JP2009272203A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2009272203A
JP2009272203A JP2008123102A JP2008123102A JP2009272203A JP 2009272203 A JP2009272203 A JP 2009272203A JP 2008123102 A JP2008123102 A JP 2008123102A JP 2008123102 A JP2008123102 A JP 2008123102A JP 2009272203 A JP2009272203 A JP 2009272203A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
battery
negative electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008123102A
Other languages
Japanese (ja)
Inventor
Takafumi Kondo
隆文 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008123102A priority Critical patent/JP2009272203A/en
Publication of JP2009272203A publication Critical patent/JP2009272203A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead acid storage battery capable of suppressing a stratification phenomenon of an electrolytic solution and attaining improvement in charging acceptance. <P>SOLUTION: The lead acid storage battery is provided with an electrode group 4 in which a positive electrode plate 1 having a positive electrode active material filled into a grid body and a negative electrode plate 2 having a negative electrode active material filled into a grid body are laminated through a separator 3. The positive electrode plate 1 is constituted of a first portion 101 which is formed thin throughout the horizontal direction and a second portion 102 which is formed thicker than the first portion throughout the horizontal direction, and the first portion 101 and the second portion 102 are arranged alternately in vertical direction of the electrode plate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

例えば特許文献1に示されているように、鉛蓄電池においては、正極活物質を格子体に充填したものからなる正極板と、負極活物質を格子体に充填したものからなる負極板とをセパレータを介して積層して、正極板の集電タブ(耳部)どうし及び負極板の集電タブどうしをそれぞれ正極ストラップ及び負極ストラップで接続することにより極板群を構成し、電槽内に設けられた複数のセル室内にそれぞれ極板群を電解液とともに収容して複数のセルを構成している。そして隣り合うセル間をセル間接続部によって接続することにより複数のセルを直列に接続し、両端のセルからそれぞれ導出した正極端子及び負極端子を電槽の蓋を貫通させて上部に導出している。   For example, as shown in Patent Document 1, in a lead storage battery, a positive electrode plate made of a positive electrode active material filled in a lattice body and a negative electrode plate made of a negative electrode active material filled in a lattice body are separated into separators. The electrode plate group is configured by connecting the current collecting tabs (ears) of the positive electrode plate and the current collecting tabs of the negative electrode plate with the positive electrode strap and the negative electrode strap, respectively, and is provided in the battery case. A plurality of cells are configured by accommodating the electrode plate group together with the electrolyte in the plurality of cell chambers. And by connecting between adjacent cells by inter-cell connection parts, a plurality of cells are connected in series, and the positive electrode terminal and the negative electrode terminal respectively derived from the cells at both ends are led to the upper part through the lid of the battery case. Yes.

鉛蓄電池は、自動車のエンジンを始動させる始動装置や、自動車に搭載された各種の電装品等を駆動するために広く用いられている。近年、自動車用の分野では、環境の保護と燃費の改善とを図るため、特許文献2に示されているように、停車時にエンジンを止め、発車時にエンジンを再始動するアイドリングスタートストップ(以下ISSと略す。)が実施され始めている。ISSでは、エンジンの始動と停止とが頻繁に繰り返され、始動時に鉛蓄電池で大電流放電が行なわれる上に、停車中には充電が停止された状態で車載の電装品負荷への電力の供給が行なわれるため、放電電気量が非常に多くなる。   Lead-acid batteries are widely used to drive a starting device for starting an automobile engine and various electrical components mounted on the automobile. In recent years, in the field of automobiles, in order to protect the environment and improve fuel efficiency, as shown in Patent Document 2, the engine is stopped when the vehicle is stopped and the engine is restarted when the vehicle is started (hereinafter referred to as ISS). Is abbreviated to be implemented). In ISS, starting and stopping of the engine are frequently repeated, and at the time of starting, a large current is discharged by the lead-acid battery. In addition, when the vehicle is stopped, the charging is stopped and power is supplied to the on-vehicle electrical component load. As a result, the amount of electricity discharged becomes very large.

