JPS61245471A - Lead storage battery employing fluid electrolyte - Google Patents

Lead storage battery employing fluid electrolyte

Info

Publication number
JPS61245471A
JPS61245471A JP60086741A JP8674185A JPS61245471A JP S61245471 A JPS61245471 A JP S61245471A JP 60086741 A JP60086741 A JP 60086741A JP 8674185 A JP8674185 A JP 8674185A JP S61245471 A JPS61245471 A JP S61245471A
Authority
JP
Japan
Prior art keywords
voltage
positive
electrolyte
terminal voltage
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60086741A
Other languages
Japanese (ja)
Other versions
JPH0518227B2 (en
Inventor
Kunio Yonezu
米津 邦雄
Katsuto Takahashi
克仁 高橋
Atsushi Hirao
平尾 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60086741A priority Critical patent/JPS61245471A/en
Publication of JPS61245471A publication Critical patent/JPS61245471A/en
Publication of JPH0518227B2 publication Critical patent/JPH0518227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PURPOSE:To lengthen the service life of lead storage battery by applying higher voltage than the inter-terminal voltage boosted through a booster chopper be tween the positive or negative plate and another electrode or two other electrodes upon exceeding of the inter-terminal voltage over specific level. CONSTITUTION:Positive end negative plates 1, 2 are arranged through a separator 3 in a battery jar and a cover then fluid electrolyte 6 is filled in the tank 4. A booster chopper 10 is connected to the positive and negative electrode terminals 8, 9 and the electrodes 7, 7' having high oxygen and hydrogen overvoltage. If the terminal voltage 11 is lower than specific level, the voltage detecting section 12 of chopper 10 will stop the operation of booster section 13 while if it higher than specific level, the stop signal from the detecting section 12 is released to operate the booster section 13 while employing the voltage 11 as power source. Consequently, sufficient gas for agitating the electrolyte can be produced from the electrode even at the stage where gas is scarcely produced from the positive and negative electrode under charging, resulting in suppression of decrease of electrolyte and lengthening of service life.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流動性電解液を有する充放電用鉛蓄電池、とく
に充電方法を改良した鉛IJ電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a lead-acid battery for charging and discharging having a fluid electrolyte, and particularly to a lead-acid IJ battery with an improved charging method.

従来の伎術とその問題点 鉛ti電池の充/IQ反応は下式の通りで、電解液の硫
酸が111与する。硫酸は放電すると消費され、充電す
ると極板から放出ぎれる。
Conventional art and its problems The charging/IQ reaction of a lead ti battery is as shown in the equation below, and the electrolyte sulfuric acid gives 111 points. Sulfuric acid is consumed when discharging, and is released from the plates when charging.

Pb + Pb O2+  2112  S O4ri
  2PbSOn  +  21−12 0硫酸水溶液
は濃いほど比重が畠いから、充電で生成した高比重の電
解液はセル内で底部へ降下し、上部は低比重、下部は高
化mという成層化を生じる。この成層化は容ff1Ji
l失や下部の極板劣1ヒをもたらすので好ましくない。
Pb + Pb O2+ 2112 S O4ri
2PbSOn + 21-12 0 The thicker the sulfuric acid aqueous solution, the higher the specific gravity, so the electrolyte with high specific gravity generated during charging falls to the bottom within the cell, creating a stratification in which the upper part has a lower specific gravity and the lower part has a higher specific gravity. . This stratification is
This is undesirable because it causes damage to the electrode and the lower electrode plate deteriorates.

これを解消するには放電圧の20〜30%という甚だし
い過充電を行なって極板からの多量のガツシングによっ
て電解液を撹拌する必要がある。この過充電を繰返(と
水が電解され減少して補水を頻繁に行なわねばならない
だけでなく、正極格子の腐食を加速して′)JJO命と
なる問題があった。
In order to solve this problem, it is necessary to carry out severe overcharging of 20 to 30% of the discharge voltage and stir the electrolytic solution by a large amount of gassing from the electrode plates. There was a problem in which this overcharging was repeated (and the water was electrolyzed and decreased, requiring frequent replenishment, as well as accelerating corrosion of the positive electrode grid, which could be fatal to the JJO).

