JPH0798708B2 - Method for producing pyrolytic boron nitride coated article - Google Patents

Method for producing pyrolytic boron nitride coated article

Info

Publication number
JPH0798708B2
JPH0798708B2 JP20082487A JP20082487A JPH0798708B2 JP H0798708 B2 JPH0798708 B2 JP H0798708B2 JP 20082487 A JP20082487 A JP 20082487A JP 20082487 A JP20082487 A JP 20082487A JP H0798708 B2 JPH0798708 B2 JP H0798708B2
Authority
JP
Japan
Prior art keywords
coating layer
boron nitride
coated article
graphite
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20082487A
Other languages
Japanese (ja)
Other versions
JPS6445792A (en
Inventor
健次 門田
美満 川越
宏彰 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP20082487A priority Critical patent/JPH0798708B2/en
Publication of JPS6445792A publication Critical patent/JPS6445792A/en
Publication of JPH0798708B2 publication Critical patent/JPH0798708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、黒鉛を基材とした熱分解窒化ホウ素(以下P
−BNという)被覆物品、特に、黒鉛基材とP−BN被覆層
とが強固に付着したP−BN被覆物品の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a pyrolytic boron nitride based on graphite (hereinafter referred to as P
-BN), particularly to a method for producing a P-BN-coated article in which a graphite base material and a P-BN coating layer are firmly adhered to each other.

〔従来の技術〕 P−BNは高純度窒化ホウ素として、半導体や特殊合金製
造用のルツボなどに幅広く用いられている材料である。
たとえば、GaAsなどの化合物半導体単結晶の育成法の一
つである液体封止チヨクラルスキー法では、自立型P−
BNルツボが広く用いられている他、単結晶育成炉で用い
られる各種黒鉛部材から単結晶中への黒鉛不純物混入防
止のために、各種黒鉛部材表面にP−BN被覆を施すこと
が試みられている。
[Prior Art] P-BN is a material that is widely used as high-purity boron nitride in crucibles for manufacturing semiconductors and special alloys.
For example, in the liquid-sealed Czochralski method, which is one of the methods for growing a compound semiconductor single crystal such as GaAs, a self-standing P-
BN crucibles are widely used, and it has been attempted to apply P-BN coating to the surface of various graphite members in order to prevent the inclusion of graphite impurities in the single crystals from various graphite members used in single crystal growth furnaces. There is.

自立型P−BN及びP−BN被覆物品は、たとえば米国特許
第3,152,006号明細書において開示されているように、
三塩化ホウ素のようなハロゲン化ホウ素とアンモニアを
気体状原料とし、温度1,450〜2,300℃、圧力50Torr未満
の条件下、黒鉛などの適当な基材表面に窒化ホウ素を析
出させるいわゆる化学気相熱分解法により製造され、基
材表面に析出した窒化ホウ素から基材を除去すれば自立
型のP−BN物品が、基材をそのまま残せばP−BN被覆物
品が得られる。
Freestanding P-BN and P-BN coated articles are disclosed, for example, in U.S. Pat. No. 3,152,006.
So-called chemical vapor thermal decomposition that uses boron halides such as boron trichloride and ammonia as gaseous raw materials and deposits boron nitride on the surface of a suitable substrate such as graphite under the conditions of temperature of 1,450 to 2,300 ° C and pressure of less than 50 Torr. By removing the base material from the boron nitride deposited on the surface of the base material, which is produced by the method, a self-standing P-BN article is obtained, and when the base material is left as it is, a P-BN coated article is obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、従来の技術に従つて得られたP−BN被覆物品
を、化合物半導体単結晶育成炉内各種治具として用いる
と、加熱・冷却が繰り返えされる条件下で使用されるた
め、わずか数回はなはだしい場合には第1回目の加熱・
冷却サイクルでP−BN被覆層にクラツクが入つたり、P
−BN被覆層が基材から剥離・脱落してしまい使用不能と
なることがあり、その信頼性は著しく低いという欠点が
あつた。特開昭61−236672号公報にはP−BN被覆物品が
開示されているが、前述のような性能を有しものを製造
するための最適条件は示されていない。
However, when the P-BN-coated article obtained according to the conventional technique is used as various jigs in a compound semiconductor single crystal growth furnace, it is used under conditions where heating and cooling are repeated, and therefore, only a few If the heat is not enough, the first heating
In the cooling cycle, cracks may enter the P-BN coating layer,
-The BN coating layer may peel off from the base material and become unusable, and its reliability is extremely low. Japanese Unexamined Patent Publication (Kokai) No. 61-236672 discloses a P-BN coated article, but it does not show the optimum conditions for producing the article having the above-mentioned performance.

