[を作り、このP−BNgを基体か
ら剥離することによって作られるか、この基体に予じめ
形成されるP−BN膜の厚さは10μm未満では薄すぎ
るし、200μmより厚くすると積層したP−88層が
基体から部分的に剥離し易くなるので10〜200μm
の範囲とすればよい。これによねば基体が予じめP−B
NMをもっているので、この基体上に設けられるP−B
N膜と基体との間におけるアンカー効果が著しく低減さ
れたものとなり、したがって基体からP−BN膜を剥離
するとぎに基体の一部がP−BN成形体に付着すること
がなくなるし、P−BN成形体が層状剥離することがな
くなるので、目的とするP−BN成形体を高純度で、し
かも機械的強度の強いものとして得ることができるとい
う有利性が与えられる。
Therefore, in the production of the P-BN molded body according to the present invention, a mixed gas of 1 mole of boron halide and 2 to 10 moles of ammonia gas is heated at a pressure of 20 Torr or less and a temperature of 1,500 to 2.4 Torr.
P-B produced by chemical vapor phase reaction at 00℃
N is formed as a P-BN film on the substrate, and P-B is formed on the surface.
A base on which a N film is formed is prepared, and then boron halide and ammonia gas are deposited on this base by CVD using a known method.
The thickness of the P-BN film, which is made by making P-BN[ by the method and peeling this P-BNg from the substrate, or is pre-formed on this substrate, is too thin if it is less than 10 μm, and if it is less than 200 μm. If it is thicker, the laminated P-88 layer will be easily peeled off partially from the substrate, so the thickness should be 10 to 200 μm.
It may be within the range of . If this is done, the substrate will be P-B in advance.
Since it has NM, P-B provided on this substrate
The anchoring effect between the N film and the substrate is significantly reduced, so that when the P-BN film is peeled off from the substrate, part of the substrate will not adhere to the P-BN molded body, and the P-BN film will not be attached to the P-BN molded body. Since the BN molded body is prevented from delaminating, it is advantageous that the desired P-BN molded body can be obtained with high purity and high mechanical strength.

(実施例) つぎに本発明の実施例、比較例をあげる。(Example) Next, examples of the present invention and comparative examples will be given.

実施例 直径150mm、長さ200mmの円筒型グラファイト
製の基体を電気炉内に設置し、炉に真空ポンプを接続し
て炉内を1トールにまで減圧したのち、ここに三塩化ほ
う素IA/分とアンモニアガス1012 /分との混合
ガスを供給し、2.050℃で2時間反応させ、反応終
了後室温にまで冷却してから基体を取り出したところ、
この基体のグラファイト面にはP−BNが膜厚さ100
μmで被覆されていた。
Example A cylindrical graphite substrate with a diameter of 150 mm and a length of 200 mm was placed in an electric furnace. A vacuum pump was connected to the furnace to reduce the pressure inside the furnace to 1 Torr, and then boron trichloride IA/ A mixed gas of 1012 min and ammonia gas was supplied, and the reaction was carried out at 2.050°C for 2 hours. After the reaction was completed, the substrate was cooled to room temperature and then taken out.
The graphite surface of this substrate is coated with a P-BN film with a thickness of 100 mm.
It was covered with μm.

ついで、このP−BN″r:被覆された基体を上記と同
じ電気炉内に設置し、1トールまで減圧してからここに
三塩化ほう素1427分とアンモニアガス2fl/分と
の混合ガスを供給し、1,900℃で24時間反応させ
、反応終了後に窒素ガスを導入して冷却し、室温になっ
てから基体を取出したところ、この基体上にP−BNが
膜厚1,200μmで被着していたのでこのP−BNl
iを基体から剥離したところ、上記て得たP−BN被膜
を有する基体とこの上に形成されたP−BNルツボは容
易に剥離することができ、得られたP−BNルツボはそ
の表面付近にカーボンの付着は全くなく、またその内壁
面は第3図に示したように表面からP−BNとなフてい
て黒色物の付着は全くないものであったので、これはカ
ーボン除去の後処理が不要であったし、サンドベーパ処
理も必要がないので内壁面に研磨材の混入する心配もな
く、したがって品質的に高純度の内壁をもつP−BNル
ツボを得ることができた。
Next, this P-BN″r: coated substrate was placed in the same electric furnace as above, and after the pressure was reduced to 1 torr, a mixed gas of 1427 minutes of boron trichloride and 2 fl/minute of ammonia gas was added thereto. After the reaction was completed, nitrogen gas was introduced to cool the substrate, and the substrate was taken out after the temperature reached room temperature. This P-BNl
When i was peeled off from the substrate, the substrate with the P-BN coating obtained above and the P-BN crucible formed thereon could be easily peeled off, and the obtained P-BN crucible was peeled off near its surface. As shown in Figure 3, there was no carbon adhesion on the inner wall surface, and the P-BN surface had disappeared from the surface, and there was no black matter adhering to it. Since no treatment was necessary and no sand vapor treatment was necessary, there was no fear of abrasive material being mixed into the inner wall surface, and therefore a P-BN crucible with an inner wall of high quality quality could be obtained.