ISSを行なう車両に搭載される鉛蓄電池に対しても、通常の車両に搭載される鉛蓄電池と同様に、車両により駆動される交流発電機の整流出力で、レギュレータを通して定電圧充電が行なわれるが、使用中の水分解による電解液の減少を極力する少なくするために、近年、充電電圧の設定値が低くなる傾向にある。また最近、充電制御車と呼ばれる車両が使われるようになっているが、この種の車両では、充電電圧が低いことに加え、車両駆動用エンジンの負荷に合わせて充電電圧を変化させる方式が採用されるようになっている。   A lead-acid battery mounted on a vehicle that performs ISS is also charged at a constant voltage through a regulator with a rectified output of an AC generator driven by the vehicle, like a lead-acid battery mounted on a normal vehicle. In recent years, the set value of the charging voltage tends to be lowered in order to minimize the decrease in the electrolyte due to water decomposition during use. Recently, vehicles called charge control vehicles have been used. In this type of vehicle, in addition to low charging voltage, a method of changing the charging voltage according to the load of the vehicle driving engine is adopted. It has come to be.

ISSを行なうエンジン駆動車両や、充電制御車においては、電池の充電が行なわれ難いため、電池が完全な充電状態にはなり難いという問題がある。このような使用条件下では、鉛蓄電池が十分に充電されないため、電池は放電過多の状態で使用されることが多くなる。
特開平9−312155号公報 特開2006−210134号公報
In an engine-driven vehicle that performs ISS and a charge control vehicle, since it is difficult to charge the battery, there is a problem that the battery is difficult to be completely charged. Under such usage conditions, the lead-acid battery is not sufficiently charged, so the battery is often used in an excessively discharged state.
JP 9-31155 A JP 2006-210134 A

上記のような状態で充放電サイクルが繰り返されると、鉛蓄電池内の極板で頻繁に使用される部分とそうでない部分とが生じ、電流を取り出す集電タブの部分に近い極板上部と、集電タブから離れた極板下部とで活物質の利用率に差が生じる。そのため極板下部では充放電の繰返しに伴って充電不足の状態になり、極板の表面に放電生成物(硫酸鉛)の蓄積(サルフェーション)が起こる。このような状態になると、極板の下部で酸化、還元が行なわれにくくなるため、電池性能が低下する。   When the charge / discharge cycle is repeated in the state as described above, a part that is frequently used and a part that is not frequently used in the electrode plate in the lead storage battery are generated, and the upper part of the electrode plate close to the part of the current collecting tab for taking out the current There is a difference in the utilization factor of the active material between the lower part of the electrode plate away from the current collecting tab. For this reason, charging and discharging are repeated at the lower part of the electrode plate, resulting in insufficient charging, and accumulation (sulfation) of discharge products (lead sulfate) occurs on the surface of the electrode plate. In such a state, since it becomes difficult to oxidize and reduce at the lower part of the electrode plate, the battery performance deteriorates.

また充電が完全に行なわれない状況では、電解液の濃度が上部で薄く、下部で濃くなる成層化現象が発生し、更にサルフェーションを促進させる。   In a situation where charging is not completely performed, a stratification phenomenon occurs in which the concentration of the electrolytic solution is thin at the top and thick at the bottom, further promoting sulfation.

電解液の成層化現象が起ると、主として電池内の下部でサルフェーションが生じ、極板の上部と下部とで反応が不均一になって、主として極板の上部だけで反応が起こるようになる。この場合、正極板については、その上部で活物質の格子体からの剥離などが生じ、これが電池性能の早期の低下につながって、電池の寿命を短くする。従って、ISSを行う車両に搭載される鉛蓄電池においては、電解液の成層化現象を極力抑制する必要がある。   When the electrolyte stratification phenomenon occurs, sulfation occurs mainly in the lower part of the battery, the reaction becomes uneven between the upper and lower parts of the electrode plate, and the reaction mainly occurs only at the upper part of the electrode plate. . In this case, with respect to the positive electrode plate, the active material is peeled off from the lattice at the upper portion thereof, which leads to an early deterioration of the battery performance and shortens the battery life. Therefore, in a lead storage battery mounted on a vehicle that performs ISS, it is necessary to suppress the stratification phenomenon of the electrolyte as much as possible.

