JPS61251501A - Reformer - Google Patents

Reformer

Info

Publication number
JPS61251501A
JPS61251501A JP60092557A JP9255785A JPS61251501A JP S61251501 A JPS61251501 A JP S61251501A JP 60092557 A JP60092557 A JP 60092557A JP 9255785 A JP9255785 A JP 9255785A JP S61251501 A JPS61251501 A JP S61251501A
Authority
JP
Japan
Prior art keywords
gas
reforming reaction
combustion
catalyst layer
combustion catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60092557A
Other languages
Japanese (ja)
Inventor
Tomoki Eguchi
江口 知己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN FUEL TECHNOL CORP
Toshiba Corp
Original Assignee
JAPAN FUEL TECHNOL CORP
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN FUEL TECHNOL CORP, Toshiba Corp filed Critical JAPAN FUEL TECHNOL CORP
Priority to JP60092557A priority Critical patent/JPS61251501A/en
Publication of JPS61251501A publication Critical patent/JPS61251501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:A mixture of exhaust gas from fuel cells and combustible gas is used and a reformer is composed of a high-temperature combustion catalyst bed, a low-temperature combustion catalyst bed and a heat-transfer packed bed, whereby the volume of the combustion catalysts are reduced to lower the costs, and the formation of hot spots is prevented. CONSTITUTION:The feedstock gas 5 is converted into reformed gas by passing through an inert thermoconductive packed bed 3 and the reformation catalyst bed 2 and the reformed gas is outlet as reformed gas 7 after passing through the inner tube 6. In the meantime, a gas mixture 4 for heating the reforming reactions, which is composed of exhaust air and combustible gas, is passed through the high-temperature combustion catalyst bed 10, the thermoconductive packed bed 9 and the low-temperature combustion catalyst bed 11 and let out as an exhaust gas. Thus, most part of the combustible gas is burnt in the high- temperature combustion catalyst layer 10 and the combustion is completed in the low- temperature combustion catalyst bed 11 which is provided on the place where the combustion gas becomes relatively low in its temperature. Thus, the amount of the catalysts necessary for combustion is saved by an amount corresponding to the thermoconductive packed bed 9. Moreover, since oxidative combustion does not occur in the packed bed 9, hot spots, namely local heating in the reforming tube are not formed by uneven packing of the catalyst.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は通常の空気よりも低い酸素濃度の空気(以下、
排空気と称する)を用いて可燃性ガスを燃焼触媒の存在
下で燃焼させ、その燃焼熱を改質反応に必要な反応熱と
して供給することにより改質反応を行なう改質装置の改
良に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention provides air with a lower oxygen concentration than normal air (hereinafter referred to as
This invention relates to an improvement in a reformer that performs a reforming reaction by burning combustible gas in the presence of a combustion catalyst using exhaust air (referred to as exhaust air) and supplying the combustion heat as the reaction heat necessary for the reforming reaction.

〔発明の技術的背景〕[Technical background of the invention]

近年、その開発、実用化の研究に期待と関心が寄せられ
てきている燃料電池は、燃料の有する化学エネルギーを
電気化学プロセスで酸化させることにより、酸化反応に
伴って放出されるエネルギーを直接電気エネルギーに変
換する装置である。
In recent years, research into the development and practical application of fuel cells has attracted much attention and interest.By oxidizing the chemical energy of fuel through an electrochemical process, the energy released during the oxidation reaction can be directly converted into electricity. It is a device that converts energy into energy.