比較例 上記した実施例において使用したP−BNで被覆した基
体を用いるかわりに、P−BNで被覆していない円筒状
グラファイト製の基体を使用し、これに実施例1と同じ
ように炉内において1トールに減圧後に三塩化ほう素i
fl/分とアンモニアガス2fl/分との混合ガスを供
給し24時間反応させて基体上にP−BN膜を1,20
0μmの厚さに形成させ、冷却後傾から取出しP−BN
膜を剥離してP−BNルツボを作ったところ、このルツ
ボの内壁面は第4図に示したように表面からP−BNと
なるものであったが、これには表面に黒色のカーボン付
着物が多くみられ、このカーボン除去のためには800
℃の加熱炉(空気雰囲気)中で8時間の加熱処理をする
酸化処理が後処理として必要であったし、さらにサンド
ペーパー処理による研磨も必要であるために壁面に研磨
材の混入があり、品質的に不純物の多いものになるとい
う不利があった。
Comparative Example Instead of using the P-BN-coated substrate used in the above examples, a cylindrical graphite substrate not coated with P-BN was used, and this was placed in the furnace in the same manner as in Example 1. After reducing the pressure to 1 Torr at
A mixed gas of 1 fl/min and 2 fl/min of ammonia gas was supplied and reacted for 24 hours to form a P-BN film on the substrate at 1.2 fl/min.
Formed to a thickness of 0 μm and taken out from the cooling back tilt, P-BN
When the film was peeled off and a P-BN crucible was made, the inner wall of this crucible became P-BN from the surface as shown in Figure 4, but this had black carbon on the surface. Kimono is often seen, and 800 yen is required to remove this carbon.
As a post-treatment, oxidation treatment was required in which 8 hours of heat treatment was performed in a heating furnace (air atmosphere) at ℃, and polishing with sandpaper was also required, resulting in contamination of the walls with abrasives. In terms of quality, there was a disadvantage in that the product contained many impurities.

(発明の効果) 本発明は高純度で基体との剥離性のよいP−BN成形体
の製造方法に関するものであり、これは前記したように
ハロゲン化ほう素とアンモニアガスとからCVD法によ
って基体上にP−BN層を形成させたのち、該基体から
P−BN層を剥離するP−BN成形体の製造方法におい
て、基体上でハロゲン化ほう素とアンモニアガスとを圧
力20トール以下、1,500〜2.400℃の温度で
化学気相反応させて、基体上に膜厚10〜200μmの
P−BN層を形成させたものを基体として用いることを
特徴とするものであるが、これによれば基体が予じめP
−BN層で被覆されているので、このものは基体とその
上に形成されるP−BN層の間のアンカー効果が著しく
低減されたものとなり、したがってこの基体からP−B
N層を分離するときにP−BN成形体に基体の一部が付
着することがなくなり、P−BN成形体が層状剥離する
こともなくなるので、目的とするP−BN成形体を高純
度で、しかも機械的強度の大きいものとすることができ
るという有利性が与えられる。
(Effects of the Invention) The present invention relates to a method for producing a P-BN molded article with high purity and good releasability from a substrate. In a method for producing a P-BN molded body, in which a P-BN layer is formed on the substrate and then the P-BN layer is peeled from the substrate, boron halide and ammonia gas are heated on the substrate at a pressure of 20 torr or less, , 500 to 2. This is characterized in that a P-BN layer with a thickness of 10 to 200 μm is formed on the substrate by a chemical vapor phase reaction at a temperature of 500 to 2.400°C. According to P
- Since it is coated with a BN layer, this results in a significantly reduced anchoring effect between the substrate and the P-BN layer formed thereon, and therefore the P-BN layer is removed from this substrate.
When separating the N layer, a part of the substrate will not stick to the P-BN molded body, and the P-BN molded body will not peel off, so the desired P-BN molded body can be obtained with high purity. Moreover, it has the advantage of being able to have high mechanical strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はハロゲン化ほう素とアンモニアガスとのCVD
法によって得たP−BNの反応温度、反応圧力と物性と
の関係図、第2図はこのP−BNの反応温度と引張り強
度との関係図、第3図は実施例により得られたP−BN
成形体内面の結晶の構造を示す顕微鏡写真、第4図は比
較例で得られたP−BN成形体内面の結晶の構造を示す
顕微鏡写真を示したものである。 第  二31゛区1 □々先I贋(’C) 第1図 】麿(0C) 第2図
Figure 1 shows CVD of boron halide and ammonia gas.
Figure 2 is a diagram showing the relationship between reaction temperature and reaction pressure and physical properties of P-BN obtained by this method. Figure 3 is a diagram showing the relationship between reaction temperature and tensile strength of this P-BN. -BN
FIG. 4 is a photomicrograph showing the structure of crystals on the inner surface of the molded article. FIG. 4 is a photomicrograph showing the structure of the crystals on the inner surface of the P-BN molded article obtained in a comparative example. 231゛Ward 1 □Nibo I fake ('C) Figure 1] Maro (0C) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、ハロゲン化ほう素とアンモニアガスとから化学気相
反応法によって基体上に熱分解窒化ほう素層を形成させ
たのち、該基体から熱分解窒化ほう素膜を剥離する熱分
解窒化ほう素成形体の製造方法において、基体上でハロ
ゲン化ほう素とアンモニアガスとを圧力20トール以下
、1,500〜2,400℃の温度で化学気相反応させ
て、基体上に膜厚10〜200μmの熱分解窒化ほう素
層を形成させたものを基体として用いることを特徴とす
る熱分解窒化ほう素成形体の製造方法。
1. Pyrolytic boron nitride forming, in which a pyrolytic boron nitride layer is formed on a substrate using a chemical vapor phase reaction method from boron halide and ammonia gas, and then the pyrolytic boron nitride film is peeled from the substrate. In the method for producing a film, boron halide and ammonia gas are subjected to a chemical vapor phase reaction on the substrate at a pressure of 20 torr or less and a temperature of 1,500 to 2,400°C to form a film with a thickness of 10 to 200 μm on the substrate. 1. A method for producing a pyrolytic boron nitride molded article, characterized in that a material on which a pyrolytic boron nitride layer is formed is used as a substrate.
JP13463490A 1990-05-24 1990-05-24 Production of thermally decomposed boron nitride formed article Pending JPH0431309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13463490A JPH0431309A (en) 1990-05-24 1990-05-24 Production of thermally decomposed boron nitride formed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13463490A JPH0431309A (en) 1990-05-24 1990-05-24 Production of thermally decomposed boron nitride formed article

