JPS63110557A - Operating method for solid electrolyte fuel cell - Google Patents

Operating method for solid electrolyte fuel cell

Info

Publication number
JPS63110557A
JPS63110557A JP61255161A JP25516186A JPS63110557A JP S63110557 A JPS63110557 A JP S63110557A JP 61255161 A JP61255161 A JP 61255161A JP 25516186 A JP25516186 A JP 25516186A JP S63110557 A JPS63110557 A JP S63110557A
Authority
JP
Japan
Prior art keywords
fuel
partial oxidation
amount
air
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61255161A
Other languages
Japanese (ja)
Inventor
Nobuaki Murakami
信明 村上
Toshiro Nishi
敏郎 西
Osao Kudome
長生 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61255161A priority Critical patent/JPS63110557A/en
Publication of JPS63110557A publication Critical patent/JPS63110557A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable high-power direct generation by the use of hydrogen carbide like CH4 as fuel by mixing hydrogen carbide group fuel with air in such amount that partial oxidation is required in advance and supplying this mixed fuel to a fuel pole of a solid electrolyte fuel cell, so that internal reforming reaction due to partial oxidation is generated inside a fuel cell. CONSTITUTION:In stead of conventional internal reforming by the use of H2O, hydrogen carbide group fuel like CH4 is mixed with air in such amount that partial oxidation is required in advance, and this mixed fuel is supplied to a fuel pole of SOFC, so that internal reforming reaction due to the partial oxidation is generated in the fuel pole. Reaction formulas are shown in I and II, where the reaction in the formula I is made to advance very quickly by properly selecting the fuel pole and the amount of air addition. Hence, together with obtaining such an effect that a fuel pole low in catalysis can be also used, highpower direct generation can be performed by the use of hydrogen carbide like CH4 as fuel.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、メタン(CH4)等の炭化水素を燃料とする
固体電解質燃料電池の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of operating a solid electrolyte fuel cell using a hydrocarbon such as methane (CH4) as fuel.

[従来の技術] 現在、固体電解質燃料電池を用いる発電システムは、主
に米国に於て開発中であり、1990年代後半の実用化
が目標とされている。従って現在商用化されているもの
はないが、そのシステム構成については種々検討されて
おり、50〜60%と従来の発電システムにはない高い
熱効率が期待されている。
[Prior Art] Power generation systems using solid electrolyte fuel cells are currently under development mainly in the United States, with the goal of putting them into practical use in the late 1990s. Therefore, although there is currently no commercially available system, various systems configurations are being studied, and high thermal efficiency of 50 to 60%, which is not found in conventional power generation systems, is expected.

ところで、固体電解質燃料電池(以下5OFCと略記す
る)を利用する発電システムについても、溶融炭酸塩型
燃料電池と同様、システムの効率向上及び機器数削減を
主目的として、いわゆる内部改質方式が提案されている
。これは、セル内部で燃料である天然ガス、プロパン等
の炭化水素と添加水蒸気の反応によりCo、H2に転換
しつつ電気化学反応を生じさせるものである。本方式は
、完成すれば最も高効率のシステムが組める。
By the way, for power generation systems using solid electrolyte fuel cells (hereinafter abbreviated as 5OFC), a so-called internal reforming method has been proposed with the main purpose of improving system efficiency and reducing the number of devices, similar to molten carbonate fuel cells. has been done. This is an electrochemical reaction in which the fuel, such as natural gas or hydrocarbon such as propane, reacts with added water vapor to convert it into Co and H2 inside the cell. Once completed, this method will provide the most efficient system possible.

[発明が解決しようとする問題点] しかしながら、触媒性の高い燃料極の選択、カーボン析
出防止のためのスチーム添加量の選定、セル温度の制御
等の課題がある。また、添加H20のメークアップ量も
、プラントの設置場所によっては問題となる。
[Problems to be Solved by the Invention] However, there are problems such as selection of a highly catalytic fuel electrode, selection of the amount of steam added to prevent carbon deposition, and control of cell temperature. The make-up amount of added H20 also becomes a problem depending on the installation location of the plant.