問題点を解決するた°めの手段 本発明は端子電圧が規定値以上となったときに端子間に
接続した昇圧チョッパで昇圧した端子電圧よりも高い電
圧を、正または負極板と別に設けた一つの電極との問、
または別に設けた二つの電極間に印加する構成にして、
生爪の過充電で流動性電解液を有する充放電用鉛蓄電池
の成層化を効東的に解消しようとするものである。
Means for Solving the Problems The present invention provides a voltage higher than the terminal voltage, which is boosted by a boost chopper connected between the terminals when the terminal voltage exceeds a specified value, and is provided separately from the positive or negative electrode plate. Question with one electrode,
Alternatively, the voltage can be applied between two separately provided electrodes.
This is an attempt to efficiently eliminate the stratification of lead-acid batteries for charging and discharging that have a fluid electrolyte due to overcharging of raw nails.

作用 本発明になる鉛蓄電池は昇圧チョッパで端子電圧を昇圧
して電極間に印加するので、充分なガスが発生し、必要
以上に電極の過充電をしなくても成層化の解消ができ、
また、端子電圧が規定値以、Fになってから、すなわち
、電池の充電がある程度進行した時からだけガス発生ず
るようにできるので充電電力の損失も少なくなる。
Function: Since the lead-acid battery according to the present invention boosts the terminal voltage using a step-up chopper and applies it between the electrodes, sufficient gas is generated and stratification can be eliminated without overcharging the electrodes more than necessary.
Furthermore, since gas can be generated only after the terminal voltage reaches a specified value or F, that is, when the charging of the battery has progressed to a certain extent, the loss of charging power is also reduced.

実施例 本発明を1、実施例を模式的に示ず第1図によって説明
する。図において1は正極板、2は負極板、3はUパレ
ータ、4はffl槽および蓋、5は排気栓、0は流動性
電解液賃7および7′は酸素および水素31[圧の大き
な電極、8は正極端子、9は負極端子、10は昇圧チョ
ッパである。昇圧チョッパ10は正・負極端子8および
9と7および7′とにそれぞれ接続されており、前者が
入力、後者が出)jである。
EXAMPLE The present invention will be explained with reference to FIG. 1 without schematically showing an example. In the figure, 1 is the positive electrode plate, 2 is the negative electrode plate, 3 is the U palator, 4 is the ffl tank and lid, 5 is the exhaust plug, 0 is the fluid electrolyte, 7 and 7' are the oxygen and hydrogen 31 [high pressure electrodes] , 8 is a positive terminal, 9 is a negative terminal, and 10 is a boost chopper. The boost chopper 10 is connected to positive and negative terminals 8 and 9 and 7 and 7', respectively, with the former being an input and the latter being an output.

7271!i7および7′の材料は当然耐酸性、耐酸化
・還元性でなければならないが、酸素・水素過電圧の大
きなこともの要である。これは放nや放電のときにガス
発生を伴なう自己tJ4i7fliを防ぐためである。
7271! The materials for i7 and 7' must naturally be acid-resistant, oxidation-resistant, and reduction-resistant, but it is also essential that they have a high oxygen/hydrogen overvoltage. This is to prevent self-tJ4i7fli which accompanies gas generation during n emission or discharge.

また、ガスによる電解液の撹拌効果を大きくするために
電極7および7′は下方に配置することが好ましい。
Further, in order to increase the effect of stirring the electrolytic solution by the gas, it is preferable that the electrodes 7 and 7' be arranged below.

第2利は昇圧ヂ=1ツバの回路の一例を示すもので、電
圧検出部12と昇圧部13とから構成されている。
The second circuit shows an example of a circuit in which the voltage is boosted by 1, and is composed of a voltage detection section 12 and a voltage boosting section 13.

電圧検出部12は端子電圧11が規定値より低ければ次
段の昇圧部13の動作を停止させるためにダイオード1
5からなる基準電圧と端子電圧11とを比較器16で比
較している。
The voltage detecting section 12 connects a diode 1 to stop the operation of the next stage boosting section 13 if the terminal voltage 11 is lower than the specified value.
5 and the terminal voltage 11 are compared by a comparator 16.

比較P!116で比較を行なった結果、端子電圧11が
規定値より高いとなれば電圧検出rIA12がらの停止
信号が解除され、昇圧部13が端子電圧11を電源とし
て動作する。
Comparison P! As a result of the comparison in step 116, if the terminal voltage 11 is higher than the specified value, the stop signal from the voltage detection rIA 12 is released, and the booster 13 operates using the terminal voltage 11 as a power source.

昇圧部13は端子電圧11をトランジスタ17で断続す
ることによりリアクトル18に逆起電力のエネルギーを
発生させるいわゆる昇圧チョッパ回路と呼ばれるもので
ある。
The booster 13 is a so-called boost chopper circuit that generates back electromotive force energy in the reactor 18 by intermittent terminal voltage 11 using a transistor 17 .

