JPS6134865A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS6134865A
JPS6134865A JP59158261A JP15826184A JPS6134865A JP S6134865 A JPS6134865 A JP S6134865A JP 59158261 A JP59158261 A JP 59158261A JP 15826184 A JP15826184 A JP 15826184A JP S6134865 A JPS6134865 A JP S6134865A
Authority
JP
Japan
Prior art keywords
fuel
catalysts
reformed
gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59158261A
Other languages
Japanese (ja)
Inventor
Kazuhito Koyama
一仁 小山
Narihisa Sugita
杉田 成久
Haruichiro Sakaguchi
坂口 晴一郎
Koji Shiina
孝次 椎名
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59158261A priority Critical patent/JPS6134865A/en
Publication of JPS6134865A publication Critical patent/JPS6134865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reform a plurality of fuels without replacing catalysts by placing a plurality of catalysts having different catalytic actions in a reformer which reforms fuel to a gas suitable for cell reaction. CONSTITUTION:Catalysts 32 placed in a cooling passage 34 inside a cell stack 10 consists of the mixture of two or more different catalysts. The mixed fuel 46 is vaporized and heated with a heat exchanger 48, and fed to the passage 34, and reformed by catalysts 32 to form reformed gas 44 which contains a large amount of hydrogen and carbon monoxide. The gas 44 is supplied to fuel chambers 28 and 30 to perform cell reaction in the fuel electrodes 24 and 26, then exhaust gas 52 is exhausted to the outside. By this process, partial oxidation and/or steam reforming are conducted as a fuel reforming means. Therefore, a plurality of fuels are reformed without replacing catalysts.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池発電装置に係り、特に、電池本体内に
設けた触媒を有する冷却通路において燃料の改質を行う
内部改質型燃料電池を用いた発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell power generation device, and particularly relates to an internal reforming fuel cell in which fuel is reformed in a cooling passage having a catalyst provided within the cell body. Regarding the power generation device used.

〔発明の背景〕[Background of the invention]

燃料電池に使用する燃料は、電池の反応に適したガスに
改質する必要がある。一般に、このガスの改質は、触媒
を介して行っており、燃料の種類により触媒も異なって
くる。
The fuel used in fuel cells needs to be reformed into a gas suitable for cell reactions. Generally, reforming of this gas is performed through a catalyst, and the catalyst varies depending on the type of fuel.

ところで、従来、内部改質型燃料電池及び発電装置ニツ
イテは、ENERGY RESEARCHC0RPOR
ATION+7JP、S、FAT11!Lらによる技術
文献“INTERNAL REFORMINGFORN
ATURAL GAS FUHLEDに0LTEN c
AuBosAra F(IELCELLS”(文献番号
GRI−8010126,1981年)に論じられてい
る。この文献中の燃料電池システムは、癒料電池システ
ムにおける燃料の多様化に対する内部改質について、何
も考慮していない。このため。
By the way, conventionally, internal reforming fuel cells and power generation equipment are ENERGY RESEARCHHC0RPOR.
ATION+7JP, S, FAT11! Technical document “INTERNAL REFORMING FORN” by L et al.
ATURAL GAS FUHLED 0LTEN c
AuBosAra F (IELCELLS" (Document No. GRI-8010126, 1981). The fuel cell system in this document does not consider any internal reforming for fuel diversification in the fuel cell system. No. For this reason.

複数の異なる燃料を用いる場合には、電池本体である電
池スタックを分解して触媒を入れ替えるか、あるいは触
媒を保持した通路を新たに設けるか。
If multiple different fuels are used, should the battery stack, which is the battery main body, be disassembled and the catalyst replaced, or should a new passage be created to hold the catalyst?

また燃料電池を交換する必要があるという問題があった
Another problem was that the fuel cell had to be replaced.