本発明者らは、上記欠点を解決することを目的として鋭
意研究を重ねた結果、黒鉛基材との付着力に優れ、加熱
・冷却を繰り返してもP−BN被覆層が剥離・脱落し難い
P−BN被覆物品とするには、黒鉛基材の嵩密度及び表面
粗さRmaxさらにはP−BN被覆層の厚さを特定の範囲にす
る必要があることを見出し、本発明に到達したものであ
る。
As a result of intensive studies aimed at solving the above-mentioned drawbacks, the present inventors have found that the P-BN coating layer does not easily peel off or fall off even if it is repeatedly heated and cooled because of its excellent adhesion to a graphite base material. The inventors have found that it is necessary to set the bulk density and surface roughness Rmax of the graphite base material and the thickness of the P-BN coating layer within a specific range in order to obtain a P-BN coated article, and have arrived at the present invention. Is.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、ハロゲン化ホウ素ガスとアンモニ
アガスとを原料とする化学気相熱分解法により黒鉛基材
表面に窒化ホウ素を被覆するにあたり、黒鉛基材とし
て、嵩密度が1.70〜1.95g/cm3で表面粗さRmaxが10μm
以上のものを用い、しかも熱分解窒化ホウ素被覆層の厚
さを10〜300μmとすることを特徴とする熱分解窒化ホ
ウ素被覆物品の製造方法である。
That is, the present invention, in coating the boron nitride on the surface of the graphite substrate by the chemical vapor pyrolysis method using boron halide gas and ammonia gas as raw materials, as the graphite substrate, bulk density 1.70 ~ 1.95 g / Surface roughness Rmax of 10 μm at cm 3
A method for producing a pyrolytic boron nitride-coated article, characterized in that the above-mentioned material is used and the thickness of the pyrolytic boron nitride-coated layer is 10 to 300 μm.

以下、さらに本発明を詳しく説明する。Hereinafter, the present invention will be described in more detail.

本発明において用いる黒鉛基材は、嵩密度1.70〜1.95g/
cm3で表面粗さRmaxが10μm以上でなければならない。
嵩密度がこれ以外の黒鉛基材であるとP−BN被覆層の黒
鉛基材への付着力が2.0 MPa未満となり、本発明が目的
とする付着力にすぐれたP−BN被覆物品を製造すること
ができない。また、表面粗さRmaxが10μmを下まわる黒
鉛基材を用いても、P−BN被覆層の黒鉛基材への付着力
を2.0MPa以上とすることができず、自然剥離に至ること
もある。基材表面粗さRmaxが10μm以上の場合、Rmaxが
大きくなるに従つて付着強度は大きくなる傾向にある。
基材表面粗さRmaxの値により、P−BN被覆層の付着力に
差が生ずる原因は、黒鉛基材表面でのアンカー効果の差
によるものと考えられる。
The graphite base material used in the present invention has a bulk density of 1.70 to 1.95 g /
The surface roughness Rmax in cm 3 must be 10 μm or more.
If the bulk density is a graphite base material other than this, the adhesive force of the P-BN coating layer to the graphite base material is less than 2.0 MPa, and a P-BN coated article excellent in the adhesive force aimed at by the present invention is produced. I can't. Further, even if a graphite base material having a surface roughness Rmax of less than 10 μm is used, the adhesion of the P-BN coating layer to the graphite base material cannot be 2.0 MPa or more, and spontaneous peeling may occur. . When the substrate surface roughness Rmax is 10 μm or more, the adhesive strength tends to increase as Rmax increases.
It is considered that the cause of the difference in the adhesive force of the P-BN coating layer depending on the value of the substrate surface roughness Rmax is due to the difference in the anchor effect on the surface of the graphite substrate.

P−BN被覆層の厚さは、10〜30μm好ましくは50〜150
μmの範囲でなければならない。厚さが10μm未満とな
るとP−BN被覆層の厚さが薄いために基材部分の黒鉛が
P−BN被覆膜を拡散して外部に出やすくなり、加熱・冷
却の耐サイクル性が低下する。また、厚さが300μmを
越えると、P−BN被覆層中の残留応力が増大してP−BN
被覆層の自然剥離が起きやすくなる。
The thickness of the P-BN coating layer is 10 to 30 μm, preferably 50 to 150
It must be in the μm range. If the thickness is less than 10 μm, the thickness of the P-BN coating layer is thin, and the graphite of the base material easily diffuses out of the P-BN coating film to the outside, reducing the cycle resistance of heating / cooling. To do. If the thickness exceeds 300 μm, the residual stress in the P-BN coating layer increases and P-BN
Natural peeling of the coating layer is likely to occur.