本発明は上記事情に鑑みてなされたもので、触媒性の高
い燃料極の選定、カーボン析出防止のためのスチーム添
加量の選定、セル温度の制御等の課題を解消するととも
に、従来と比べ高出力でCHa等の炭化水素を燃料とし
た直接発電が可能な固体電解燃料電池の運転方法を提供
することを目的とする。
The present invention was made in view of the above circumstances, and solves problems such as selecting a highly catalytic fuel electrode, selecting the amount of steam added to prevent carbon precipitation, and controlling cell temperature, and also solves problems such as selecting a highly catalytic fuel electrode, selecting the amount of steam added to prevent carbon precipitation, and controlling cell temperature. The object of the present invention is to provide a method of operating a solid electrolytic fuel cell that can directly generate electricity using hydrocarbons such as CHa as fuel.

[問題点を解決するための手段] 本発明は、H20を用いる通常の内部リフォーミングで
はなく、CM、等の炭化水素系燃料を予め部分するに必
要な量の空気と混合して5OFCの燃料極に送給し、燃
料極内で部分酸化反応による内部改質反応を生起させる
ことを要旨とする。本発明による反応式仲、下記式(1
)、式(2)に示す通りである。
[Means for Solving the Problems] The present invention does not involve normal internal reforming using H20, but instead involves pre-mixing a hydrocarbon fuel such as CM with the necessary amount of air to form a 5OFC fuel. The gist is to feed the fuel to the fuel electrode and cause an internal reforming reaction by partial oxidation reaction within the fuel electrode. The reaction formula according to the present invention is the following formula (1
), as shown in equation (2).

C)It +AIRCO+H20・・・(1)(但し、
無触媒又は燃料極触媒) なお、従来による反応式は、式(3)、式(4)のよう
になる。
C) It +AIRCO+H20...(1) (However,
(No catalyst or fuel electrode catalyst) Conventional reaction formulas are as shown in formula (3) and formula (4).

ClLa + H20−町すリリシ CO+ 3H2・
・・(3)IK [作 用] 本発明者等は、上記式(1)(本発明法)と式(3)(
従来法)で表わせる反応特性を詳細に調査した。
ClLa + H20-Machisulirishi CO+ 3H2・
...(3) IK [Function] The present inventors have determined that the above formula (1) (method of the present invention) and formula (3) (
The reaction characteristics that can be expressed using conventional methods were investigated in detail.

その結果、燃料極と空気添加量を適当に選べば、式(1
)の反応は式(3)の反応と比べ極めて迅速に進むこと
が判明した。
As a result, if the fuel electrode and the amount of air added are selected appropriately, the formula (1
) was found to proceed extremely rapidly compared to the reaction of formula (3).

[実施例] 以下、本発明に係る実施例について説明する。[Example] Examples according to the present invention will be described below.

まず、本発明に係る実施例と従来法とを比較したものを
下記表に示す。試作した61類の試験用のセル(No、
1〜No、6)は、基体管の材料を多孔性Aノ203、
空気極の材料をLaCo0 s +電解質の材料をZr
02−’J+o、l’%Y2O3とし、燃料極の材料に
ついては■Co (70%)Zr02サーメツト、■N
 i (70%)−Zr02 サーメット、■酸化ニッ
ケルの3種類で作成した。また、表のNo、1〜No、
3については電解質、空気極、燃料極の全てを溶射法に
より製膜し、No、1を200 umSNo、2を15
0μm、No、3を100μmの膜厚とした。一方、N
o、4 〜NO6については電解質のみCVDで製膜し
、他は溶射法により形成した(膜厚は上記と同様)。
First, the following table shows a comparison between the examples according to the present invention and the conventional method. Prototype 61 type test cell (No.
1 to No. 6), the material of the base tube is porous A No. 203,
Air electrode material: LaCo0s + electrolyte material: Zr
02-'J+o, l'% Y2O3, and the material of the fuel electrode is ■Co (70%) Zr02 cermet, ■N
It was made from three types: i (70%)-Zr02 cermet and ■ nickel oxide. Also, No. 1 to No. of the table,
For 3, the electrolyte, air electrode, and fuel electrode were all formed by thermal spraying, No. 1 was 200 umS No. 2 was 15
0 μm, No. 3 had a film thickness of 100 μm. On the other hand, N
For Nos. 0 and 4 to NO6, only the electrolyte was formed by CVD, and the others were formed by thermal spraying (the film thickness is the same as above).

更に、燃料はCH4を酸化剤は空気を使用した。Furthermore, CH4 was used as the fuel and air was used as the oxidizer.