またISSを行う場合のように、発電機からの充電電流の供給が頻繁に停止する場合には、電池の容量不足を招かないようにするために、短時間で充電を行う必要があるため、電池の充電受け入れ性を向上させる必要がある。しかし上記のようにサルフェーションが生じ、主として極板の上部だけで反応が起こる状態になると、充電受け入れ性が悪くなるのを避けられない。   In addition, when the supply of the charging current from the generator is frequently stopped as in the case of performing ISS, it is necessary to perform charging in a short time so as not to cause a shortage of battery capacity. There is a need to improve battery charge acceptance. However, if sulfation occurs as described above and a reaction occurs mainly only at the upper part of the electrode plate, it is inevitable that the charge acceptability deteriorates.

本発明の目的は、電解液の成層化現象の抑制と、充電受け入れ性の向上とを図ることができるようにした鉛蓄電池を提供することにある。   An object of the present invention is to provide a lead-acid battery capable of suppressing the stratification phenomenon of an electrolytic solution and improving charge acceptability.

本発明は、正極活物質を格子体に充填してなる正極板と負極活物質を格子体に充填してなる負極板とをセパレータを介して積層してなる極板群を備えた鉛蓄電池を対象としたもので、本発明においては、正極板及び負極板の少なくとも一方が、極板の横方向の全体に亘って厚みが薄く形成された第1の部分と極板の横方向の全体に亘って前記第1の部分よりも厚みが厚く形成された第2の部分とを有し、第1の部分及び第2の部分が極板の縦方向に交互に並ぶように設けられている。   The present invention relates to a lead-acid battery including an electrode plate group in which a positive electrode plate formed by filling a positive electrode active material in a lattice and a negative electrode plate formed by filling a negative electrode active material in a lattice through a separator. In the present invention, in the present invention, at least one of the positive electrode plate and the negative electrode plate is formed over the entire lateral direction of the first plate and the entire lateral direction of the electrode plate. And a second portion formed to be thicker than the first portion, and the first portion and the second portion are provided alternately in the longitudinal direction of the electrode plate.

上記の第1の部分は、例えば、格子体に活物資を充填した後に、極板の第1の部分とすべき部分をローラ掛けによりプレスして、その厚みを第2の部分の厚みより薄くすることにより形成することができる。   For example, after the grid material is filled with an active material, the first portion is pressed by a roller hook on the portion to be the first portion of the electrode plate, and the thickness thereof is smaller than the thickness of the second portion. Can be formed.

なお本明細書においては、極板の電槽内で上下方向に沿う方向を縦方向とし、極板の縦方向及び厚み方向の双方に対して直角な方向を極板の横方向としている。   In the present specification, the direction along the vertical direction in the battery case of the electrode plate is the vertical direction, and the direction perpendicular to both the vertical direction and the thickness direction of the electrode plate is the horizontal direction of the electrode plate.

