JPS61247680A - Soi crystal growth process - Google Patents

Soi crystal growth process

Info

Publication number
JPS61247680A
JPS61247680A JP8692385A JP8692385A JPS61247680A JP S61247680 A JPS61247680 A JP S61247680A JP 8692385 A JP8692385 A JP 8692385A JP 8692385 A JP8692385 A JP 8692385A JP S61247680 A JPS61247680 A JP S61247680A
Authority
JP
Japan
Prior art keywords
film
soi
oxidized
sample
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8692385A
Other languages
Japanese (ja)
Inventor
Shuichi Saito
修一 齋藤
Hidekazu Okabayashi
岡林 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8692385A priority Critical patent/JPS61247680A/en
Publication of JPS61247680A publication Critical patent/JPS61247680A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow easily a SOI CRYSTAL by forming an insulated SOI sample to have a structure that a polysilicon film doped with oxygen is inserted between oxidized films and allowing the heat conductivity of a seed to approach a heat conductivity of the insultated SOI sample. CONSTITUTION:After forming an oxidized film 2 on a Si (100) substrate 1, the oxidized film 2 is patterned by forming a polysilicon film 3 doped with oxygen by carrying out vapor growth reaction between SiH4 gas and N2O gas. The film 3 is then oxidized to form an oxidized film 4. Then, a seed part 8 is formed by causing growth of monocrystalline Si; thereafter, a polysilicon film 5, oxidized film 6, and a nitrided film 7 are deposited and heat-treated to obtain thus a SOI sample having a seed. The sample is then irradiated with linear electron beam to cause growth of SOI crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表面に付着された非晶質あるいは多結晶膜を溶
融してSOI結晶を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming SOI crystals by melting an amorphous or polycrystalline film deposited on a surface.

〔従来の技術〕[Conventional technology]

シートを有するSOI構造試料において、レーザ、電子
ビームあるいは他の熱源を用いて、表面に付着された非
晶質あるいは多結晶の半導体薄膜を溶融し結晶化させる
場合、シート部とSOI構造部とを比較すると、SOI
構造部は、通常、酸化膜や窒化膜の絶縁膜があるため、
熱伝導が悪く、シート部に比べ低い入射パワーで溶融す
ることが知られている163rd 5ociety M
ceting+Extended Abstracts
vol、 83−1 p 574゜ 〔発明が解決しようとする問題点〕 従って、シート部から基板の、備品の情報をSOI部ま
で伝え、5OIi結晶化するためには、シート部とSO
I部の両者を同時に溶融し、かつ、SOI部上で、半導
体薄膜の飛散などがない条件の下でSOI膜の結晶化を
行なわなければならず、最適な溶融範囲が限られるとい
う問題点がある。さらにシート部とSOI部とでは」二
連のように、熱体つ率の差によって同化の時の冷却速度
が異なり、絶縁物として酸化膜や窒化膜を用いている場
合、には、シート部の方が星<冷却するために、SOI
部での固化速度はシート部近傍では早く、シート、から
離れるに従い、固化速度は遅くなる。従って、シート部
から一方向に結晶全成長させる場合、、固化速度は、ビ
ード、部からの距離に応じて変化することになり、結晶
成長の点からは、望外しくないという問題もある。
When a laser, an electron beam, or other heat source is used to melt and crystallize an amorphous or polycrystalline semiconductor thin film attached to the surface of an SOI structure sample having a sheet, the sheet part and the SOI structure part are separated. In comparison, SOI
The structure usually has an insulating film such as an oxide film or a nitride film, so
163rd 5ociety M, which has poor thermal conductivity and is known to melt at a lower incident power than the sheet part.
ceting+Extended Abstracts
vol, 83-1 p 574゜ [Problems to be solved by the invention] Therefore, in order to transmit the information of the substrate and equipment from the sheet part to the SOI part and crystallize 5OIi, it is necessary to
Both parts of the I part must be melted at the same time, and the SOI film must be crystallized on the SOI part under conditions where there is no scattering of the semiconductor thin film, which poses the problem that the optimal melting range is limited. be. Furthermore, the cooling rate at the time of assimilation differs between the sheet part and the SOI part due to the difference in thermal mass coefficient, as in the case of two series, and when an oxide film or nitride film is used as an insulator, For cooling, SOI
The solidification rate is fast near the sheet, and the further away from the sheet, the slower the solidification rate. Therefore, when crystals are grown completely in one direction from the sheet portion, the solidification rate changes depending on the distance from the bead portion, which is not desirable from the point of view of crystal growth.

