JPH08250144A - Fuel cell generating system - Google Patents

Fuel cell generating system

Info

Publication number
JPH08250144A
JPH08250144A JP7048064A JP4806495A JPH08250144A JP H08250144 A JPH08250144 A JP H08250144A JP 7048064 A JP7048064 A JP 7048064A JP 4806495 A JP4806495 A JP 4806495A JP H08250144 A JPH08250144 A JP H08250144A
Authority
JP
Japan
Prior art keywords
reformer
fuel cell
gas
fuel
reforming reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7048064A
Other languages
Japanese (ja)
Inventor
Masahiro Akiyoshi
正寛 秋吉
Toshiaki Shibata
俊昭 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7048064A priority Critical patent/JPH08250144A/en
Publication of JPH08250144A publication Critical patent/JPH08250144A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide a fuel cell generating system in which a reformer is reduced in size by reducing the flow rate of offgas flowing through the reformer. CONSTITUTION: Raw fuel gas 1 is mixed with hydrogen-rich gas supplied from the reforming reactor 4 of a reformer 3 and is supplied to the fuel electrode 8 of a fuel cell main body 7. A gas separation film 11 made by a hollow-thread film or the like is placed on the downstream side of the fuel electrode 8 of the fuel cell main body 7, and hydrocarbon separated by the gas separation film 11 is fed into the reforming reactor 4 of the reformer 3 via a heater 2. Mixed gases of H2 and CO2 separated by the gas separation film 11 are fed into the burner 9 of the reformer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池発電システムに
係り、特に、水素と炭化水素の混合燃料ガスである製油
所のオフガスを燃料とする燃料電池発電システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system, and more particularly to a fuel cell power generation system which uses off-gas of a refinery, which is a mixed fuel gas of hydrogen and hydrocarbon, as fuel.

【0002】[0002]

【従来の技術】従来から、燃料の有しているエネルギー
を直接電気的エネルギーに変換する装置として燃料電池
が知られている。この燃料電池は、通常、電解質を含浸
したマトリックスを挟んで一対の多孔質電極を配置する
とともに、一方の電極背面に水素等の流体燃料を接触さ
せ、また他方の電極背面に酸素等の流体酸化剤を接触さ
せ、この時に起こる電気化学的反応を利用して、上記両
電極間から電気エネルギーを取り出すように構成された
ものである。
2. Description of the Related Art Conventionally, a fuel cell has been known as a device for directly converting the energy of fuel into electrical energy. In this fuel cell, usually, a pair of porous electrodes are arranged with a matrix impregnated with an electrolyte sandwiched between them, a fluid fuel such as hydrogen is brought into contact with the back surface of one electrode, and a fluid oxidation such as oxygen is carried out on the back surface of the other electrode. It is configured such that an agent is brought into contact with each other and an electrochemical reaction that takes place at this time is utilized to take out electric energy from between the electrodes.

【0003】図2は、従来から用いられている高圧型燃
料電池発電システムの構成を示したものである。すなわ
ち、改質反応器4とバーナ9を備えた改質器3の上流側
にはヒータ2が配設され、また、下流側には、クーラ5
及びシフトコンバータ6を介して、燃料電池本体7の燃
料極8が接続されている。さらに、この燃料電池本体7
の燃料極8の出口ガスは、前記改質器3のバーナ9に送
られるように構成されている。
FIG. 2 shows the configuration of a conventional high-pressure fuel cell power generation system. That is, the heater 2 is arranged on the upstream side of the reformer 3 including the reforming reactor 4 and the burner 9, and the cooler 5 is arranged on the downstream side.
Further, the fuel electrode 8 of the fuel cell main body 7 is connected via the shift converter 6. Furthermore, this fuel cell body 7
The outlet gas of the fuel electrode 8 is sent to the burner 9 of the reformer 3.