〔発明の目的〕[Purpose of the invention]

本発明は、触媒を入れ替えることなく複数の燃料を改質
することができる燃料電池発電装置を提供することを目
的とする。
An object of the present invention is to provide a fuel cell power generation device that can reform a plurality of fuels without replacing catalysts.

〔発明の概要〕[Summary of the invention]

本発明は、燃料を電池の反応に適したガスに改質する改
質部内に、触媒作用が異なる複数の触媒を混在させ、2
種類以上の燃料の各々に対して改質を行うことができる
ように構成したものである。
In the present invention, a plurality of catalysts having different catalytic actions are mixed in a reforming section that reformes fuel into a gas suitable for cell reactions, and two
The structure is such that each of more than one type of fuel can be reformed.

〔発明の実施例〕[Embodiments of the invention]

本発明に係る燃料電池発電装置の好ましい実施例を添付
図面に従って詳説する。
Preferred embodiments of the fuel cell power generation device according to the present invention will be described in detail with reference to the accompanying drawings.

第2図は、本発明に係る燃料電池発電装置の一実施例の
概略を示したものであって、溶融炭酸塩を電解質とする
溶融炭酸塩型燃料電池発電装置の概略を示したものであ
る。第2図において、電池本体である電池スタック10
は、電解質12゜14の一側に酸化極16,18を介し
て空気や酸素等の酸化剤が供給される酸化室20.22
と、電解質12,14の他側に燃料極24,26を介し
て燃料室28.30とが形成され、酸化剤室22と燃料
室28との間に触媒32を保持した冷却通路34が設け
られた構造をしており、このような構造のものが何段に
も積層されて構成されている。酸化剤室20.22の一
端側には、空気又は酸素等の酸化剤が熱交換!#38に
おいて熱媒体40により温められた後供給され、他端側
から排ガス42が排出される。燃料室2,8.30の一
端側に供給される改質ガス44は、混合燃料46が熱交
換[48において熱媒体50により加熱され。
FIG. 2 schematically shows an embodiment of a fuel cell power generation device according to the present invention, and shows an outline of a molten carbonate type fuel cell power generation device using molten carbonate as an electrolyte. . In FIG. 2, a battery stack 10 which is a battery main body
is an oxidizing chamber 20.22 in which an oxidizing agent such as air or oxygen is supplied to one side of the electrolyte 12 through oxidizing electrodes 16 and 18.
A fuel chamber 28,30 is formed on the other side of the electrolytes 12, 14 via the fuel electrodes 24, 26, and a cooling passage 34 holding a catalyst 32 is provided between the oxidizer chamber 22 and the fuel chamber 28. It has a similar structure, and is made up of layers of layers. At one end of the oxidizing agent chamber 20.22, an oxidizing agent such as air or oxygen exchanges heat! At #38, it is supplied after being warmed by the heat medium 40, and the exhaust gas 42 is discharged from the other end. The reformed gas 44 supplied to one end side of the fuel chamber 2, 8, 30 is heated by a heat medium 50 in a heat exchange process [48].

冷却通路34に供給されて改質されたものであって、燃
料室28.30の他側から排ガス52となって出ていく
It is supplied to the cooling passage 34 and reformed, and exits as exhaust gas 52 from the other side of the fuel chamber 28,30.

混合燃料46は、燃料切換装置54を介して供給された
メタン、プロパン等の炭化水素系燃料56又はメタノー
ルなどの燃料58と、停止弁60、切換装置W62とを
介して供給される酸化剤36又は純水64との混合物で
ある。
The mixed fuel 46 includes a hydrocarbon fuel 56 such as methane or propane, or a fuel 58 such as methanol, supplied via a fuel switching device 54, and an oxidizing agent 36 supplied via a stop valve 60 and a switching device W62. Or a mixture with pure water 64.