本発明は、このような従来の問題点全解決しSOIO晶
を成長させる際の成長条件を緩和し、SOIO晶を容易
に成長させる方法を提供することを目的としている。
An object of the present invention is to solve all of the conventional problems, relax the growth conditions for growing SOIO crystals, and provide a method for easily growing SOIO crystals.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明はシートを有するSOIO料において、SO工構
造を形成する絶縁物を、酸素全ドープしたポリシリコン
膜が酸化膜ではさみ込まれた構造に形成するとともに前
記絶縁物の熱の伝導率を、シート部の熱伝導率に可及的
近づけることを特徴とするsor結晶成長法である。
The present invention provides an SOIO material having a sheet, in which the insulator forming the SO structure is formed into a structure in which a fully oxygen-doped polysilicon film is sandwiched between oxide films, and the thermal conductivity of the insulator is This is a sor crystal growth method characterized by making the thermal conductivity as close as possible to that of the sheet portion.

〔原理・作用〕[Principle/effect]

SOIO料の絶縁物を半絶縁性の酸素をドープ(約30
%)したポリシリコン膜で形成してシート部と絶縁物と
の熱伝導率全近づけることによりSOI結晶成長時の成
長条件の範囲が緩和される。
The SOIO material insulator is doped with semi-insulating oxygen (approximately 30
%), the range of growth conditions during SOI crystal growth can be relaxed by making the thermal conductivity of the sheet portion and the insulator close to each other.

しかし、酸素をドープしたポリシリコン膜では、界面の
電気的特性などが不十分であり、界面特性全改善させる
ために、酸素ドープされたポリシリコン膜を酸化膜では
さみ込んだ構造としている。
However, the oxygen-doped polysilicon film has insufficient electrical characteristics at the interface, and in order to completely improve the interface characteristics, a structure is used in which the oxygen-doped polysilicon film is sandwiched between oxide films.

〔実施例〕〔Example〕

以下、本実施例をもとに、図面を参照しながら本発明の
詳細な説明する。第1図は、本実施例に用いた試料の断
面図を示す。St (100) 1基板上に酸化膜2−
< 500 Xの厚さに熱酸化により形成した後、Si
H4ガスとN20ガスの気相成長反応により、酸素濃度
30〜36チのポリシリコンi 3 を0.9μm形成
シた。パターニング後、ポリシリコン膜3を酸素雰囲気
中で酸化し酸化膜4 < 500 X形成した。
Hereinafter, the present invention will be described in detail based on this embodiment and with reference to the drawings. FIG. 1 shows a cross-sectional view of the sample used in this example. St (100) 1 Oxide film 2- on substrate
After forming by thermal oxidation to a thickness of <500×, Si
By a vapor phase growth reaction of H4 gas and N20 gas, polysilicon i 3 having an oxygen concentration of 30 to 36 cm was formed to a thickness of 0.9 μm. After patterning, the polysilicon film 3 was oxidized in an oxygen atmosphere to form an oxide film 4 <500X.

次に、シート部8として選択エピタキシャル成長法によ
シ単結晶シリコンを成長させ、シート部8と、SOI構
造部の絶縁膜との段差を小さくした。
Next, single-crystal silicon was grown as the sheet portion 8 by selective epitaxial growth to reduce the level difference between the sheet portion 8 and the insulating film of the SOI structure portion.

次にCVD法によりポリシリコン膜5に0.5μm1酸
化膜6を1.0μm及び窒化膜7 y2 xooofi
付着させ、最後に、窒素ガス中で1000°020分間
の熱処理を行なった。この様な試料を、線状電子と一ム
アニール装置を用いて、SOIO晶の成長を行なった。
Next, a 0.5 μm thick oxide film 6 and a 1.0 μm thick nitride film 7 are formed on the polysilicon film 5 using the CVD method.
After adhesion, the film was finally heat treated at 1000° for 20 minutes in nitrogen gas. SOIO crystal was grown on such a sample using linear electrons and a one-mole annealing device.

線状電子ビームのアニール条件は加速電圧15kV。The annealing condition for the linear electron beam is an accelerating voltage of 15 kV.

ビーム電流80〜90m1、走査速度70〜90crn
/度、基板温度600℃であった。また、線状ビームの
サイズは、長さ約4鍋、幅約0.3 rnmであった。
Beam current 80-90ml, scanning speed 70-90crn
/ degree, and the substrate temperature was 600°C. Further, the size of the linear beam was about 4 pots long and about 0.3 nm wide.