この燃料電池を用いた発電システムは、比較的小さな規
模でも発電の熱効率が40〜50%にも達し、新鋭火力
発電をはるかにしのぐと期待されている。また、近年大
きな社会問題になっている分書要因である硫黄酸化物、
窒素酸化物の排出が極めて少ない、さらに、発電システ
ム内に燃焼サイクルを含まないことから、大量の冷却水
を必要としない、振動音が小さい等、原理的に高いエネ
ルギー変換効率が期待できると共に、騒音・排ガス等の
環境問題が少なく、さらにはまた負荷変動に対して応答
性が良い等の特徴がある。そして、この様な燃料電池を
用いた発電システムにおいては、システムの総合効率を
高めるための方法として、燃料電池での電気化学的反応
に使用した後に排出される排空気を、燃料電池用の燃料
である水素製造を目的とした改質装置における改質反応
の加熱源用空気として利用することが提案されてきてい
る(特開昭57−36784号公報)。
A power generation system using this fuel cell has a thermal efficiency of 40 to 50% even on a relatively small scale, and is expected to far exceed new thermal power generation. In addition, sulfur oxides, which are a major social problem in recent years,
Emissions of nitrogen oxides are extremely low, and since the power generation system does not include a combustion cycle, it does not require large amounts of cooling water, generates low vibration noise, and can be expected to have high energy conversion efficiency in principle. It has the characteristics of less environmental problems such as noise and exhaust gas, and also has good responsiveness to load fluctuations. In power generation systems using such fuel cells, as a way to increase the overall efficiency of the system, exhaust air that is exhausted after being used for the electrochemical reaction in the fuel cell is used as fuel for the fuel cell. It has been proposed to use air as a heating source for a reforming reaction in a reformer for producing hydrogen (Japanese Patent Laid-Open No. 57-36784).

ところで、通常の空気を改質反応の加熱源用空気として
利用する改質装置には、CH4,82等の可燃性ガスを
通常の空気を用いて燃焼触媒の存在下で燃焼させ、その
燃焼熱を改質反応に必要な反応熱として供給することに
より改質反応を行なう構成のものが採用されている(特
開昭56−90892号公報)。つまりこの種の改質装
置は、一端部が密封されると共に内部に改質反応触媒層
が設けられた断面環状の改質反応管を改質器容器の内部
に少なくとも一本配設し、かつこの改質反応管の外側に
上記改質反応触媒層全体を覆うように燃焼触媒を充填し
て燃焼触媒層を形成し、さらに排空気および可燃性ガス
の混合ガスを改質反応管の一端部より導入しその外側の
燃焼触媒層を通して他端部より外部へ流出させると共に
、水蒸気を混合した改質用の原料ガスを改質反応管の他
端部より流入させ改質反応触媒層を通して改質ガスに改
質し、これをその一端部より内側管を通して他端部より
流出させるように構成されている。
By the way, in a reformer that uses ordinary air as the heating source air for the reforming reaction, combustible gas such as CH4, 82 is combusted using ordinary air in the presence of a combustion catalyst, and the combustion heat is A structure has been adopted in which the reforming reaction is carried out by supplying the reaction heat necessary for the reforming reaction (Japanese Patent Laid-Open No. 56-90892). In other words, this type of reformer has at least one reforming reaction tube with an annular cross section that is sealed at one end and is provided with a reforming reaction catalyst layer inside the reformer container, and A combustion catalyst is filled on the outside of this reforming reaction tube so as to cover the entire reforming reaction catalyst layer to form a combustion catalyst layer, and a mixed gas of exhaust air and combustible gas is further supplied to one end of the reforming reaction tube. At the same time, raw material gas for reforming mixed with water vapor is introduced from the other end of the reforming reaction tube and is reformed through the reforming reaction catalyst layer. It is configured to reform into a gas, which is passed through an inner tube from one end of the tube and flows out from the other end.

[背景技術の問題点] しかしながら、このような従来の構成の改質装置におい
ては、燃焼触媒は改質反応管内部の改質反応触媒層全体
を覆うように充填する必要があることから、その分だけ
使用する燃焼触媒量が多くなりコスト的に高いものとな
る。また、この種の燃焼触媒により酸化反応を起こさせ
ると、燃焼触媒の充填密度の不均一性が原因となって酸
化反応が局部的に起こり、ホットスポットが生成し易く
改質反応が効果的に行なわれないという問題がある。特
に、改質反応管の周囲でかかるホットスポットが生ずる
と、改質反応管の管壁が他の部分に比べて高い温度に加
熱されトラブルの原因となる。
[Problems in the Background Art] However, in a reformer with such a conventional configuration, the combustion catalyst needs to be filled so as to cover the entire reforming reaction catalyst layer inside the reforming reaction tube. The amount of combustion catalyst used increases accordingly, resulting in high costs. In addition, when an oxidation reaction is caused by this type of combustion catalyst, the oxidation reaction occurs locally due to the non-uniformity of the packing density of the combustion catalyst, which tends to generate hot spots and makes the reforming reaction less effective. The problem is that it is not done. In particular, if such a hot spot occurs around the reforming reaction tube, the wall of the reforming reaction tube will be heated to a higher temperature than other parts, causing trouble.