冷却通路34内に保持させた触媒32は、第1図に示す
ように触媒作用を異にする2種類以上の触媒32 a 
g 32 b y 32 cを混合したものからなって
いる。これらの触媒は、例えばNi系触媒とCu−8t
系触媒、Z n −Fe、 O,系触媒とからなってお
り、この他にCu−Nt、CuO−Zn0−An 、0
.、Cu−Zn及びpt系触媒を用いることができる。
The catalyst 32 held in the cooling passage 34 includes two or more types of catalysts 32a having different catalytic actions, as shown in FIG.
It consists of a mixture of g 32 b y 32 c. These catalysts include, for example, Ni-based catalysts and Cu-8t
It consists of a Zn-Fe, O, system catalyst, and in addition Cu-Nt, CuO-Zn0-An, 0
.. , Cu-Zn and pt-based catalysts can be used.

上記の如く構成した実施例の作用は次の通りである。燃
料56はメタン、プロパンなどの炭化水素系の燃料であ
り、もう一つの燃料58はメタノールである。一方、空
気あるいは酸素などの酸化剤36又は純水64は、必要
に応じて、切換装置62により切換えて供給され、停止
弁60を経由して燃料56あるいは燃料58と合流し、
混合燃料46となる。混合燃料46は、熱媒体50を熱
源とする熱交換器48において、気化及び電池温度の6
50〜700℃程度に昇温された後、電池スタック10
内の冷却通路34へ送り込まれ、触媒32によって改質
され、水素及び−酸化炭素を多量に含む改質ガス44と
なる。改質ガス44は、燃料室28.30へ送られ、そ
れぞれ燃料極24゜26において電極反応を行い、排ガ
ス52として外部へ放出される。酸化剤36は、熱媒体
40を熱源とする熱交換器38において電池温度の65
0〜700℃程度に昇温され、酸化剤室20゜22、へ
送られ、酸化極16,18において電極反応を行い、排
ガス42として外部へ放出される。
The operation of the embodiment configured as described above is as follows. The fuel 56 is a hydrocarbon fuel such as methane or propane, and the other fuel 58 is methanol. On the other hand, the oxidizing agent 36 such as air or oxygen or the pure water 64 is switched and supplied by the switching device 62 as necessary, and is combined with the fuel 56 or the fuel 58 via the stop valve 60.
A mixed fuel 46 is obtained. The mixed fuel 46 is vaporized in a heat exchanger 48 using a heat medium 50 as a heat source, and is heated to a temperature of 6.
After being heated to about 50 to 700°C, the battery stack 10
The gas is sent to the cooling passage 34 in the interior and reformed by the catalyst 32 to become a reformed gas 44 containing a large amount of hydrogen and carbon oxide. The reformed gas 44 is sent to the fuel chambers 28 and 30, undergoes an electrode reaction at the fuel electrodes 24 and 26, and is discharged to the outside as exhaust gas 52. The oxidizing agent 36 is applied to a heat exchanger 38 using a heat medium 40 as a heat source at a temperature of 65% below the battery temperature.
The temperature is raised to about 0 to 700° C., and the gas is sent to the oxidizer chamber 20° 22, where an electrode reaction occurs at the oxidizing electrodes 16 and 18, and the gas is discharged to the outside as exhaust gas 42.

本実施例によれば、冷却通路34中に触媒作用の異なる
複数の触媒32a、32b、32cを保持させであるた
め、燃料を改質する手段として部分酸化あるいは水蒸気
改質もしくはそれら両方を使うことができる。従って、
必要に応じて発電装置のエネルギーコントロールを柔軟
に行うことができるという効果がある。また、冷却通路
34内の混合燃料46の改質は、吸熱反応であるため、
内部改質反応による吸熱作用により電池スタック10の
温度上昇を抑制するとともに、改質反応に電池の余熱を
使用するので、システムの熱効率が向上するという効果
、及び改質器を必要としないので機器が少なくなり、コ
スト低減が図れるという効果がある。
According to this embodiment, since a plurality of catalysts 32a, 32b, and 32c having different catalytic actions are held in the cooling passage 34, partial oxidation, steam reforming, or both can be used as means for reforming the fuel. I can do it. Therefore,
This has the effect that the energy of the power generation device can be flexibly controlled as needed. Furthermore, since the reforming of the mixed fuel 46 in the cooling passage 34 is an endothermic reaction,
The temperature rise of the battery stack 10 is suppressed due to the endothermic effect of the internal reforming reaction, and the residual heat of the battery is used for the reforming reaction, which improves the thermal efficiency of the system, and eliminates the need for a reformer, which improves equipment efficiency. This has the effect of reducing costs.