【0004】この様な構成を有する従来の燃料電池発電
システムは、以下に述べる様に作用する。すなわち、原
燃料ガス1はヒータ2で所定の温度まで加熱され、改質
器3の改質反応器4において水素リッチガスに改質され
る。さらに、この水素リッチガスは、改質反応器4の下
流側に設けられたクーラ5で所定の温度に冷やされ、シ
フトコンバータ6でシフト反応により水素濃度がさらに
高められた後、燃料電池本体7の燃料極8に供給され
る。そして、燃料極8で水素が消費された燃料ガスは、
改質器3のバーナ9に送り込まれ、そこで燃焼されて、
改質器3の改質反応器4に燃焼熱を与えた後、排ガス1
0となってターボコンプレッサ(図示せず)の駆動源と
なる。
The conventional fuel cell power generation system having such a structure operates as described below. That is, the raw fuel gas 1 is heated to a predetermined temperature by the heater 2 and reformed into a hydrogen-rich gas in the reforming reactor 4 of the reformer 3. Further, this hydrogen-rich gas is cooled to a predetermined temperature by a cooler 5 provided on the downstream side of the reforming reactor 4, and the shift converter 6 further increases the hydrogen concentration by a shift reaction, and then the fuel cell main body 7 is cooled. It is supplied to the fuel electrode 8. Then, the fuel gas in which hydrogen is consumed in the fuel electrode 8 is
It is sent to the burner 9 of the reformer 3 and burned there,
After giving combustion heat to the reforming reactor 4 of the reformer 3, the exhaust gas 1
It becomes 0 and becomes a drive source of a turbo compressor (not shown).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た様な従来の燃料電池発電システムには、以下に述べる
様な解決すべき課題があった。すなわち、製油所のオフ
ガスを燃料電池発電システムの燃料として使用する場
合、このオフガスは水素と炭化水素の混合ガスであるた
め、オフガスの40%から70%を占める水素は、改質
器3における改質反応に関与せず、炭化水素のみが改質
器3における改質反応に関与する。したがって、改質器
3を流れるオフガスの全流量は、改質反応に関与する炭
化水素に比べて1.7〜3倍も多くなり、オフガス中の
炭化水素を効率良く改質しようとすると、改質器3の大
きさも大きくならざるを得なかった。
However, the conventional fuel cell power generation system as described above has the following problems to be solved. That is, when the off gas of the refinery is used as the fuel of the fuel cell power generation system, since the off gas is a mixed gas of hydrogen and hydrocarbons, hydrogen occupying 40% to 70% of the off gas is converted into hydrogen in the reformer 3. Only hydrocarbons participate in the reforming reaction in the reformer 3 without participating in the quality reaction. Therefore, the total flow rate of the off-gas flowing through the reformer 3 is 1.7 to 3 times higher than that of the hydrocarbons involved in the reforming reaction, and if the hydrocarbons in the off-gas are efficiently reformed, The size of the pouch 3 also had to be large.

【0006】本発明は、上述した様な従来技術の問題点
を解消するために提案されたもので、その目的は、改質
反応器入口における水素濃度を低くし、同時に炭化水素
濃度を高くすることにより、改質器を流れるオフガスの
流量を少なくして、改質器の縮小化を図った燃料電池発
電システムを提供することにある。
The present invention has been proposed in order to solve the problems of the prior art as described above, and its purpose is to reduce the hydrogen concentration at the reforming reactor inlet and at the same time increase the hydrocarbon concentration. Accordingly, the flow rate of off-gas flowing through the reformer is reduced to provide a fuel cell power generation system in which the reformer is downsized.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
燃料ガス中の水素濃度を増大させる改質反応器とこの改
質反応器に燃焼熱を供給するバーナを備えた改質器と、
前記改質反応器より得られた水素リッチガスを供給する
燃料電池本体を備えた燃料電池発電システムにおいて、
前記改質器が燃料電池本体の燃料極の下流側に配設さ
れ、燃料電池本体の燃料極と前記改質器との間にはガス
分離膜が配設され、このガス分離膜によって分離された
炭化水素が、前記改質器の改質反応器に送り込まれるよ
うに構成されていることを特徴とするものである。
According to the first aspect of the present invention,
A reforming reactor that increases the hydrogen concentration in the fuel gas, and a reformer that includes a burner that supplies combustion heat to the reforming reactor;
In a fuel cell power generation system including a fuel cell main body for supplying a hydrogen-rich gas obtained from the reforming reactor,
The reformer is arranged on the downstream side of the fuel electrode of the fuel cell body, and a gas separation membrane is arranged between the fuel electrode of the fuel cell body and the reformer, and is separated by the gas separation membrane. The hydrocarbon is configured to be fed into the reforming reactor of the reformer.