[発明の目的〕 本発明は上記のような問題を解決するために成されたも
ので、その目的は燃焼触媒の使用量を少なくしてコスト
の低減を図ると共に、燃焼触媒充填の不均一性からくる
ホットスポットの生成を確実に防止して改質反応を効果
的に行なうことが可能な信頼性の高い改質装置を提供す
ることにある。
[Object of the Invention] The present invention was made in order to solve the above-mentioned problems, and its purpose is to reduce the amount of combustion catalyst used to reduce costs, and to solve the problem of non-uniformity in the filling of the combustion catalyst. It is an object of the present invention to provide a highly reliable reforming device that can reliably prevent the formation of hot spots caused by hot spots and carry out the reforming reaction effectively.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、一端部が密封さ
れると共に内部に改質反応触媒層が設けられた改質反応
管を改質器容器の内部に少なくとも一本配設し、通常の
空気よりも低い酸素濃度の空気および可燃性ガスの混合
ガスを上記改質反応管の一端部より導入しその外側を通
して他端部より外部へ流出させると共に、改質用の原料
ガスを上記改質反応管の他端部より流入させ改質反応触
媒層を通してその一端部より内側管を通して他端部より
流出させるように構成し、さらに上記改質反応管外部の
混合ガス導入側には伝熱充填層を介して高温燃焼触媒層
を形成し、かつ上記改質反応管外側の混合ガス流出側に
は低温燃焼触媒層を形成するようにしたことを特徴とす
る。
In order to achieve the above object, the present invention disposes at least one reforming reaction tube inside a reformer container, one end of which is sealed and a reforming reaction catalyst layer is provided inside, and A mixed gas of air with an oxygen concentration lower than that of air and a combustible gas is introduced from one end of the reforming reaction tube and flows out from the other end through the outside of the tube, and the raw material gas for reforming is introduced into the reforming reaction tube. The structure is such that the gas flows in from the other end of the reaction tube, passes through the reforming reaction catalyst layer, passes through the inner tube from one end, and flows out from the other end. Furthermore, a heat transfer filling is provided on the mixed gas introduction side outside the reforming reaction tube. A high-temperature combustion catalyst layer is formed through the layers, and a low-temperature combustion catalyst layer is formed on the mixed gas outflow side outside the reforming reaction tube.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して具体的
に説明する。第1図は、本発明による改質装置の構成例
を示すもので、図では二重管構造の一本の改質反応管に
本発明を適用した場合を示している。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. FIG. 1 shows an example of the configuration of a reforming apparatus according to the present invention, and the figure shows a case where the present invention is applied to a single reforming reaction tube with a double-tube structure.

図において、1は一端部が密封されると共に内部に改質
反応触媒層2および不活性伝熱充填材3が設けられた改
質反応管で、図示しない改質器容器の内部に配設されて
いる。また、4は改質反応に必要な排空気および可燃性
ガスの混合ガスで、この混合ガス4を上記改質反応管1
の一端部より導入しその外側を通して他端部より外部へ
流出させるようにしている。ざらに、5はCH4。
In the figure, reference numeral 1 denotes a reforming reaction tube that is sealed at one end and is provided with a reforming reaction catalyst layer 2 and an inert heat transfer filler 3 inside, and is arranged inside a reformer container (not shown). ing. Further, 4 is a mixed gas of exhaust air and combustible gas necessary for the reforming reaction, and this mixed gas 4 is transferred to the reforming reaction tube 1.
It is introduced from one end, passes through the outside, and flows out from the other end. Zarani, 5 is CH4.

LPG等の炭化水素あるいはアルコール等に水蒸気を混
合してなり、改質反応をさせるための原料ガスで、この
原料ガス5を上記改質反応管1の他端部より流入させ、
上記不活性伝熱充填材3を経由して改質反応触媒層2で
改質ガスに改質し、これをその一端部より内側管6を通
し改質ガス7として他端部より流出させるようにしてい
る。なお上記で、内側管6は改質反応により得られた改
質ガスを取出すもので、通゛常その内部にプラグ管を挿
入して内側管6との間の間隔を小さくし、上記改質ガス
7から改質反応触媒層2および不活性伝熱充填材3への
伝熱を促進させるようにしており、第2図にその例を示
している。第2図において8がプラグ管で、内側管6と
プラグ管8の管壁間を流れる改質ガス7の流速を速める
ことにより、改質ガス7のもつ顕熱を改質反応触媒層2
.不活性伝熱充填材3の中を流れる原料ガス5に与えて
改質反応を促進するものである。
This raw material gas is made by mixing water vapor with hydrocarbon such as LPG or alcohol, and is used for a reforming reaction, and this raw material gas 5 is introduced from the other end of the reforming reaction tube 1,
The reformed gas is reformed in the reforming reaction catalyst layer 2 via the inert heat transfer filler 3, and the reformed gas is passed through the inner pipe 6 from one end thereof and flows out from the other end as reformed gas 7. I have to. In the above, the inner pipe 6 is used to take out the reformed gas obtained by the reforming reaction, and usually a plug pipe is inserted inside it to reduce the distance between the inner pipe 6 and the reformed gas. Heat transfer from the gas 7 to the reforming reaction catalyst layer 2 and the inert heat transfer filler 3 is promoted, an example of which is shown in FIG. In FIG. 2, 8 is a plug pipe, and by increasing the flow rate of the reformed gas 7 flowing between the inner pipe 6 and the wall of the plug pipe 8, the sensible heat of the reformed gas 7 is transferred to the reforming reaction catalyst layer.
.. It is applied to the raw material gas 5 flowing through the inert heat transfer filler 3 to promote the reforming reaction.

一方、上記改質反応管1外側の混合ガス4導入側には、
改質反応管1の端部からその外側の一部にかけて伝熱促
進材を充填してなる伝熱充填層9を介して高温燃焼触媒
層10を形成し、また上記改質反応管1外側の混合ガス
4流出側つまり伝熱充填層9の混合ガス4反導入側の、
上記改質反応触媒層2を覆わない位置(不活性伝熱充填
材3の充填位置に対応した位置)には低温燃焼触媒層1
1を形成している。ここで、高温燃焼触媒層10の燃焼
触媒としては比較的高温に耐え得る触媒を用い、一種類
または数種類のものを必要に応じて混合または層状に積
んで形成する。これにより、上記混合ガス4を高温燃焼
触媒層1oおよび低温燃焼触媒層11の存在下で燃焼さ
せ、これを燃焼排ガス12として外部へ流出させるよう
にしている。なお上記で、不活性伝熱充填材3は低温燃
焼触媒層11で燃焼した燃焼排ガス12の熱を改質反応
管1に導入される原料ガス5に与えてこれを加熱し、改
質反応触媒層2に導入するときの温度を高める役目を有
するものである。
On the other hand, on the mixed gas 4 introduction side outside the reforming reaction tube 1,
A high-temperature combustion catalyst layer 10 is formed from the end of the reforming reaction tube 1 to a part of the outside thereof through a heat transfer packed layer 9 filled with a heat transfer promoting material. The mixed gas 4 outflow side, that is, the mixed gas 4 opposite introduction side of the heat transfer packed bed 9,
A low-temperature combustion catalyst layer 1 is located at a position that does not cover the reforming reaction catalyst layer 2 (a position corresponding to the filling position of the inert heat transfer filler 3).
1 is formed. Here, as the combustion catalyst of the high-temperature combustion catalyst layer 10, a catalyst that can withstand relatively high temperatures is used, and one type or several types of catalysts may be mixed or stacked in layers as necessary. Thereby, the mixed gas 4 is combusted in the presence of the high-temperature combustion catalyst layer 1o and the low-temperature combustion catalyst layer 11, and is allowed to flow out as combustion exhaust gas 12 to the outside. In the above, the inert heat transfer filler 3 gives the heat of the combustion exhaust gas 12 combusted in the low temperature combustion catalyst layer 11 to the raw material gas 5 introduced into the reforming reaction tube 1, heats it, and converts it into a reforming reaction catalyst. It has the role of increasing the temperature when introduced into layer 2.