前記実施例においては冷却通路34内の複数の触媒32
a、32b、32cが粒状をでiし、分散した状態にお
いて冷却通路34内に充填されたものを示したが、第3
図に示すようにしてもよい。
In the embodiment, a plurality of catalysts 32 in the cooling passage 34
a, 32b, and 32c are shown in the form of particles and filled in the cooling passage 34 in a dispersed state.
It may be configured as shown in the figure.

即ち、第3図に示した複数の触媒32a、32b。That is, the plurality of catalysts 32a, 32b shown in FIG.

32cは、冷却通路34の内壁にそれぞれ溶射などの方
法により散布、付着させた場合を示したものである。こ
のように触媒32 a、32 b、32 cを冷却通路
34の壁面に付着させることにより、一層吸熱反応の効
率を上げることができる。
Reference numeral 32c shows the case where the particles are sprayed and adhered to the inner wall of the cooling passage 34 by a method such as thermal spraying. By attaching the catalysts 32 a, 32 b, and 32 c to the wall surface of the cooling passage 34 in this manner, the efficiency of the endothermic reaction can be further increased.

第4図は、本発明の他の実施例を示しており、第2図と
同一部分には同一符号を付して示してあり、第1図と異
にする箇所を含む部分を取り上げて説明する。この実施
例では、酸化剤室20゜22より出た排ガス42の保有
する熱量を使用するため、混合燃料46を予熱する熱交
換器66が設置しである。混合燃料46は、熱交換器6
6において排ガス42により予熱され、その後熱交換器
48へ導入される。これにより、第1図に示した実施例
における効果に加えて、排ガス42より混合燃料46へ
伝達する熱量の分だけ熱媒体50の保有すべき熱量が少
なくてすむので、さらに発電装置全体の熱効率が向上す
るという効果がある。
FIG. 4 shows another embodiment of the present invention, in which parts that are the same as those in FIG. 2 are given the same reference numerals, and parts that are different from those in FIG. do. In this embodiment, a heat exchanger 66 is installed to preheat the mixed fuel 46 in order to use the amount of heat contained in the exhaust gas 42 discharged from the oxidizer chamber 20.degree. 22. The mixed fuel 46 is transferred to the heat exchanger 6
6, it is preheated by exhaust gas 42 and then introduced into a heat exchanger 48. As a result, in addition to the effect of the embodiment shown in FIG. 1, the amount of heat that must be held by the heat medium 50 is reduced by the amount of heat transferred from the exhaust gas 42 to the mixed fuel 46, which further improves the thermal efficiency of the entire power generation device. This has the effect of improving.

第5図は、第4図の実施例で示した酸化室20゜22よ
り出た排ガス42を使用して熱回収を行う代わりに、燃
料室28.30から出た排ガス52を使用して熱回収を
行う実施例を示している。燃料室28.30から出た排
ガス52を熱交換器66に導き、混合燃料46と熱交換
させることにより、第1図に示した実施例より発電装置
全体の熱効率が向上する。
FIG. 5 shows that instead of performing heat recovery using the exhaust gas 42 exiting from the oxidation chamber 20, 22 shown in the embodiment of FIG. 4, exhaust gas 52 exiting from the fuel chamber 28. An example of performing collection is shown. By guiding the exhaust gas 52 exiting the fuel chamber 28, 30 to the heat exchanger 66 and exchanging heat with the mixed fuel 46, the thermal efficiency of the entire power generator is improved compared to the embodiment shown in FIG.