この様な条件でアニールを行なったところ、シート部8
とSO工槽構造領域のポリシリコン5の溶融条件はほぼ
同じであシ、溶融開始するための最低の入射パワーの差
は、はとんどなかった。なお、絶縁物として酸化膜のみ
使用した場合にはシート部とSOI構造部とでのポリシ
リコン膜を溶融するための最低の入射パワーの差が約2
0%であった。
When annealing was performed under these conditions, the sheet portion 8
The melting conditions for the polysilicon 5 in the SO tank structure region were almost the same, and there was little difference in the minimum incident power for starting melting. Note that when only an oxide film is used as an insulator, the difference in the minimum incident power for melting the polysilicon film between the sheet part and the SOI structure part is approximately 2.
It was 0%.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によシ、SOIO晶を溶融し成長させる場
合、シート部とSOI構造部におけるポリシリコン層の
溶融条件が近づき、SOIO晶成長の条件が緩和され、
またシート部付近で溶融したポリシリコンの固化速度の
変化も小さくなり、SOIO晶を容易に成長させること
ができる効果?有するものである。
According to the method of the present invention, when the SOIO crystal is melted and grown, the melting conditions of the polysilicon layer in the sheet portion and the SOI structure portion become close, and the conditions for SOIO crystal growth are relaxed.
Also, the change in the solidification rate of melted polysilicon near the sheet part is also reduced, making it easier to grow SOIO crystals. It is something that you have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本実施例で用いたSOIO造試料の断面図を
示す。 tI:′X 1・・・5l(100)基板、2.4.6・・・酸化膜
、3・・・酸素ドープポリシリコン、5・・・ポリシリ
コン、7・・・窒化膜、8・・・シート部。
FIG. 1 shows a cross-sectional view of the SOIO fabricated sample used in this example. tI:'・・Seat part.

Claims (1)

【特許請求の範囲】[Claims] (1)シートを有するSOI試料において、SOI構造
を形成する絶縁物を、酸素をドープしたポリシリコン膜
が酸化膜ではさみ込まれた構造に形成するとともに前記
絶縁物の熱伝導率を、シート部の熱伝導率に可及的近づ
けることを特徴とするSOI結晶成長法。
(1) In an SOI sample having a sheet, the insulator forming the SOI structure is formed into a structure in which an oxygen-doped polysilicon film is sandwiched between oxide films, and the thermal conductivity of the insulator is An SOI crystal growth method characterized by making the thermal conductivity as close as possible to that of .
JP8692385A 1985-04-23 1985-04-23 Soi crystal growth process Pending JPS61247680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8692385A JPS61247680A (en) 1985-04-23 1985-04-23 Soi crystal growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8692385A JPS61247680A (en) 1985-04-23 1985-04-23 Soi crystal growth process

Publications (1)

Publication Number Publication Date
JPS61247680A true JPS61247680A (en) 1986-11-04

Family

ID=13900377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8692385A Pending JPS61247680A (en) 1985-04-23 1985-04-23 Soi crystal growth process

Country Status (1)

Country Link
JP (1) JPS61247680A (en)

Similar Documents

Publication Publication Date Title
US4500388A (en) Method for forming monocrystalline semiconductor film on insulating film
US5170231A (en) Silicon carbide field-effect transistor with improved breakdown voltage and low leakage current
JP2000223419A (en) Method of forming single crystal silicon layer, and semiconductor device and manufacture thereof
JPS6158879A (en) Preparation of silicon thin film crystal
JPS61247680A (en) Soi crystal growth process
JPH11233440A (en) Semiconductor device
JP3093762B2 (en) Method for manufacturing semiconductor device
JPH0395920A (en) Improving method for crystallinity
JPH10214790A (en) Production of thin silicon based semiconductor
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JPS60234312A (en) Formation of soi film
JPH0284772A (en) Manufacture of semiconductor device
JPH0334847B2 (en)
JPS6163018A (en) Manufacture of semiconductor thin film crystal layer
JPH0435019A (en) Thin film transistor
JPH02105517A (en) Manufacture of semiconductor device
JP2867402B2 (en) Method for manufacturing semiconductor device
JPS61284911A (en) Formation of single crystal thin film
JPS61232675A (en) Polycrystalline thin film transistor and manufacture thereof
JPS63184319A (en) Formation of single-crystal thin film
JPS59163817A (en) Substrate for semiconductor device
JPH02238617A (en) Crystal growth of semiconductor thin film
JPS6015916A (en) Manufacture of single crystal thin film
JPS63284864A (en) Manufacture of insulated-gate field-effect transistor
JPS6341210B2 (en)