Publications (1)

Publication Number Publication Date
JPH0431309A true JPH0431309A (en) 1992-02-03

Family

ID=15132960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13463490A Pending JPH0431309A (en) 1990-05-24 1990-05-24 Production of thermally decomposed boron nitride formed article

Country Status (1)

Country Link
JP (1) JPH0431309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002357A (en) * 2015-06-09 2017-01-05 信越化学工業株式会社 Manufacturing method of pyrolytic boron nitride vessel, and pyrolytic boron nitride vessel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272505A (en) * 1985-09-26 1987-04-03 Denki Kagaku Kogyo Kk Preparation of article comprising pyrolytic boron nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272505A (en) * 1985-09-26 1987-04-03 Denki Kagaku Kogyo Kk Preparation of article comprising pyrolytic boron nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002357A (en) * 2015-06-09 2017-01-05 信越化学工業株式会社 Manufacturing method of pyrolytic boron nitride vessel, and pyrolytic boron nitride vessel

Similar Documents

Publication Publication Date Title
JPS61201607A (en) Product consisting of pyrolytically prepared boron nitride and its preparation
US5882807A (en) Jig for heat treatment and process for fabricating the jig
JP3212522B2 (en) Pyrolytic boron nitride crucible for molecular beam epitaxy
JP3638345B2 (en) Pyrolytic boron nitride container
JP2868328B2 (en) Method for producing large diameter silicon carbide single crystal ingot and silicon carbide single crystal for seed crystal
JPH0431309A (en) Production of thermally decomposed boron nitride formed article
JPS62153189A (en) Boron nitride coated crucible and production thereof
EP0457444B1 (en) Boat of boron nitride and its production
JPS62176981A (en) Boron nitride-coated crucible
JPS61251593A (en) Crucible for production of high-purity semiconductor single crystal
US5182149A (en) Boron nitride boat and process for producing it
JPH06191998A (en) Method for growing silicon carbide single crystal and device for growing the same
JP2708612B2 (en) Method for producing pyrolytic boron nitride compact
JPH0456766B2 (en)
JPH03146470A (en) Silicon carbide-based material
JPH0789776A (en) Production of boron nitride coated carbon material
JPH0784357B2 (en) Boron nitride coated crucible
JP4386663B2 (en) Carbon composite material
JPH0229629B2 (en)
JP3925884B2 (en) Method for coating SiC film
JP3739507B2 (en) Manufacturing method of heat treatment jig
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor
JPS61291484A (en) Graphite crucible
JP2582426B2 (en) Heat-resistant container made of pyrolytic boron nitride and method for producing the same
JP2815076B2 (en) Molecular beam source crucible for molecular beam epitaxy