第6図は、第4図に示した実施例を改良したものである
。第4図と異にすg箇所を含む部分を取り上げて説明す
る。この実施例では、燃料室28゜30から出た排ガス
52を、熱交換器48に新たに取り付けたバーナ部68
の燃料として使用し、その酸化剤とし空気あるいは酸素
などの酸化剤36を分岐させた酸化剤70を使用し、流
量調整弁72を経由してバーナ部68へ導入され、排ガ
ス74として外部へ放出させる。つまり、排ガス52の
燃焼熱により混合燃料46を電池スタック10の動作温
度である6i0〜700℃程度の温度まで昇温させる。
FIG. 6 is an improved version of the embodiment shown in FIG. A description will be given of the parts including the parts that are different from FIG. 4. In this embodiment, the exhaust gas 52 coming out of the fuel chamber 28° 30 is transferred to the burner section 68 newly attached to the heat exchanger 48.
The oxidizing agent 70 is used as a fuel and the oxidizing agent 70 is a branched oxidizing agent 36 such as air or oxygen, which is introduced into the burner section 68 via a flow rate regulating valve 72 and released to the outside as exhaust gas 74. let That is, the mixed fuel 46 is heated to a temperature of approximately 6i0 to 700° C., which is the operating temperature of the battery stack 10, by the combustion heat of the exhaust gas 52.

これによって、第4図に示した熱媒体50が不要となり
、しかもバーナ部68の燃料電池からの排ガス52を使
用しているので、第4図の実施例以上に発電装置全体の
熱効率の向上を図れるという効果がある。
As a result, the heat medium 50 shown in FIG. 4 is not required, and the exhaust gas 52 from the fuel cell in the burner section 68 is used, so that the thermal efficiency of the entire power generation device can be improved more than the embodiment shown in FIG. It has the effect of being able to

第7図は、さらに第6図に示した実施例を改良したもの
である。この実施例では、バーナ部68より放出される
排ガス74の熱を有効利用しようというもので、酸化剤
36が熱媒体40を熱源とする熱交換器38を通る手前
に、熱交換器76を設置し、排ガス74の熱を酸化剤3
6に供給させている。これにより、全体の熱効率が一層
向上するという効果が加わる。
FIG. 7 shows a further improvement of the embodiment shown in FIG. In this embodiment, the heat of the exhaust gas 74 released from the burner section 68 is to be used effectively, and a heat exchanger 76 is installed before the oxidizing agent 36 passes through the heat exchanger 38 whose heat source is the heat medium 40. The heat of the exhaust gas 74 is transferred to the oxidizer 3.
6 is supplied. This has the added effect of further improving the overall thermal efficiency.

第8図は、第7図の実施例を電池スタック10へ供給す
る改質ガス44の保温に重点を置いて改良したものであ
る。この実施例では、バーナ部68より出た排ガス74
が、改質された改質ガス44の保温用熱源として用いる
ための熱交換器78を設置し、熱交換87Bにおいて改
質ガス44と熱交換させている。これにより、改質され
温度の降下した改質ガスの温度を電池作動温度程度に維
持できるため、電池性能が安定し、温度変化が減するこ
とから電池寿命が伸びると考えられる。
FIG. 8 shows an improvement of the embodiment shown in FIG. 7, with emphasis placed on keeping the reformed gas 44 supplied to the battery stack 10 warm. In this embodiment, the exhaust gas 74 discharged from the burner section 68 is
However, a heat exchanger 78 is installed to be used as a heat source for keeping the reformed gas 44 warm, and heat is exchanged with the reformed gas 44 in a heat exchanger 87B. As a result, the temperature of the reformed gas, which has been reformed and whose temperature has been lowered, can be maintained at about the battery operating temperature, thereby stabilizing the battery performance and reducing temperature changes, which is thought to extend the battery life.