化学気相熱分解法を行う条件としては、圧力は通常の50
Torr以下とし析出温度は特に1,800〜1,930℃の範囲にす
ることが好ましい。析出温度が1,800℃未満となると生
成するP−BN被覆層の結晶性が低くなり、被覆層自身の
強度が低下するので好ましくない。また、析出温度が1,
930℃を越えると黒鉛基材とP−BN被覆層の界面でB4Cの
生成が始まり付着性の均一性に問題が生ずる。最も好ま
しい温度は1,800〜1,850℃である。さらに、P−BN被覆
層の結晶性をコントロールし、被覆層自身の強度を強く
するためにP−BN被覆層の析出温度を300μm/hr以下好
ましくは150μm/hrとすることが好ましい。化学気相熱
分解を好ましい条件、すなわち、圧力0.5〜5Torr、析出
温度1,800〜1,850℃、析出温度150μm/hr以下で行い、
さらにP−BN被覆層の厚さを50〜150μmとすることに
より、P−BN被覆層の強度はさらに高くなり、しかも付
着力を強固かつ安定して得ることができるようになる。
As a condition for carrying out the chemical vapor pyrolysis method, the pressure is usually 50
It is preferable that the temperature is not higher than Torr and the deposition temperature is in the range of 1,800 to 1,930 ° C. If the deposition temperature is less than 1,800 ° C, the crystallinity of the P-BN coating layer formed will be low, and the strength of the coating layer itself will be reduced, such being undesirable. Also, the deposition temperature is 1,
If it exceeds 930 ° C, B 4 C will start to form at the interface between the graphite base material and the P-BN coating layer, causing a problem in the uniformity of adhesion. The most preferred temperature is 1800 to 1850 ° C. Further, in order to control the crystallinity of the P-BN coating layer and increase the strength of the coating layer itself, it is preferable to set the deposition temperature of the P-BN coating layer to 300 μm / hr or less, preferably 150 μm / hr. Chemical vapor phase pyrolysis is carried out under preferable conditions, that is, a pressure of 0.5 to 5 Torr, a deposition temperature of 1,800 to 1,850 ° C., and a deposition temperature of 150 μm / hr or less,
Further, by setting the thickness of the P-BN coating layer to 50 to 150 μm, the strength of the P-BN coating layer is further increased, and the adhesive force can be obtained firmly and stably.

本発明の製法によるP−BN被覆物品は、P−BN被覆層の
黒鉛基材への付着力が2.0MPa以上場合によつては10.0MP
a以上と強く、しかもP−BN被覆層の強度も高いので、
加熱・冷却を繰り返しても、P−BN被覆層にクラツク・
剥離・脱落を生ぜず、P−BN被覆層の黒鉛基材への付着
強度の低下も少ないという特長を有する。
The P-BN coated article produced by the method of the present invention has an adhesion of the P-BN coating layer to the graphite base material of 2.0 MPa or more, that is, 10.0 MPa.
Since it is as strong as a or more and the strength of the P-BN coating layer is also high,
Even if heating and cooling are repeated, the P-BN coating layer will crack.
It has the characteristics that it does not peel off or fall off, and the adhesion strength of the P-BN coating layer to the graphite base material is not significantly reduced.