そして、従来法の場合Hz O/CH4(モル比)!:
i1.0、本発明法の場合(A I R中)027CH
a(モル比)#0.6として発電テストを実施し、両者
の相違を検討した。
And in the case of the conventional method, Hz O/CH4 (molar ratio)! :
i1.0, in the case of the method of the present invention (in A I R) 027CH
A power generation test was conducted with a (molar ratio) #0.6, and the differences between the two were investigated.

しかるに、下記表から明らかのように、いずれのNo、
1〜No、6でも本発明の方法(即ち、空気を燃料に添
加したBの方)が従来法(A)と比べて高出力が得られ
ることが判明した。また、出口ガス成分濃度を調査した
結果、従来法ではCH4の残留濃度が高く内部改反応が
充分には進行していないことが判明した。これは、燃料
極の触媒性能が充分ではなく、より高精能の触媒あるい
は多量の触媒を要するためと思われる。更に、セルNO
,5を用い不発OR法により添加空気量を変化させ、発
電テストを実施した結果、02/CH4モル比0.4〜
1.3でほぼ同等の出力が得られたが、この範囲外では
やや出力が低下した。これは、添加空気量に適当量があ
ることを示し、実施に当っては部分酸化に充分な量の空
気量の選定が必要となる。
However, as is clear from the table below, which No.
It was found that in Nos. 1 to 6, the method of the present invention (that is, B in which air was added to the fuel) provided higher output than the conventional method (A). Further, as a result of investigating the outlet gas component concentration, it was found that in the conventional method, the residual concentration of CH4 was high and the internal reforming reaction did not proceed sufficiently. This seems to be because the catalytic performance of the fuel electrode is not sufficient and a higher-performance catalyst or a larger amount of catalyst is required. Furthermore, cell no.
, 5 was used to change the amount of added air using the non-explosion OR method, and a power generation test was conducted. As a result, the 02/CH4 molar ratio was 0.4~
Almost the same output was obtained with 1.3, but the output decreased slightly outside this range. This indicates that there is an appropriate amount of air to be added, and in practice, it is necessary to select an amount of air sufficient for partial oxidation.

即ち、上記実施例は以下に列挙する効果を有する。That is, the above embodiment has the effects listed below.

■ 水に変って空気を用いるため、触媒性の低い燃料極
も使用できるとともに、カーボン析出のためのスチーム
添加量の選定、セル温度の制御等の課題を解消でき。
■ Since air is used instead of water, fuel electrodes with low catalytic properties can be used, and issues such as selecting the amount of steam added for carbon deposition and controlling cell temperature can be resolved.

■ 下記表に示す如〈従来法と比べ高出方が得られる。■ As shown in the table below, a higher yield can be obtained compared to the conventional method.

■ CH4等の炭化水素を燃料とした直接発電が可能で
ある。
■ Direct power generation using hydrocarbons such as CH4 as fuel is possible.

[発明の効果] 以上詳述した如く本発明によれば、触媒性の低い燃料極
も使用できる等の効果を有するとともに、高出力でかつ
CH,等の炭化水素を燃料とした直接発電が可能であり
、小型の5OFC発電プラント、改質用蒸気のメークア
ップが困難な5OFCプラントへの適用が有効な固体電
解燃料電池の運転方法を提供できる。
[Effects of the Invention] As detailed above, the present invention has effects such as being able to use fuel electrodes with low catalytic properties, and also enables direct power generation with high output using hydrocarbons such as CH as fuel. Therefore, it is possible to provide a method for operating a solid electrolytic fuel cell that is effective in application to small-sized 5OFC power plants and 5OFC plants where it is difficult to make up reforming steam.

Claims (1)

【特許請求の範囲】[Claims] 炭化水素系燃料を予め部分酸化に必要な量の空気と混合
して固体電解質燃料電池の燃料極に送給し、前記燃料電
池内で部分酸化反応による内部改質反応を生起させるこ
とを特徴とする固体電解質燃料電池の運転方法。
The method is characterized in that a hydrocarbon fuel is mixed in advance with air in an amount necessary for partial oxidation, and then fed to a fuel electrode of a solid electrolyte fuel cell to cause an internal reforming reaction by a partial oxidation reaction within the fuel cell. How to operate a solid electrolyte fuel cell.
JP61255161A 1986-10-27 1986-10-27 Operating method for solid electrolyte fuel cell Pending JPS63110557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255161A JPS63110557A (en) 1986-10-27 1986-10-27 Operating method for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255161A JPS63110557A (en) 1986-10-27 1986-10-27 Operating method for solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPS63110557A true JPS63110557A (en) 1988-05-16