第9図は、第8図の実施例に外部改質器を付は加えたも
のである。この実施例では、電池スタック10の冷却通
路34内で改質された改質ガスが完全に改質されていな
い場合に、熱交換器78の次段に新設した外部改質器8
0により改質率を高めて、より水素及び−酸化炭素の多
い改質ガスとして燃料室28.30に供給しようとする
ものである。なお、外部改質器80を加熱するために外
部改質器84にバーナ部84が設けられる。バーナ部8
4の酸化剤86は酸化剤36より分岐して得られ、流量
調整弁88を経てバーナ部84内へ導入される。一方、
バーナ部84の燃料90は、燃料室28.30からの排
ガス52を分岐して得られる燃料92を流量調整弁94
を経由させることによって供給される。なお、バーナ部
84の燃料90は、補助燃料96.98をそれぞれ流量
調整弁100,102を経由させて得られる補助燃料1
04と、燃料92とを合流させて得てもよい。
FIG. 9 shows the embodiment of FIG. 8 with an external reformer added. In this embodiment, when the reformed gas reformed in the cooling passage 34 of the battery stack 10 is not completely reformed, an external reformer 8 newly installed next to the heat exchanger 78
0 increases the reforming rate and supplies the reformed gas containing more hydrogen and carbon oxide to the fuel chamber 28.30. Note that a burner section 84 is provided in the external reformer 84 in order to heat the external reformer 80. Burner part 8
The oxidizing agent 86 of No. 4 is obtained by branching from the oxidizing agent 36, and is introduced into the burner section 84 through a flow rate regulating valve 88. on the other hand,
The fuel 90 in the burner section 84 is obtained by branching off the exhaust gas 52 from the fuel chamber 28.30.
It is supplied by passing the . The fuel 90 in the burner section 84 is auxiliary fuel 1 obtained by passing auxiliary fuel 96 and 98 through flow rate regulating valves 100 and 102, respectively.
04 and fuel 92 may be combined.

これにより、燃料室28.30に送り込まれる改質ガス
82は、確実に改質率の高い、すなわち水素及び−酸化
炭素の濃度の高い燃料となり、電池スタック10の発電
性能を高めるという効果をもつ。
This ensures that the reformed gas 82 sent into the fuel chamber 28.30 becomes a fuel with a high reforming rate, that is, a high concentration of hydrogen and carbon oxide, which has the effect of improving the power generation performance of the cell stack 10. .

以上、溶融炭酸塩型燃料電池システムに限定して述べた
が、さらに電池作動温度の高い固体電解質型燃料電池シ
ステムにおいても、燃料を炭化水素系ガスあるいはナフ
サなどの液状燃料として、それぞれを効果的番;改質さ
せうる触媒を共存させた形の内部改質を行えるを考えら
れ、本発明は溶融炭酸塩型燃料電池システムに限られる
ものではない。また、外部改質型の燃料電池発電装置に
も適用できる。
The above discussion has been limited to molten carbonate fuel cell systems, but even in solid oxide fuel cell systems where the cell operating temperature is high, hydrocarbon gases or liquid fuels such as naphtha can be used as fuel, and each can be effectively used. However, it is possible to carry out internal reforming in the presence of a reforming catalyst, and the present invention is not limited to a molten carbonate fuel cell system. It can also be applied to an external reforming type fuel cell power generation device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば燃料改質部の触媒
を交換することなく複数の燃料のそれぞれに対し改質を
行うことができる。
As described above, according to the present invention, each of a plurality of fuels can be reformed without replacing the catalyst in the fuel reforming section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る実施例の内部改質型燃料電池の冷
却通路内に充填した触媒の状態を示す図、第2図は本発
明に係る燃料電池発電装置の実施例の内部改質型燃料電
池発電装置の概略構成図、第3図は複数の触媒を冷却通
路に保持させる方法の他の実施例の説明図、第4図は本
発明に係る燃料電池発電装置の他の実施例を示す図であ
って酸化室の排ガスにより混合燃料を予熱する例を示す
概略構成図、第5図は燃料室の排ガスにより混合燃料を
予熱する例を示す概略構成図、第6図は本発゛明に係る
燃料電池発電装置の燃料室排ガスを混合燃料を加熱する
熱交換器の燃料とする実施例の概略構成図、第7図は混
合燃料を加熱する熱交換器の排ガスにより酸化剤を予熱
する例を示す概略構、、2゜m品5′”′v−1警ト した改質ガスをさらに改質する例を示す概略構成図であ
る。 10・・・電池スタック、12.14・・・電解質、1
6゜18・・・酸化極、20,22・・・酸化剤室、2
4゜26・・・燃料極、28,30・・・燃料室、32
,32a。 32b、32cm触媒、34−・・冷却通路、44゜8
2・・・改質ガス、46・・・混合燃料、56.58・
・・燃料、74・・・純水。
FIG. 1 is a diagram showing the state of the catalyst filled in the cooling passage of an internal reforming fuel cell according to an embodiment of the present invention, and FIG. FIG. 3 is an explanatory diagram of another embodiment of a method for holding a plurality of catalysts in a cooling passage, and FIG. 4 is another embodiment of the fuel cell power generation device according to the present invention. Fig. 5 is a schematic block diagram showing an example of preheating the mixed fuel using exhaust gas from the oxidation chamber; Fig. 5 is a schematic block diagram showing an example of preheating the mixed fuel using exhaust gas from the fuel chamber; 7 is a schematic diagram of an embodiment in which exhaust gas from the fuel chamber of the fuel cell power generation device according to the invention is used as fuel for a heat exchanger that heats a mixed fuel. FIG. 10...Battery stack, 12.14 ...electrolyte, 1
6゜18...Oxidizing electrode, 20,22...Oxidizer chamber, 2
4゜26... Fuel electrode, 28, 30... Fuel chamber, 32
, 32a. 32b, 32cm catalyst, 34-...cooling passage, 44°8
2...Reformed gas, 46...Mixed fuel, 56.58.
...Fuel, 74...Pure water.

Claims (1)

【特許請求の範囲】 1、電解質の一側に燃料極を介して設けた燃料室と、前
記電解質の他側に酸化極を介して設けた酸化剤室とから
なるセルユニットを複数積層した電池本体と、 燃料を触媒を用いて前記燃料室に供給する改質ガスに改
質する改質部と、 前記酸化剤室に酸化剤を供給する酸化剤供給装置と、 を有する燃料電池発電装置において、 前記改質部内の触媒は、触媒作用の異なる複数の触媒が
混在していることを特徴とする燃料電池発電装置。 2、前記改質部は、前記電池本体に設けた前記触媒を有
する冷却通路であることを特徴とする特許請求の範囲第
1項に記載の燃料電池発電装置。
[Scope of Claims] 1. A battery in which a plurality of cell units are stacked, each consisting of a fuel chamber provided on one side of the electrolyte via a fuel electrode, and an oxidizer chamber provided on the other side of the electrolyte via an oxidizing electrode. A fuel cell power generation device comprising: a main body; a reforming section that uses a catalyst to reform fuel into a reformed gas that is supplied to the fuel chamber; and an oxidizer supply device that supplies an oxidizer to the oxidizer chamber. . A fuel cell power generation device, wherein the catalyst in the reforming section includes a plurality of catalysts having different catalytic actions. 2. The fuel cell power generation device according to claim 1, wherein the reforming section is a cooling passage having the catalyst provided in the cell main body.
JP59158261A 1984-07-27 1984-07-27 Fuel cell power generating system Pending JPS6134865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59158261A JPS6134865A (en) 1984-07-27 1984-07-27 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59158261A JPS6134865A (en) 1984-07-27 1984-07-27 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS6134865A true JPS6134865A (en) 1986-02-19