〔実施例〕〔Example〕

実施例1. 内径15cm、長さ45cmの黒鉛製円筒型反応管を、抵抗加熱
式の真空加熱炉内に設け、反応管の一方には2本のP−
BN製ガス導入管を同軸になるように接続した。反応管内
に0.7cm×4cm×15cmの表面粗さRmaxを変えた嵩密度1.90
g/cm3の黒鉛基材を置き、炉を10-2Torrまで排気した
後、析出温度まで加熱した。2.5Torrの圧力下窒素ガス
で希釈した三塩化ホウ素とアンモニアを反応室に導入
し、黒鉛基材上にP−BNを100μmの厚さまで析出させ
てP−BN被覆物品の試料を製造した。このようにして得
た試料は、一部を付着強度の測定に用い、残りを窒素雰
囲気中で温度1,800℃に加熱した後、室温まで冷却する
テストを繰り返し、毎回注意深く試料の表面状態を観察
するとともに、100回終了後付着強度の測定を行つた。
表1にその実験結果を示す。比較例は、付着強度が弱
く、加熱・冷却の耐サイクル性が非常に弱く、実験番号
9にいたつては膜析出後の冷却で剥離が生じた。
Example 1. A graphite cylindrical reaction tube having an inner diameter of 15 cm and a length of 45 cm was provided in a resistance heating type vacuum heating furnace, and two P- tubes were provided on one side of the reaction tube.
The BN gas introduction pipe was connected coaxially. Bulk density 1.90 with surface roughness Rmax of 0.7 cm × 4 cm × 15 cm changed in the reaction tube
A graphite substrate of g / cm 3 was placed, the furnace was evacuated to 10 -2 Torr, and then heated to the precipitation temperature. Boron trichloride and ammonia diluted with nitrogen gas were introduced into the reaction chamber under a pressure of 2.5 Torr, and P-BN was deposited on the graphite substrate to a thickness of 100 μm to prepare a sample of P-BN-coated article. A part of the sample thus obtained is used for measuring the adhesive strength, and the rest is heated to a temperature of 1,800 ° C in a nitrogen atmosphere, and then cooled to room temperature. Repeat the test, and carefully observe the surface condition of the sample each time. At the same time, the adhesion strength was measured after 100 times.
Table 1 shows the experimental results. In the comparative example, the adhesion strength was weak and the cycle resistance of heating / cooling was very weak, and in Experiment No. 9, peeling occurred during cooling after film deposition.

実施例2. 実施例1と同一の反応管内に表面粗さRmaxを20μmとし
た嵩密度の異なる黒鉛基材を置いたこと以外は実施例1
と同様にしてP−BN被覆物品を製造し同様な測定を行つ
た。その結果を表2に示す。
Example 2 Example 1 except that graphite substrates having different bulk densities with a surface roughness Rmax of 20 μm were placed in the same reaction tube as in Example 1.
A P-BN-coated article was manufactured in the same manner as above and the same measurement was performed. The results are shown in Table 2.

比較例は、付着強度が弱く、加熱・冷却の耐サイクル性
が非常に弱く、実験番号18にいたつては析出直後にクラ
ツクを生じた。
In the comparative example, the adhesion strength was weak, the cycle resistance to heating and cooling was very weak, and in Experiment No. 18, cracking occurred immediately after precipitation.

実施例3. 実施例1と同一の反応管内に表面粗さRmax20μm、嵩密
度1.90g/cm3黒鉛基材を置き、析出速度150μm/hrの条件
を一定として膜厚を変えたこと以外は実施例1と同様に
してP−BN被覆物品を製造し同様な測定を行つた。その
結果を表3に示す。膜厚が300μmを越える比較例で
は、付着強度が低下し、膜析出後の冷却で剥離が生じて
いる。
Example 3 The same procedure as in Example 1 was carried out except that a graphite substrate with a surface roughness Rmax of 20 μm and a bulk density of 1.90 g / cm 3 was placed in the same reaction tube, and the deposition rate was 150 μm / hr, and the film thickness was changed. A P-BN coated article was manufactured in the same manner as in Example 1 and the same measurement was performed. The results are shown in Table 3. In the comparative example in which the film thickness exceeds 300 μm, the adhesion strength is lowered and peeling occurs due to cooling after film deposition.