第2図に示した回路は電池端子の+側をj1単にしてよ
り大ぎい電圧差を発生ずるもので、正極板と他の一つの
電極間又は二つの電極nに印加することができる。
The circuit shown in FIG. 2 generates a larger voltage difference by using the + side of the battery terminal as j1, which can be applied between the positive electrode plate and one other electrode or between two electrodes n.

負極板と他の一つの電極間に印加するときには電池端子
の一側を基準にしたちのを構成するか、又は第2図のり
アクドル18の代りに変圧器を用いて変圧器の二次側か
ら絶縁NWAとして使用すればよい。
When applying voltage between the negative electrode plate and one other electrode, either one side of the battery terminal is used as a reference, or a transformer is used in place of the axle 18 shown in Figure 2, and the voltage is applied from the secondary side of the transformer. It can be used as an insulated NWA.

゛  昇圧チョッパ10は端子電圧が規定値、例えば2
.3■になると電極7および7′に端子電圧よりら高い
電圧、例えば2.8vを印加するので、充電中に正、負
極板からガス発生がほとんど無いときから、[!からm
解液境拌に充分なガス発生を生じさせることができる。
゛ The boost chopper 10 has a terminal voltage of a specified value, for example 2
.. When the voltage reaches 3■, a voltage higher than the terminal voltage, for example 2.8V, is applied to the electrodes 7 and 7', so that when almost no gas is generated from the positive and negative electrode plates during charging, [! From m
Sufficient gas generation can be generated for the solution-liquid boundary agitation.

端子電圧の規定値および電極間の印加電圧のめは電池構
成や充電器おにび電池の負荷などによって異なる最適値
がある。
The specified value of the terminal voltage and the voltage applied between the electrodes have optimum values that vary depending on the battery configuration, charger, battery load, etc.

本発明は以上のように端子電圧が低くてもガス発生によ
り成層化が解消されるので、定電圧充電、準定電圧充電
あるいは二段または三段定電流充電のように過充電を防
ぐ方式の充電器と組合せると有効である。定電圧充電器
の場合には、電圧をガス発生が少なく過充電されない1
0、例、えば2.4■に設定し、端子電圧が2.3vに
なったときにこれを検出して昇圧チョッパで電極間に2
.8Vを印加すればよい。
As described above, the present invention eliminates stratification due to gas generation even when the terminal voltage is low. Effective when combined with a charger. In the case of a constant voltage charger, the voltage should be set to a level that produces less gas and prevents overcharging.
0, for example, 2.4V, and when the terminal voltage reaches 2.3V, it is detected and the boost chopper connects 2V between the electrodes.
.. Just apply 8V.

または負極板とすることもできる。前者では負極板の過
充電が抑えられるとともに電極から水素ガスが発生する
Alternatively, it can also be used as a negative electrode plate. In the former case, overcharging of the negative electrode plate is suppressed and hydrogen gas is generated from the electrode.

発明の効果 本発明は極板どは別の電極でガスを発生させるので、極
板を過充電せずに電解液の成層化を解消〜 することができる。またガス発生のためのN極は、電池
の端子に接続された昇圧チョッパから通電されるので、
他の商用′lr1gIfEどに電1へを接続したちのに
比して結線が簡単である。さらに、電池の充電がある程
度進行した時からだけ電極からガス発生があるので、充
電電力の損失が少ない。
Effects of the Invention In the present invention, since gas is generated using a separate electrode from the electrode plate, stratification of the electrolyte can be eliminated without overcharging the electrode plate. In addition, the N pole for gas generation is energized from a boost chopper connected to the terminals of the battery, so
Wiring is simpler than other commercial 'lr1gIfE's, which are connected to power supply 1. Furthermore, since gas is generated from the electrodes only after the battery has been charged to a certain extent, there is little loss of charging power.