かかる構成の改質装置において、排空気および可燃性ガ
スの混合ガス4は改質反応管1の一端部より高温燃焼触
媒層10に導入され、この触媒の存在下で排空気により
可燃性ガスを大部分燃焼させる。この燃焼ガスは、伝熱
充填層9を通して低温燃焼触媒層11に導入され、この
触媒の存在下で上記可燃性ガスの未燃分を完全に燃焼さ
せた後に、燃焼排ガス12として外部へ排出される。一
方、CH4、LPG等の炭化水素あるいはアルコール等
に水蒸気を混合してなる原料ガス5は上記改質反応管1
の他端部より導入され、不活性伝熱充填材3で上記燃焼
ガスの燃焼熱により予熱して改質反応触媒層2に導入さ
れる。そしてこの際に、上記高温燃焼触媒層10での燃
焼熱が伝熱充填層9を通し、改質反応に必要な反応熱と
して改質反応触媒層2に供給されることにより、上記原
料ガス5が改質反応によって改質ガスに改質され、この
改質ガス7は改質反応管1の内部の内側管6を通して他
端部より排出されることになる。
In the reformer having such a configuration, a mixed gas 4 of exhaust air and flammable gas is introduced into the high-temperature combustion catalyst layer 10 from one end of the reforming reaction tube 1, and in the presence of this catalyst, the exhaust air converts combustible gas. Burn most of it. This combustion gas is introduced into the low-temperature combustion catalyst layer 11 through the heat transfer packed bed 9, and after completely burning the unburned portion of the combustible gas in the presence of this catalyst, it is discharged to the outside as combustion exhaust gas 12. Ru. On the other hand, the raw material gas 5, which is a mixture of hydrocarbons such as CH4, LPG, or alcohol, and water vapor, is supplied to the reforming reaction tube 1.
It is introduced from the other end, preheated by the combustion heat of the combustion gas with the inert heat transfer filler 3, and introduced into the reforming reaction catalyst layer 2. At this time, the combustion heat in the high-temperature combustion catalyst layer 10 passes through the heat transfer packed bed 9 and is supplied to the reforming reaction catalyst layer 2 as reaction heat necessary for the reforming reaction, so that the raw material gas 5 is reformed into reformed gas by a reforming reaction, and this reformed gas 7 is discharged from the other end through the inner tube 6 inside the reforming reaction tube 1.

この場合、上記改質反応管1外側の混合ガス4導入側に
は、改質反応管1の端部からその外側の一部にかけて伝
熱促進材を充填してなる伝熱充填層9を介して高温燃焼
触媒層10を形成し、また上記改質反応管1外側の混合
ガス4流出側つまり伝熱充填層9の混合ガス4反導入側
の改質反応触媒層2を覆わない位置には低温燃焼触媒1
111を形成していることから、可燃性ガスの大部分を
高温燃焼触媒層10で燃焼させ、燃焼ガスが比較的低温
(500〜600℃程度)となる部所に形成された低温
燃焼触媒層11で、上記可燃性ガスの燃焼反応を完結さ
せることができる。これにより、改質反応に必要とされ
る燃焼触媒の量を、上記伝熱充填層9に相当する分だけ
省略することが可能となる。また、伝熱充填層9での酸
化燃焼は行なわれないことから、従来のような燃焼触媒
充填の不均一性による改質反応管1の局部加熱つまりホ
ットスポットの形成を排除することができ、極めて効果
的な改質反応を行なうことが可能となる。
In this case, the mixed gas 4 introduction side outside the reforming reaction tube 1 is provided with a heat transfer packed layer 9 filled with a heat transfer accelerator from the end of the reforming reaction tube 1 to a part of the outside thereof. to form a high-temperature combustion catalyst layer 10, and in a position that does not cover the reforming reaction catalyst layer 2 on the mixed gas 4 outflow side of the reforming reaction tube 1, that is, on the mixed gas 4 inlet side of the heat transfer packed bed 9. Low temperature combustion catalyst 1
111, most of the combustible gas is combusted in the high temperature combustion catalyst layer 10, and the low temperature combustion catalyst layer is formed at a location where the combustion gas is at a relatively low temperature (about 500 to 600 degrees Celsius). At step 11, the combustion reaction of the combustible gas can be completed. Thereby, the amount of combustion catalyst required for the reforming reaction can be omitted by the amount corresponding to the heat transfer packed bed 9. In addition, since oxidative combustion is not performed in the heat transfer packed bed 9, it is possible to eliminate local heating of the reforming reaction tube 1, that is, the formation of hot spots, due to non-uniformity in the charging of the combustion catalyst as in the conventional case. It becomes possible to carry out an extremely effective reforming reaction.

さらに、高温燃焼触媒層10が改質反応の進展により時
間と共にその活性を仮に失ったとしても、低温燃焼触媒
層11によって触媒燃焼を行なわせることができ、燃焼
排ガス12の中に未燃分が残ることを確実に防止するこ
とが可能となる。
Furthermore, even if the high-temperature combustion catalyst layer 10 loses its activity over time due to the progress of the reforming reaction, the low-temperature combustion catalyst layer 11 can cause catalytic combustion, and the unburned matter will remain in the combustion exhaust gas 12. It is possible to reliably prevent this from remaining.

以上述べたように本実施例構成の改質装置によれば、次
のような効果を得ることができるものである。
As described above, according to the reforming apparatus configured in this embodiment, the following effects can be obtained.

(a)燃焼触媒は、伝熱充填層9を挟んで高温側10と
低温側11との2つの領域に分けて形成していることか
ら、従来のように改質反応管1の内部の改質反応触媒層
2を覆うように形成する必要がなく、その分だけ使用す
る燃焼触媒量が少なくなりコストの低減を図ることが可
能となる。
(a) Since the combustion catalyst is formed in two regions, the high temperature side 10 and the low temperature side 11, with the heat transfer packed bed 9 in between, the combustion catalyst is formed in two regions, the high temperature side 10 and the low temperature side 11. There is no need to form the catalyst layer 2 so as to cover the reaction catalyst layer 2, and the amount of combustion catalyst used can be reduced accordingly, making it possible to reduce costs.

(b)改質反応管1の改質反応触媒層2の外側位置を外
して燃焼触媒による酸化燃焼を行なうようにしているこ
とから、従来のように燃焼触媒の充填密度の不均一性が
原因となって酸化反応が局部的に起こるようなことがな
くなり、ホットスポットの生成を確実に防止して改質反
応を効果的に行なうことが可能となる。
(b) Since the outer position of the reforming reaction catalyst layer 2 of the reforming reaction tube 1 is removed to perform oxidative combustion using the combustion catalyst, the cause is non-uniformity in the packing density of the combustion catalyst as in the conventional case. This prevents the oxidation reaction from occurring locally, making it possible to reliably prevent the formation of hot spots and carry out the reforming reaction effectively.

(C)改質反応管1内部の改質反応触媒層2に導入する
原料ガス5を不活性伝熱充填材3により予熱するように
していることから、改質反応をより一層効果的に行なう
ことが可能となる。
(C) Since the raw material gas 5 introduced into the reforming reaction catalyst layer 2 inside the reforming reaction tube 1 is preheated by the inert heat transfer filler 3, the reforming reaction is carried out even more effectively. becomes possible.

尚、本発明は上記実施例に限定されるものではなく、次
のようにしても同様に実施することができるものである
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be similarly implemented in the following manner.

(a)上記実施例では、改質反応管を改質器容器の内部
に一本配設した場合を述べたが、これに限らず改質反応
管を改質器容器の内部に複数本配設するような場合につ
いても、本発明を同様に適用できることは言うまでもな
い。
(a) In the above embodiment, a case is described in which one reforming reaction tube is arranged inside the reformer container, but the invention is not limited to this, and multiple reforming reaction tubes are arranged inside the reformer container. It goes without saying that the present invention can be similarly applied to such cases.

(b)上記実施例では、排空気および可燃性ガスを予め
混合して改質反応管1の内部に導入するようにしたが、
排空気と可燃性ガスとを夫々別個に改質反応管1の内部
に導入し、高温燃焼触媒層10の直前あるいは内部で混
合するようにしてもよいものである。
(b) In the above embodiment, the exhaust air and flammable gas were mixed in advance and introduced into the reforming reaction tube 1.
The exhaust air and the combustible gas may be introduced separately into the reforming reaction tube 1 and mixed immediately before or inside the high-temperature combustion catalyst layer 10.

(C)上記実施例では、不活性伝熱充填材3を充填して
改質反応触媒112に導入する原料ガス5を予め予熱す
るようにしたが、この不活性伝熱充填材3を省略するよ
うにしてもよいものである。
(C) In the above embodiment, the raw material gas 5 to be introduced into the reforming reaction catalyst 112 is preheated by being filled with the inert heat transfer filler 3, but the inert heat transfer filler 3 is omitted. It may be done as follows.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、一端部が密封され
ると共に内部に改質反応触媒層が設けられた改質反応管
を改質器容器の内部に少なくとも一本配設し、通常の空
気よりも低い酸素濃度の空気および可燃性ガスの混合ガ
スを上記改質反応管の一端部より導入しその外側を通し
て他端部より外部へ流出させると共に、改質用の原料ガ
スを上記改質反応管の他端部より流入させ改質反応触媒
層を通してその一端部より内側管を通して他端部より流
出させるように構成し、さらに上記改質反応管外部の混
合ガス導入側には伝熱充填層を介して高温燃焼触媒層を
形成し、かつ上記改質反応管外側の混合ガス流出側には
低温燃焼触媒層を形成するようにしたので、燃焼触媒の
使用量を少なくしてコストの低減を図ると共に、燃焼触
媒充填の不均一性からくるホットスポットの生成を確実
に防止して改質反応を効果的に行なうことが可能な極め
て信頼性の高い改質装置が提供できる。
As explained above, according to the present invention, at least one reforming reaction tube, one end of which is sealed and a reforming reaction catalyst layer provided therein, is disposed inside the reformer container. A mixed gas of air with an oxygen concentration lower than that of air and a combustible gas is introduced from one end of the reforming reaction tube and flows out from the other end through the outside of the tube, and the raw material gas for reforming is introduced into the reforming reaction tube. The structure is such that the gas flows in from the other end of the reaction tube, passes through the reforming reaction catalyst layer, passes through the inner tube from one end, and flows out from the other end. Furthermore, a heat transfer filling is provided on the mixed gas introduction side outside the reforming reaction tube. A high-temperature combustion catalyst layer is formed through the layers, and a low-temperature combustion catalyst layer is formed on the mixed gas outflow side outside the reforming reaction tube, reducing the amount of combustion catalyst used and reducing costs. At the same time, it is possible to provide an extremely reliable reforming device that can reliably prevent the formation of hot spots due to non-uniformity in the charging of the combustion catalyst and effectively carry out the reforming reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の改質装置の一実施例を示す構成図、第
2図は同実施例における改質反応管の詳細を示す構成図
である。 1・・・改質反応管、2・・・改質反応触媒層、3・・
・不活性伝熱充填材、4・・・排空気および可燃性ガス
の混合ガス、5・・・原料ガス、6・・・内側管、7・
・・改質ガス、8・・・プラグ管、9・・・伝熱充填層
、10・・・高温燃焼触媒層、11・・・低温燃焼触媒
層、12・・・燃焼排ガス。
FIG. 1 is a block diagram showing one embodiment of the reforming apparatus of the present invention, and FIG. 2 is a block diagram showing details of a reforming reaction tube in the same embodiment. 1... Reforming reaction tube, 2... Reforming reaction catalyst layer, 3...
- Inert heat transfer filler, 4... Mixed gas of exhaust air and combustible gas, 5... Raw material gas, 6... Inner tube, 7.
...Reformed gas, 8.. Plug pipe, 9.. Heat transfer packed bed, 10.. High temperature combustion catalyst layer, 11.. Low temperature combustion catalyst layer, 12.. Combustion exhaust gas.

Claims (1)

【特許請求の範囲】[Claims] 一端部が密封されると共に内部に改質反応触媒層が設け
られた改質反応管を改質器容器の内部に少なくとも一本
配設し、通常の空気よりも低い酸素濃度の空気および可
燃性ガスの混合ガスを前記改質反応管の一端部より導入
しその外側を通して他端部より外部へ流出させると共に
、改質用の原料ガスを前記改質反応管の他端部より流入
させ改質反応触媒層を通してその一端部より内側管を通
して他端部より流出させるように構成し、さらに前記改
質反応管外部の混合ガス導入側には伝熱充填層を介して
高温燃焼触媒層を形成し、かつ前記改質反応管外側の混
合ガス流出側には低温燃焼触媒層を形成して成ることを
特徴とする改質装置。
At least one reforming reaction tube, one end of which is sealed and a reforming reaction catalyst layer provided inside, is disposed inside the reformer container, and air with a lower oxygen concentration than normal air and flammable A mixture of gases is introduced from one end of the reforming reaction tube and flows out from the other end through the outside thereof, and a raw material gas for reforming is introduced from the other end of the reforming reaction tube for reforming. The mixture gas is introduced from one end of the reaction catalyst layer through an inner tube and flows out from the other end thereof, and a high-temperature combustion catalyst layer is formed on the mixed gas introduction side outside the reforming reaction tube via a heat transfer packed bed. , and a low-temperature combustion catalyst layer is formed on the mixed gas outflow side outside the reforming reaction tube.
JP60092557A 1985-04-30 1985-04-30 Reformer Pending JPS61251501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092557A JPS61251501A (en) 1985-04-30 1985-04-30 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092557A JPS61251501A (en) 1985-04-30 1985-04-30 Reformer

Publications (1)

Publication Number Publication Date
JPS61251501A true JPS61251501A (en) 1986-11-08

Family

ID=14057714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092557A Pending JPS61251501A (en) 1985-04-30 1985-04-30 Reformer

Country Status (1)

Country Link
JP (1) JPS61251501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751029B1 (en) 2006-06-30 2007-08-21 재단법인 포항산업과학연구원 Fuel cell power generation system
KR100837679B1 (en) 2007-04-20 2008-06-13 지에스퓨얼셀 주식회사 Fuel processor of fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751029B1 (en) 2006-06-30 2007-08-21 재단법인 포항산업과학연구원 Fuel cell power generation system
KR100837679B1 (en) 2007-04-20 2008-06-13 지에스퓨얼셀 주식회사 Fuel processor of fuel cell system

Similar Documents

Publication Publication Date Title
CA1286354C (en) Integrated fuel cell and fuel conversion apparatus
US5458857A (en) Combined reformer and shift reactor
US4642272A (en) Integrated fuel cell and fuel conversion apparatus
JP3625770B2 (en) Single tube cylindrical reformer and its operating method
US20050132650A1 (en) Fast light-off catalytic reformer
US7131264B2 (en) Method of operating a reformer and a vehicle
JP2001155756A (en) Vapor-reforming reactor for fuel cell
TWI412172B (en) Fuel reforming apparatus and the method thereof
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
JPS6238828B2 (en)
JP2004323353A (en) Single tube cylindrical reformer and operating method therefor
US9102535B2 (en) Flameless steam reformer
JP4210912B2 (en) Fuel reformer and fuel cell power generator
CN215974955U (en) Reformer combining partial oxidation reforming with steam reforming
JPH0794322B2 (en) Methanol reformer
JP4326078B2 (en) Solid oxide fuel cell module
JPS61251501A (en) Reformer
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JPS6134865A (en) Fuel cell power generating system
JPH0335241B2 (en)
JPH11343101A (en) Hydrogen generating device
CN216678182U (en) Reformer combining autothermal reforming and steam reforming
JPH07223801A (en) Fuel-reforming device
JP3110158B2 (en) Solid electrolyte fuel cell power generator
KR102586411B1 (en) High-efficiency fuel processing device with durability that enables stable hydrogen production and carbon monoxide removal through heat exchange optimization