Family

ID=15667750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59158261A Pending JPS6134865A (en) 1984-07-27 1984-07-27 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS6134865A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110557A (en) * 1986-10-27 1988-05-16 Mitsubishi Heavy Ind Ltd Operating method for solid electrolyte fuel cell
JPH0240863A (en) * 1988-08-01 1990-02-09 Sanyo Electric Co Ltd Molten carbonate fuel cell
US5246791A (en) * 1988-07-06 1993-09-21 Johnson Matthey Public Limited Company Fuel cell containing a reforming catalyst
US5436091A (en) * 1989-05-11 1995-07-25 Valence Technology, Inc. Solid state electrochemical cell having microroughened current collector
JP2007200702A (en) * 2006-01-26 2007-08-09 Nippon Oil Corp Solid oxide fuel cell and its operating method
JP2007200709A (en) * 2006-01-26 2007-08-09 Nippon Oil Corp Solid oxide fuel cell stack and its operation method
JP2008254942A (en) * 2007-04-02 2008-10-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen production method and hydrogen production system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810374A (en) * 1981-06-12 1983-01-20 エナジ−・リサ−チ・コ−ポレ−シヨン Fuel battery for causing internal modification for fuel battery gas
JPS58119167A (en) * 1982-01-11 1983-07-15 Toshiba Corp Fuel cell device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810374A (en) * 1981-06-12 1983-01-20 エナジ−・リサ−チ・コ−ポレ−シヨン Fuel battery for causing internal modification for fuel battery gas
JPS58119167A (en) * 1982-01-11 1983-07-15 Toshiba Corp Fuel cell device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110557A (en) * 1986-10-27 1988-05-16 Mitsubishi Heavy Ind Ltd Operating method for solid electrolyte fuel cell
US5246791A (en) * 1988-07-06 1993-09-21 Johnson Matthey Public Limited Company Fuel cell containing a reforming catalyst
JPH0240863A (en) * 1988-08-01 1990-02-09 Sanyo Electric Co Ltd Molten carbonate fuel cell
US5436091A (en) * 1989-05-11 1995-07-25 Valence Technology, Inc. Solid state electrochemical cell having microroughened current collector
JP2007200702A (en) * 2006-01-26 2007-08-09 Nippon Oil Corp Solid oxide fuel cell and its operating method
JP2007200709A (en) * 2006-01-26 2007-08-09 Nippon Oil Corp Solid oxide fuel cell stack and its operation method
JP2008254942A (en) * 2007-04-02 2008-10-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen production method and hydrogen production system

Similar Documents

Publication Publication Date Title
CA2473449C (en) Solid oxide fuel cell system
AU2003261776B2 (en) Fuel Cell Electrical Power Generation System
JPH0613096A (en) Method and apparatus for reformation in fuel cell power generation system
JP7050117B2 (en) Methods and arrangements to utilize recirculation for high temperature fuel cell systems
JPH10330101A (en) Hydrogen-manufacturing apparatus and method therefor
JPWO2010058750A1 (en) Hydrogen recycling type MCFC power generation system
JP2006031989A (en) Method and system for power generation by solid oxide fuel cell
JP4056755B2 (en) Integrated catalytic heat exchanger for solid oxide fuel cells
JPS61193371A (en) Fuel cell power generator
JP2007128680A (en) Fuel cell system
JP6064782B2 (en) Fuel cell device
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
EP1148024A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
KR100751029B1 (en) Fuel cell power generation system
JP4570904B2 (en) Hot standby method of solid oxide fuel cell system and its system
JPS6134865A (en) Fuel cell power generating system
JP3704299B2 (en) Combined system of solid oxide fuel cell and industrial process using combustion and its operation method
JPH09237635A (en) Solid electrolyte fuel cell
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP2001085039A (en) Fuel cell system
JP2001143731A (en) Fuel cell system
JPH10106592A (en) Module of solid electrolyte fuel cell
JP6582572B2 (en) Fuel cell system