Family

ID=17274908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255161A Pending JPS63110557A (en) 1986-10-27 1986-10-27 Operating method for solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPS63110557A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042675A1 (en) * 1996-05-07 1997-11-13 Robert Bosch Gmbh Device for generating heat and for electrochemical current generation
WO1997039490A3 (en) * 1996-04-12 1998-01-08 Ztek Corp Thermally enhanced compact reformer
NL1008832C2 (en) * 1998-04-07 1999-10-08 Univ Delft Tech A method of converting a carbon-containing material, a method of operating a fuel cell and a method of operating a fuel cell stack.
JP2006500758A (en) * 2002-09-27 2006-01-05 クエストエアー テクノロジーズ インコーポレイテッド Improved solid oxide fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864771A (en) * 1981-09-29 1983-04-18 ウエスチングハウス・エレクトリック・コーポレーション Fuel battery generating device and method of operating same
JPS6134865A (en) * 1984-07-27 1986-02-19 Hitachi Ltd Fuel cell power generating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864771A (en) * 1981-09-29 1983-04-18 ウエスチングハウス・エレクトリック・コーポレーション Fuel battery generating device and method of operating same
JPS6134865A (en) * 1984-07-27 1986-02-19 Hitachi Ltd Fuel cell power generating system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039490A3 (en) * 1996-04-12 1998-01-08 Ztek Corp Thermally enhanced compact reformer
US5858314A (en) * 1996-04-12 1999-01-12 Ztek Corporation Thermally enhanced compact reformer
US6183703B1 (en) 1996-04-12 2001-02-06 Ztek Corporation Thermally enhanced compact reformer
WO1997042675A1 (en) * 1996-05-07 1997-11-13 Robert Bosch Gmbh Device for generating heat and for electrochemical current generation
NL1008832C2 (en) * 1998-04-07 1999-10-08 Univ Delft Tech A method of converting a carbon-containing material, a method of operating a fuel cell and a method of operating a fuel cell stack.
WO1999052166A3 (en) * 1998-04-07 2000-01-20 Univ Delft Tech Method of converting a carbon-comprising material, method of operating a fuel cell stack, and a fuel cell
US6607853B1 (en) 1998-04-07 2003-08-19 Technische Universitiet Delft Method of converting a carbon-comprising material, method of operating a fuel cell stack, and a fuel cell
JP2006500758A (en) * 2002-09-27 2006-01-05 クエストエアー テクノロジーズ インコーポレイテッド Improved solid oxide fuel cell system

Similar Documents

Publication Publication Date Title
Ahmed et al. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells
JP4231907B2 (en) Operation method and system of solid oxide fuel cell system
JPH0364866A (en) Fuel cell system
ATE216136T1 (en) SOLID OXIDE FUEL CELL OPERATED WITH EXCESS FUEL
JPH0395867A (en) Solid electrolyte fuel cell
JP2001266924A (en) Solid electrolyte fuel cell system
Su et al. Thermodynamic analysis of fuel composition and effects of different dimethyl ether processing technologies on cell efficiency
JPH05163180A (en) Methanol synthesis using hydrocarbon gas as raw material
Ma et al. Comparison of integrated fuel processing options for biogas-fed solid-oxide fuel cell plants
CN101816090B (en) Fuel cell apparatus
JP2009037814A (en) Temperature decreasing method for high temperature region of solid-oxide fuel cell, and device for the same
Dollard Solid oxide fuel cell developments at Westinghouse
JP3071158B2 (en) Fuel cell power generator
JPS63110557A (en) Operating method for solid electrolyte fuel cell
KR101136234B1 (en) Biogas reforming system using waste heat, and biogas reforming method using the same
JPH06325783A (en) Internal reforming type fused carbonate type fuel cell system
Tsuda et al. Simulation of a thin film solid oxide fuel cell system equipped with an internal fuel reforming unit
JPH07106881B2 (en) Fuel cell reformer device
JP2015191692A (en) Method of stopping fuel battery system and fuel battery system
JPH04324253A (en) Fuel cell
JP2001189162A (en) Fuel cell system
Barz et al. Thermodynamics of hydrogen generation from methane for domestic polymer electrolyte fuel cell systems
JPH08250144A (en) Fuel cell generating system
JP2007200702A (en) Solid oxide fuel cell and its operating method
JPH03280360A (en) Fuel cell power-generating system