〔発明の効果〕 実施例からも明らかように、本発明によつて製造された
P−BN被覆物品は、P−BN被覆層の強度が高く、黒鉛基
材への付着強度が2.0MPa以上と強く、繰り返しの加熱・
冷却によつてもP−BN被覆層にクラツクが生じたり、P
−BN被覆層が剥離したりすることがない。しかも、繰り
返しの加熱・冷却によつてもP−BN被覆層の黒鉛基材へ
の付着強度がほとんど低下しないため、長期にわたつて
熱サイクル下で安定して用いることができる。特に化合
物半導体単結晶育成炉内各種治具に長期にわたり繰り返
し使用することができる。
[Effect of the invention] As is clear from the examples, the P-BN coated article produced according to the present invention has a high strength of the P-BN coating layer and an adhesion strength to the graphite substrate of 2.0 MPa or more. Strong, repetitive heating
Cracking may occur in the P-BN coating layer due to cooling, and P
-The BN coating layer does not peel off. Moreover, even if the heating and cooling are repeated, the adhesion strength of the P-BN coating layer to the graphite base material is hardly reduced, so that the P-BN coating layer can be stably used under a thermal cycle for a long period of time. In particular, it can be repeatedly used for a long period of time in various jigs in a compound semiconductor single crystal growing furnace.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ハロゲン化ホウ素ガスとアンモニアガスと
を原料とする化学気相熱分解法により黒鉛基材表面に窒
化ホウ素を被覆するにあたり、黒鉛基材として、嵩密度
が1.70〜1.95g/cm3で表面粗さRmaxが10μm以上のもの
を用い、しかも熱分解窒化ホウ素被覆層の厚さを10〜30
0μmとすることを特徴とする熱分解窒化ホウ素被覆物
品の製造方法。
1. When coating a graphite substrate surface with boron nitride by a chemical vapor pyrolysis method using boron halide gas and ammonia gas as raw materials, the graphite substrate has a bulk density of 1.70 to 1.95 g / cm 3. 3 with a surface roughness Rmax of 10 μm or more, and the thickness of the pyrolytic boron nitride coating layer is 10 to 30
A method for producing a pyrolytic boron nitride-coated article, which has a thickness of 0 μm.
JP20082487A 1987-08-13 1987-08-13 Method for producing pyrolytic boron nitride coated article Expired - Lifetime JPH0798708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20082487A JPH0798708B2 (en) 1987-08-13 1987-08-13 Method for producing pyrolytic boron nitride coated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20082487A JPH0798708B2 (en) 1987-08-13 1987-08-13 Method for producing pyrolytic boron nitride coated article

Publications (2)

Publication Number Publication Date
JPS6445792A JPS6445792A (en) 1989-02-20
JPH0798708B2 true JPH0798708B2 (en) 1995-10-25

Family

ID=16430815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20082487A Expired - Lifetime JPH0798708B2 (en) 1987-08-13 1987-08-13 Method for producing pyrolytic boron nitride coated article

Country Status (1)

Country Link
JP (1) JPH0798708B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293032A (en) * 1992-02-10 1994-03-08 Sydney Urshan Digital data optical recording and playback system
US5319182A (en) * 1992-03-04 1994-06-07 Welch Allyn, Inc. Integrated solid state light emitting and detecting array and apparatus employing said array
JP2577157B2 (en) * 1992-03-23 1997-01-29 日本碍子株式会社 Fireproof material for ceramic firing
KR100585471B1 (en) * 1998-03-31 2006-06-02 다카라 바이오 가부시키가이샤 Process for producing lysosphingolipids
CN101965643A (en) * 2007-12-31 2011-02-02 拉斐尔·纳坦·克雷曼 High efficiency silicon-based solar cells
CN111945129A (en) * 2020-07-22 2020-11-17 山东国晶新材料有限公司 Protection method for graphite component of vacuum furnace

Also Published As

Publication number Publication date
JPS6445792A (en) 1989-02-20

Similar Documents

Publication Publication Date Title
JPH0456765B2 (en)
US5882807A (en) Jig for heat treatment and process for fabricating the jig
JP4071919B2 (en) SiC-coated graphite member and method for producing the same
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JPH0798708B2 (en) Method for producing pyrolytic boron nitride coated article
US5759646A (en) Vessel of pyrolytic boron nitride
JP2000302576A (en) Graphite material coated with silicon carbide
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JPS61236672A (en) Pyrolytic boron nitride coated products and manufacture
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JP2684106B2 (en) Graphite base material for ceramic coating and internal parts for CVD furnace
JPS6374995A (en) Graphite material for epitaxy
JPH0686352B2 (en) Crucible for manufacturing high-purity semiconductor single crystal
JPS6272505A (en) Preparation of article comprising pyrolytic boron nitride
JPH1116991A (en) Carbon support for semiconductor manufacturing apparatus
JP2507739B2 (en) Pyrolytic boron nitride container
JPH03257089A (en) Silicon carbide-coated graphite product and its production
JPH053410B2 (en)
JPH0154432B2 (en)
JP3925884B2 (en) Method for coating SiC film
JPH1135391A (en) Silicon carbide-coated susceptor
JP2708612B2 (en) Method for producing pyrolytic boron nitride compact
JPH0815143B2 (en) Method for manufacturing 3C-SiC semiconductor device
JP2588540B2 (en) Pyrolytic boron nitride container
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor