JPS61251083A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61251083A
JPS61251083A JP9167585A JP9167585A JPS61251083A JP S61251083 A JPS61251083 A JP S61251083A JP 9167585 A JP9167585 A JP 9167585A JP 9167585 A JP9167585 A JP 9167585A JP S61251083 A JPS61251083 A JP S61251083A
Authority
JP
Japan
Prior art keywords
layer
guard ring
impurity layer
type
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9167585A
Other languages
Japanese (ja)
Inventor
Yasuyuki Higuchi
樋口 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP9167585A priority Critical patent/JPS61251083A/en
Publication of JPS61251083A publication Critical patent/JPS61251083A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive the reduction in size of a chip or the enhancement of integration of an integrated circuit by surrounding an impurity layer with the guard ring layer which is the same conductive type as the impurity layer and is shallower than the diffusion depth of the impurity layer. CONSTITUTION:A planar type high withstand voltage diode 1 is provided with an insulating film 20 consisting of a silicon oxide film covering a surface of a semiconductor substrate 10 consisting of N-type silicon, a P-type impurity layer 40 formed by diffusion in a predetermined position of the semiconductor substrate 10, a P-type guard ring layer 50 surrounding the impurity layer 40, a P-type electrode 60, and an N-type electrode 70. The guard ring layer 50 is formed by diffusion so that it becomes shallower than the diffusion depth of the impurity layer 40. The part designated by the dashed line is a depletion layer. The expansion in lateral direction of the guard ring layer is restrained without hindering the purpose of expanding the depletion layer.

Description

【発明の詳細な説明】 主l上皇料里分! この発明は、プレーナ形高耐圧のダイオードおよびトラ
ンジスタ等の半導体装置に係り、特に高集積化或いはチ
ップ面積の縮小化を図る場合に有利な半導体装置に関す
る。
[Detailed Description of the Invention] Lord Retirement Emperor Ryobun! The present invention relates to semiconductor devices such as planar high-voltage diodes and transistors, and particularly to semiconductor devices that are advantageous for achieving high integration or reducing chip area.

従来夏狡丑 従来、ブレーナ形のダイオードおよびトランジスタ等の
半導体装置を高耐圧とするために、その不純物層の回り
を前記不純物層と同一導電型のガードリング層で取り囲
んだものが特公昭40−12739号に見られる。これ
によれば、前記ガードリング層と前記不純物層との拡散
深さが同一になされている。
Traditionally, in order to make semiconductor devices such as Brenna-type diodes and transistors have a high breakdown voltage, an impurity layer was surrounded by a guard ring layer of the same conductivity type as the impurity layer. Seen in No. 12739. According to this, the diffusion depths of the guard ring layer and the impurity layer are made the same.

(シよ゛と る− 占 一般に、不純物を拡散するときには、その拡散深さと比
例して横方向への拡がりを伴うという特性がある。つま
り、ガードリング層と不純物層との拡散深さを同一にし
た従来の方式では、ガードリング層の表面面積の増大を
余儀なくされるという欠点がある。このことに基づき、
チップサイズの縮小化或いは集積回路の高集積化を図る
には非常に不利となる。
(Based on this) In general, when impurities are diffused, there is a characteristic that they spread in the lateral direction in proportion to the diffusion depth.In other words, if the diffusion depths of the guard ring layer and the impurity layer are the same, The conventional method in which the guard ring layer is formed has the disadvantage that the surface area of the guard ring layer has to be increased.Based on this,
This is extremely disadvantageous in reducing the chip size or increasing the degree of integration of integrated circuits.

この発明は上記事情に鑑みて創案されたもので、ガード
リング層の表面面積を比較的小さくし、チップサイズの
縮小化或いは集積回路の高集積化等において有利にせし
める半導体装置を提供することを目的としている。
This invention was devised in view of the above circumstances, and aims to provide a semiconductor device in which the surface area of the guard ring layer is made relatively small, which is advantageous in reducing chip size or increasing the degree of integration of integrated circuits. The purpose is

・占 ”の このためこの発明は、不純物層の廻りを、前記不純物層
と同一導電型で且つ前記不純物層の拡散深さよりも浅い
ガードリング層で取り囲んだ。
Therefore, in this invention, the impurity layer is surrounded by a guard ring layer having the same conductivity type as the impurity layer and having a shallower diffusion depth than the impurity layer.

皿 即ち、不純物層とガードリング層とを別々に拡散形成す
ることで、前記不純物層の拡散深さよりも前記ガードリ
ング層の拡散深さを浅くした。
In other words, by separately forming the impurity layer and the guard ring layer by diffusion, the diffusion depth of the guard ring layer is made shallower than that of the impurity layer.

1蓋! 以下、図面を参照してこの発明の一実施例を詳細に説明
する0本実施例では第1図に示すプレーナ形高耐圧ダイ
オード1を例として説明する。
1 lid! DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.In this embodiment, a planar type high voltage diode 1 shown in FIG. 1 will be explained as an example.

即ち、プレーナ形高耐圧ダイオード1は、N型のシリコ
ンからなる半導体基板10の表面を覆うシリコン酸化膜
からなる絶縁@20と、前記半導体基板10の所定位置
に拡散形成されたP型の不純物層40と、この不純物層
40の廻りを取り囲むP型のガードリングJit50と
、P型電極60と、N型電極70とを具備している。但
し、前記ガードリング層50は、不純物rEi!40の
拡散深さよりも浅く拡散形成されている。なお、図中破
線で示す部分は空乏層を示している。
That is, the planar type high voltage diode 1 includes an insulation@20 made of a silicon oxide film covering the surface of a semiconductor substrate 10 made of N-type silicon, and a P-type impurity layer diffused and formed in a predetermined position of the semiconductor substrate 10. 40, a P-type guard ring Jit50 surrounding the impurity layer 40, a P-type electrode 60, and an N-type electrode 70. However, the guard ring layer 50 contains impurities rEi! The diffusion depth is shallower than the diffusion depth of 40. Note that the portion indicated by a broken line in the figure indicates a depletion layer.

しかして、上記プレーナ形高耐圧ダイオード1の製造方
法の一例を第2図に従って以下説明する。
An example of a method for manufacturing the planar high voltage diode 1 will be described below with reference to FIG.

■ 半導体基板10の表面に絶縁膜20を成長させ、こ
の絶縁膜20の表面にホトレジスト30を塗布し、不純
物層を形成すべき部分に相当する前記ホトレジスト30
を除去する。このホトレジスト30をマスクとしてP型
の不純物をイオン打込みする(第2図(a)参照)。
(2) An insulating film 20 is grown on the surface of the semiconductor substrate 10, a photoresist 30 is applied to the surface of the insulating film 20, and the photoresist 30 is applied to the portion where the impurity layer is to be formed.
remove. Using this photoresist 30 as a mask, P-type impurity ions are implanted (see FIG. 2(a)).

■ 前記ホトレジスト30を剥離した後、前記イオン打
込みされた半導体基板10を熱処理することにより、前
記不純物を拡散させて不純物層40を形成する(第2図
山)参照)。
(2) After peeling off the photoresist 30, the ion-implanted semiconductor substrate 10 is heat-treated to diffuse the impurities and form an impurity layer 40 (see the top of FIG. 2).

■ 前記絶縁膜20の表面に再度ホトレジスト31を塗
布し、ガードリング層を形成すべき部分に相当する前記
ホトレジスト31を除去する。このホトレジスト31を
マスクとしてP型の不純物をイオン打込みする(第2図
(C)参照)。
(2) A photoresist 31 is applied again to the surface of the insulating film 20, and the photoresist 31 corresponding to the portion where the guard ring layer is to be formed is removed. P-type impurity ions are implanted using this photoresist 31 as a mask (see FIG. 2(C)).

■ 前記ホトレジスト31を剥離した後、前記イオン打
込みされた半導体基板10を適宜に熱処理する′ことに
より、前記不純物を前記不純物層40よりも浅く拡散さ
せてガードリング層50を形成する(第2図(d)参照
)。なお、前記ガードリング層50の拡散時における横
方向の拡がりは拡散深さに比例することに基づき、その
表面面積が比較的小さくなりている。
(2) After peeling off the photoresist 31, the ion-implanted semiconductor substrate 10 is appropriately heat-treated to diffuse the impurity to a depth shallower than the impurity layer 40 and form a guard ring layer 50 (see FIG. 2). (see (d)). Note that the surface area of the guard ring layer 50 is relatively small because the lateral expansion of the guard ring layer 50 during diffusion is proportional to the diffusion depth.

上記工程において、不純物層40、ガードリング層50
は、固相拡散、液相拡散および気相拡散等でもって拡散
形成されるも可能である。
In the above steps, the impurity layer 40, the guard ring layer 50
can also be formed by diffusion by solid phase diffusion, liquid phase diffusion, gas phase diffusion, etc.

なお、上記実施例において、前記不純物層40の拡散深
さを10μm程度に、ガードリング1i50の拡散深さ
を3〜5μm程度にそれぞれ設定した場合、耐圧が低下
しないことが確認された。
In the above example, it was confirmed that when the diffusion depth of the impurity layer 40 was set to about 10 μm and the diffusion depth of the guard ring 1i50 was set to about 3 to 5 μm, the withstand voltage did not decrease.

また、この発明は上記実施例に限定されることはなく、
例えばパワートランジスタ等に適用できることは勿論で
ある。
Furthermore, the present invention is not limited to the above embodiments,
Of course, it can be applied to power transistors, etc., for example.

発皿五処果 以上詳説したようにこの発明によれば、空乏層を広げる
という目的に支障を来すことなく、前記ガードリング層
の横方向の拡がりを抑えることができる。即ち、ガード
リング層の表面面積を従来と比較して小さくすることが
できるから、チップサイズの縮小化或いは集積回路の高
集積化を図る場合に有利となる。特に、前記ガードリン
グ層を不純物層の外周に多重に配設させるような場合や
、不純物層の拡散深さが深いような構造の半導体装置(
パワー素子等)の場合において、この発明による効果が
顕著にあられれる。
As described in detail above, according to the present invention, it is possible to suppress the lateral expansion of the guard ring layer without impeding the purpose of expanding the depletion layer. That is, the surface area of the guard ring layer can be made smaller than that of the conventional method, which is advantageous in reducing the chip size or increasing the degree of integration of the integrated circuit. In particular, in cases where the guard ring layers are arranged in multiple layers around the outer periphery of the impurity layer, or in a semiconductor device with a structure in which the impurity layer has a deep diffusion depth (
(power devices, etc.), the effects of the present invention are noticeable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る半導体装置の一実施例を示す断
面説明図、第2図は第1図のブレーナ形高耐圧ダイオー
ドの製造方法を示す断面説明図である。 1・・・プレーナ形高耐圧ダイオード、10・・・半導
体基板、20・・・絶縁膜、40・・・不純物層、50
・・・ガードリング層。
FIG. 1 is an explanatory cross-sectional view showing an embodiment of a semiconductor device according to the present invention, and FIG. 2 is an explanatory cross-sectional view showing a method for manufacturing the Brehner type high voltage diode shown in FIG. DESCRIPTION OF SYMBOLS 1... Planar type high voltage diode, 10... Semiconductor substrate, 20... Insulating film, 40... Impurity layer, 50
...Guard ring layer.

Claims (1)

【特許請求の範囲】[Claims] (1)一方導電型の不純物層の回りを前記不純物層と同
一導電型のガードリング層で取り囲んだ半導体装置にお
いて、前記ガードリング層は、前記不純物層の拡散深さ
よりも浅く拡散形成されていることを特徴とする半導体
装置。
(1) In a semiconductor device in which an impurity layer of one conductivity type is surrounded by a guard ring layer of the same conductivity type as the impurity layer, the guard ring layer is formed by diffusion to a depth shallower than the diffusion depth of the impurity layer. A semiconductor device characterized by:
JP9167585A 1985-04-26 1985-04-26 Semiconductor device Pending JPS61251083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9167585A JPS61251083A (en) 1985-04-26 1985-04-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9167585A JPS61251083A (en) 1985-04-26 1985-04-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61251083A true JPS61251083A (en) 1986-11-08

Family

ID=14033062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9167585A Pending JPS61251083A (en) 1985-04-26 1985-04-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61251083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156936A (en) * 2004-10-25 2006-06-15 Matsushita Electric Ind Co Ltd Voltage regulating diode and its manufacturing method
JP2006332127A (en) * 2005-05-23 2006-12-07 Toshiba Corp Semiconductor device for power

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552257A (en) * 1978-10-10 1980-04-16 Bbc Brown Boveri & Cie Power semiconductor element having band guardring
JPS5660055A (en) * 1979-10-20 1981-05-23 Nec Home Electronics Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552257A (en) * 1978-10-10 1980-04-16 Bbc Brown Boveri & Cie Power semiconductor element having band guardring
JPS5660055A (en) * 1979-10-20 1981-05-23 Nec Home Electronics Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156936A (en) * 2004-10-25 2006-06-15 Matsushita Electric Ind Co Ltd Voltage regulating diode and its manufacturing method
JP2006332127A (en) * 2005-05-23 2006-12-07 Toshiba Corp Semiconductor device for power

Similar Documents

Publication Publication Date Title
US4343080A (en) Method of producing a semiconductor device
US3466510A (en) Integrated graetz rectifier circuit
JP2003069045A (en) Semiconductor device
WO2006082618A1 (en) Semiconductor device and method for manufacturing the same
JPH10294475A (en) Semiconductor device and its manufacture
JPS61251083A (en) Semiconductor device
KR970053502A (en) Semiconductor device and manufacturing method thereof
JPS6237547B2 (en)
JP2000299457A (en) Semiconductor device and its manufacture
JPS57134956A (en) Manufacture of semiconductor integrated circuit
JPH0472771A (en) Mosfet
JPH01166562A (en) Semiconductor device
JP2003347560A (en) Method of manufacturing bidirectional zener diode
JP3257225B2 (en) Planar type semiconductor device and method of manufacturing the same
JPS6129149A (en) Semiconductor integrated circuit device
JPS597228B2 (en) Zetsuen Gate Handout Taisouchino Seizouhouhou
JPS60138937A (en) Substrate for integrated circuit
JPS6333306B2 (en)
JPH0387072A (en) Semiconductor device
JP2002246595A (en) Transistor
JPH036844A (en) Manufacture of semiconductor integrated circuit
JPH05283715A (en) Highly stable zener diode
JPH06216373A (en) Semiconductor device
JPS6334973A (en) Semiconductor device
JPS6292452A (en) Manufacture of semiconductor device