以上の総合的効果として、深い充放電を受けるザイクル
用電池の電解液の減少を軽減するとともに長寿命化をは
かることができる。
As a comprehensive effect of the above, it is possible to reduce the decrease in the electrolyte of the cycle battery that undergoes deep charging and discharging, and to extend the life of the cycle battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる鉛蓄糟池の一実施例を示す縦断面
模式図、第2図は本発明になる鉛1?I!池に用いる昇
圧チョッパの一例を示す回路図である。 1・・・正極板、2・・・負極板、3・・・セパレータ
、7.7′・・・電極、8・・・正極端子、9・・・負
極端子、10・・・昇圧チョッパ
FIG. 1 is a schematic longitudinal cross-sectional view showing an embodiment of a lead storage pond according to the present invention, and FIG. I! FIG. 2 is a circuit diagram showing an example of a boost chopper used in a pond. DESCRIPTION OF SYMBOLS 1... Positive electrode plate, 2... Negative electrode plate, 3... Separator, 7.7'... Electrode, 8... Positive electrode terminal, 9... Negative electrode terminal, 10... Boost chopper

Claims (1)

【特許請求の範囲】[Claims] 1、正極および負極以外に少くとも一つの別の電極を備
え、端子電圧が規定値以上となったときに、端子間に接
続した昇圧チョッパで昇圧した端子電圧よりも高い電圧
を、正または負極板と他の一つの電極間または二つの電
極間に印加するようにしてなることを特徴とする流動性
電解液を有する鉛蓄電池。
1.Equipped with at least one other electrode in addition to the positive and negative electrodes, when the terminal voltage exceeds the specified value, the voltage higher than the terminal voltage boosted by the boost chopper connected between the terminals is applied to the positive or negative electrode. A lead-acid battery having a fluid electrolyte, characterized in that an electrolyte is applied between a plate and one other electrode or between two electrodes.
JP60086741A 1985-04-22 1985-04-22 Lead storage battery employing fluid electrolyte Granted JPS61245471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086741A JPS61245471A (en) 1985-04-22 1985-04-22 Lead storage battery employing fluid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086741A JPS61245471A (en) 1985-04-22 1985-04-22 Lead storage battery employing fluid electrolyte

Publications (2)

Publication Number Publication Date
JPS61245471A true JPS61245471A (en) 1986-10-31
JPH0518227B2 JPH0518227B2 (en) 1993-03-11

Family

ID=13895227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086741A Granted JPS61245471A (en) 1985-04-22 1985-04-22 Lead storage battery employing fluid electrolyte

Country Status (1)

Country Link
JP (1) JPS61245471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009036444A3 (en) * 2007-09-14 2009-07-02 A123 Systems Inc Lithium rechargeable cell with reference electrode for state of health monitoring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009036444A3 (en) * 2007-09-14 2009-07-02 A123 Systems Inc Lithium rechargeable cell with reference electrode for state of health monitoring
US8163410B2 (en) 2007-09-14 2012-04-24 A123 Systems, Inc. Lithium rechargeable cell with reference electrode for state of health monitoring
US8541122B2 (en) 2007-09-14 2013-09-24 A123 Systems Llc Lithium rechargeable cell with reference electrode for state of health monitoring

Also Published As

Publication number Publication date
JPH0518227B2 (en) 1993-03-11

Similar Documents

Publication Publication Date Title
FI88439C (en) Method and apparatus for charging a closed secondary electrical power source
WO2006057083A1 (en) Used lead battery regenerating/new lead battery capacity increasing method
CN104067436B (en) Lead accumulator
JPS61245471A (en) Lead storage battery employing fluid electrolyte
JP2967635B2 (en) Operation method of metal halogen battery
US6599661B1 (en) Electrolyte composition of lead storage battery
JPH01278239A (en) Charge controller of auxiliary battery for fuel battery
JP2009272203A (en) Lead acid storage battery
JP6369514B2 (en) Lead acid battery
CN201041946Y (en) Self-excited negative impulse voltage stabilization balance battery
JPH0351890Y2 (en)
EP4340174A1 (en) Redox flow battery system
JP3099356B2 (en) Battery forming method for sealed lead-acid batteries
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
JP2982368B2 (en) Battery storage method for lead-acid batteries
JP2004356080A (en) Formation method for battery jar of lead-acid storage battery
JPS5691805A (en) Electrochemical device with oxygen electrode
JP3018406B2 (en) Battery forming method for sealed lead-acid batteries
CN101141074A (en) Self-excitation negative pulse voltage regulation equalization battery
JPS603874A (en) Charging method of sealed lead-acid battery
JPS60223441A (en) Power source for primary and secondary battery
JPH01161680A (en) Charging method for zinc bromine battery
JPH09204928A (en) Electrolyte for storage battery, and method of improving charging and discharging efficiency of storage battery by the electrolyte
JPS62139248A (en) Lead-acid battery system
JP2964555B2 (en) Battery storage method for lead-acid batteries