【0008】[0008]

【作用】請求項1記載の発明によれば、燃料電池本体の
燃料極の出口ガスを、ガス分離膜により炭化水素と
2 、CO2 の混合ガスに分離することにより、改質器
の改質反応器入口の炭化水素濃度を高くすることができ
る。これにより、炭化水素濃度の高いガスを改質反応器
に供給することができるので、改質反応器を流れるガス
の全流量を少なくすることができ、改質器の縮小化が可
能となる。
According to the invention described in claim 1, the outlet gas of the fuel electrode of the fuel cell main body is separated into a mixed gas of hydrocarbon, H 2 and CO 2 by the gas separation membrane to improve the reformer. The hydrocarbon concentration at the inlet of the quality reactor can be increased. As a result, a gas having a high hydrocarbon concentration can be supplied to the reforming reactor, so that the total flow rate of the gas flowing through the reforming reactor can be reduced and the reformer can be downsized.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1を参照して具
体的に説明する。なお、図2に示した従来型と同一の部
材には同一の符号を付して、説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIG. The same members as those of the conventional type shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.

【0010】本実施例においては、図1に示した様に、
改質器3が燃料電池本体7の燃料極8の下流側に配設さ
れている点に大きな特徴がある。すなわち、原燃料ガス
1は、改質器3の改質反応器4から供給される水素リッ
チガスと合流して、燃料電池本体7の燃料極8に供給さ
れるように構成されている。また、前記燃料電池本体7
の燃料極8の下流側には、中空糸膜等より成るガス分離
膜11が配設され、このガス分離膜11によって分離さ
れた炭化水素が、ヒータ2を介して、改質器3の改質反
応器4に送り込まれるように構成されている。一方、前
記ガス分離膜11によって分離されたH2 、CO2 の混
合ガスは、改質器3のバーナ9に送り込まれるように構
成されている。
In this embodiment, as shown in FIG.
A major feature is that the reformer 3 is disposed on the downstream side of the fuel electrode 8 of the fuel cell body 7. That is, the raw fuel gas 1 joins the hydrogen-rich gas supplied from the reforming reactor 4 of the reformer 3 and is supplied to the fuel electrode 8 of the fuel cell body 7. In addition, the fuel cell body 7
A gas separation membrane 11 made of a hollow fiber membrane or the like is disposed on the downstream side of the fuel electrode 8, and the hydrocarbon separated by the gas separation membrane 11 passes through the heater 2 and is reformed in the reformer 3. It is configured to be fed into the quality reactor 4. On the other hand, the mixed gas of H 2 and CO 2 separated by the gas separation membrane 11 is sent to the burner 9 of the reformer 3.

【0011】この様な構成を有する本実施例の燃料電池
発電システムは、以下に述べる様に作用する。すなわ
ち、原燃料ガス1(水素と炭化水素の混合ガスである製
油所のオフガス)は、改質器3の改質反応器4から供給
される水素リッチガスと合流して、燃料電池本体7の燃
料極8に供給される。この燃料極8で水素を消費された
燃料ガスは、中空糸膜等より成るガス分離膜11によっ
て炭化水素とH2 、CO2 の混合ガスに分離される。
The fuel cell power generation system of this embodiment having such a structure operates as described below. That is, the raw fuel gas 1 (off-gas of the refinery, which is a mixed gas of hydrogen and hydrocarbons) merges with the hydrogen-rich gas supplied from the reforming reactor 4 of the reformer 3, and the fuel of the fuel cell body 7 is mixed. Supplied to pole 8. The fuel gas whose hydrogen has been consumed in the fuel electrode 8 is separated into a mixed gas of hydrocarbon and H 2 and CO 2 by a gas separation membrane 11 composed of a hollow fiber membrane or the like.

【0012】前記ガス分離膜11によって分離された炭
化水素は、ヒータ2により所定の温度まで加熱され、改
質器3の改質反応器4で水素リッチガスに改質される。
さらに、この水素リッチガスはクーラ5で所定の温度に
冷やされ、シフトコンバータ6でシフト反応により水素
濃度をさらに高められ、ブロワ12により昇圧されて、
上述した原燃料ガス1と合流する。
The hydrocarbon separated by the gas separation membrane 11 is heated to a predetermined temperature by the heater 2 and reformed into a hydrogen rich gas in the reforming reactor 4 of the reformer 3.
Further, this hydrogen-rich gas is cooled to a predetermined temperature by the cooler 5, the hydrogen concentration is further increased by the shift reaction by the shift converter 6, and the pressure is increased by the blower 12,
It merges with the raw fuel gas 1 described above.

【0013】一方、前記ガス分離膜11により分離され
たH2 、CO2 の混合ガスは、改質器3のバーナ9によ
り燃焼され、改質器3の改質反応器4に燃焼熱を与えた
後、排ガス10となりターボコンプレッサの駆動源とな
る。
On the other hand, the mixed gas of H 2 and CO 2 separated by the gas separation membrane 11 is burned by the burner 9 of the reformer 3 to give combustion heat to the reforming reactor 4 of the reformer 3. After that, it becomes the exhaust gas 10 and becomes the drive source of the turbo compressor.

【0014】この様に、本実施例の燃料電池発電システ
ムにおいては、燃料電池本体7の燃料極8の出口ガスを
ガス分離膜11により炭化水素とH2 、CO2 の混合ガ
スに分離することにより、改質器3の改質反応器4の入
口における炭化水素濃度を高くすることができる。さら
に、水素濃度が低く炭化水素濃度の高いガスを、改質器
3の改質反応器4に供給して改質することにより、改質
器3を流れるガスの流量を少なくすることができるの
で、改質器3の大きさを小さくすることができる。ま
た、これに伴って、クーラ、ヒータ、シフトコンバータ
及びこれらを接続する配管の大きさも小さくすることが
できる。さらに、前記ガス分離膜11により分離された
2 、CO2 の混合ガスを、改質器3のバーナ9により
燃焼させることにより、改質反応器4に燃焼熱を与える
ことができるので、システム全体としての熱利用効率も
向上する。
As described above, in the fuel cell power generation system of this embodiment, the outlet gas of the fuel electrode 8 of the fuel cell body 7 is separated by the gas separation membrane 11 into a mixed gas of hydrocarbon, H 2 and CO 2. Thereby, the hydrocarbon concentration at the inlet of the reforming reactor 4 of the reformer 3 can be increased. Further, by supplying a gas having a low hydrogen concentration and a high hydrocarbon concentration to the reforming reactor 4 of the reformer 3 for reforming, the flow rate of the gas flowing through the reformer 3 can be reduced. The size of the reformer 3 can be reduced. Along with this, the sizes of the cooler, the heater, the shift converter, and the pipes connecting them can be reduced. Further, by burning the mixed gas of H 2 and CO 2 separated by the gas separation membrane 11 by the burner 9 of the reformer 3, combustion heat can be given to the reforming reactor 4, so that the system The heat utilization efficiency as a whole is also improved.

【0015】[0015]

【発明の効果】以上述べた様に、本発明によれば、燃料
電池本体の下流側に改質器を配設し、また、燃料電池本
体の燃料極と前記改質器との間にガス分離膜を配設し、
このガス分離膜によって分離した炭化水素を、改質器の
改質反応器に送り込むように構成することにより、改質
反応器入口における水素濃度を低くし、同時に炭化水素
濃度を高くすることができるので、改質器を流れるオフ
ガスの流量を少なくして、改質器の縮小化を図った燃料
電池発電システムを提供することができる。
As described above, according to the present invention, the reformer is disposed on the downstream side of the fuel cell body, and the gas is provided between the fuel electrode of the fuel cell body and the reformer. With a separation membrane,
By configuring the hydrocarbon separated by this gas separation membrane to be fed to the reforming reactor of the reformer, the hydrogen concentration at the inlet of the reforming reactor can be lowered and at the same time the hydrocarbon concentration can be increased. Therefore, it is possible to provide a fuel cell power generation system in which the reformer is downsized by reducing the flow rate of off-gas flowing through the reformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の燃料電池発電システムの一実施例を示す
構成図
FIG. 1 is a configuration diagram showing an embodiment of a fuel cell power generation system of the invention.

【図2】従来の燃料電池発電システムの一例を示す構成
FIG. 2 is a configuration diagram showing an example of a conventional fuel cell power generation system.

【符号の説明】[Explanation of symbols]

1…原燃料ガス 2…ヒータ 3…改質器 4…改質反応器 5…クーラ 6…シフトコンバータ 7…燃料電池本体 8…燃料極 9…バーナ 10…排ガス 11…ガス分離膜 12…ブロワ 1 ... Raw fuel gas 2 ... Heater 3 ... Reformer 4 ... Reforming reactor 5 ... Cooler 6 ... Shift converter 7 ... Fuel cell body 8 ... Fuel electrode 9 ... Burner 10 ... Exhaust gas 11 ... Gas separation membrane 12 ... Blower

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガス中の水素濃度を増大させる改質
反応器とこの改質反応器に燃焼熱を供給するバーナを備
えた改質器と、前記改質反応器より得られた水素リッチ
ガスを供給する燃料電池本体を備えた燃料電池発電シス
テムにおいて、 前記改質器が燃料電池本体の燃料極の下流側に配設さ
れ、燃料電池本体の燃料極と前記改質器との間にはガス
分離膜が配設され、このガス分離膜によって分離された
炭化水素が、前記改質器の改質反応器に送り込まれるよ
うに構成されていることを特徴とする燃料電池発電シス
テム。
1. A reforming reactor equipped with a reforming reactor for increasing hydrogen concentration in fuel gas, a burner for supplying combustion heat to the reforming reactor, and a hydrogen-rich gas obtained from the reforming reactor. In the fuel cell power generation system including a fuel cell main body for supplying the fuel cell, the reformer is disposed on the downstream side of the fuel electrode of the fuel cell main body, and between the fuel electrode of the fuel cell main body and the reformer. A fuel cell power generation system, comprising a gas separation membrane, wherein the hydrocarbon separated by the gas separation membrane is sent to a reforming reactor of the reformer.
JP7048064A 1995-03-08 1995-03-08 Fuel cell generating system Pending JPH08250144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7048064A JPH08250144A (en) 1995-03-08 1995-03-08 Fuel cell generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7048064A JPH08250144A (en) 1995-03-08 1995-03-08 Fuel cell generating system

Publications (1)

Publication Number Publication Date
JPH08250144A true JPH08250144A (en) 1996-09-27

Family

ID=12792929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7048064A Pending JPH08250144A (en) 1995-03-08 1995-03-08 Fuel cell generating system

Country Status (1)

Country Link
JP (1) JPH08250144A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
WO2001004045A1 (en) * 1999-07-09 2001-01-18 Ebara Corporation Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
WO2001004046A1 (en) * 1999-07-13 2001-01-18 Ebara Corporation Method for electric power generation using fuel cell and electric power generation system using fuel cell
JP2016513867A (en) * 2013-03-15 2016-05-16 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integration of molten carbonate fuel cells in refinery arrangements.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
WO2001004045A1 (en) * 1999-07-09 2001-01-18 Ebara Corporation Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell
WO2001004046A1 (en) * 1999-07-13 2001-01-18 Ebara Corporation Method for electric power generation using fuel cell and electric power generation system using fuel cell
JP2016513867A (en) * 2013-03-15 2016-05-16 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Integration of molten carbonate fuel cells in refinery arrangements.

Similar Documents

Publication Publication Date Title
CA2473449C (en) Solid oxide fuel cell system
JP2926259B2 (en) Solid electrolyte fuel cell
JPH09129255A (en) Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell
JPH0364866A (en) Fuel cell system
JP2007128680A (en) Fuel cell system
JP3100791B2 (en) Fuel cell power generator
JPH08250144A (en) Fuel cell generating system
JPS63207054A (en) Solid electrolyte fuel cell power generator
JP3079317B2 (en) Molten carbonate fuel cell power generator
JP3358956B2 (en) Solid electrolyte fuel cell module
JP3246515B2 (en) Fuel cell system
JPS6134865A (en) Fuel cell power generating system
JP2005502178A (en) Apparatus and method for supplying hydrogen to a fuel cell and use of the fuel cell for electrically driving a vehicle
JP2001115172A (en) Co-reforming apparatus
JP3377523B2 (en) Fuel cell system
JP2004189510A (en) Reforming system, operation method of the same and fuel cell system and operation method of the same
JP2001106513A (en) Fuel reforming device
JPH0613094A (en) Fuel exhaust gas recycle system for indirect internal reformed molten carbonate fuel cell
JP2001189162A (en) Fuel cell system
JPH06103994A (en) Fuel cell power generating system
JP2003178790A (en) Fuel cell power generation system
JPH0456072A (en) Flat type solid electrolytic fuel cell
JP3693933B2 (en) Operation method of solid oxide fuel cell
JP2981571B2 (en) Solid electrolyte fuel cell
JP2003317772A (en) Fuel cell power generation system