上記のように、正極板及び負極板の少なくとも一方を、横方向の全長に亘って厚みが薄く形成された第1の部分と、横方向の全長に亘って第1の部分よりも厚みが厚く形成された第2の部分とにより構成して、第1の部分と第2の部分とが縦方向に交互に並ぶようにしておくと、厚みが厚い第2の部分が極板間の隙間(厳密には、隣り合う極板のうち第1の部分及び第2の部分により構成された極板と該隣り合う極板間に介在するセパレータとの間の隙間)内に突出する凸部を形成して、該凸部が極板間の隙間を上下に仕切るため、電解液の比重が大きい部分が下方に移動するのを抑制することができる。また第1の部分の厚みが薄いことにより、平均極板間距離が長くなるため、電解液の流動を促進して、電池内の下部に比重が大きい電解液が滞留するのを防ぐことができ、これらにより、電解液の成層化現象が生じるのを抑制して、電極の下部でサルフェーションが生じるのを防ぐことができる。   As described above, at least one of the positive electrode plate and the negative electrode plate is thicker than the first portion over the entire length in the lateral direction and the first portion formed with a small thickness over the entire length in the lateral direction. When the first portion and the second portion are alternately arranged in the vertical direction, the second portion having a large thickness becomes a gap between the electrode plates ( Strictly speaking, a convex portion is formed that protrudes into the gap between the electrode plate constituted by the first part and the second part of the adjacent electrode plates and the separator interposed between the adjacent electrode plates. And since this convex part partitions the clearance gap between electrode plates up and down, it can suppress that a part with large specific gravity of electrolyte solution moves below. In addition, since the thickness of the first portion is thin, the distance between the average electrode plates is increased, so that the flow of the electrolyte can be promoted and the electrolyte having a large specific gravity can be prevented from staying in the lower part of the battery. Thus, it is possible to suppress the occurrence of stratification of the electrolytic solution and to prevent sulfation from occurring in the lower part of the electrode.

従って、極板の上部と下部とで反応が不均一になって、極板の上部だけで反応が起こる状態が生じるのを防ぐことができ、正極板の上部で活物質の格子体からの剥離などが生じて、電池性能が早期に低下するのを防ぐとともに、電池の充電受入れ性を向上させることができる。   Therefore, it is possible to prevent the reaction between the upper part and the lower part of the electrode plate from becoming uneven and the reaction from occurring only at the upper part of the electrode plate. As a result, it is possible to prevent the battery performance from deteriorating at an early stage and improve the battery charge acceptance.

上記第1の部分と第2の部分とを有する極板は、その最上部に位置する部分を厚みが薄い第1の部分とするように形成することが好ましい。   The electrode plate having the first portion and the second portion is preferably formed so that the uppermost portion is the first portion having a small thickness.

上記のように、極板の最上部に位置する部分を厚みが薄い第1の部分として、極板の上部での極板間距離を広くしておくと、電解液の流動性を良好にすることができるため、電槽内の上部及び下部の電解液の濃度差を少なくすることができ、電解液の成層化現象が生じるのを抑制することができる。   As described above, if the portion located at the top of the electrode plate is the first portion having a small thickness and the distance between the electrode plates at the upper part of the electrode plate is widened, the fluidity of the electrolyte is improved. Therefore, the difference in concentration between the upper and lower electrolytes in the battery case can be reduced, and the occurrence of the stratification phenomenon of the electrolyte can be suppressed.

本発明の好ましい態様では、上記第1の部分が、極板の一部を厚み方向に圧縮(プレス)して厚みを減じることにより形成される。   In a preferred aspect of the present invention, the first portion is formed by compressing (pressing) a part of the electrode plate in the thickness direction to reduce the thickness.

上記のように、極板の一部を厚み方向に圧縮して厚みを減じることにより第1の部分を形成すると、活物質の粒子どうしの結合を強くすることができるため、活物質の剥離が生じるのを防ぐことができ、活物質の剥離により電池寿命が短くなるのを防ぐことができる。   As described above, when the first portion is formed by compressing a part of the electrode plate in the thickness direction to reduce the thickness, the bonding between the particles of the active material can be strengthened. It can be prevented from occurring, and the battery life can be prevented from being shortened by peeling of the active material.

上記のように、極板の一部を厚み方向に圧縮(プレス)して厚みを減じることにより第1の部分と第2の部分とを形成する場合、該第1の部分と第2の部分とを設ける極板は、活物質の剥離が生じ易い正極板とするのが好ましい。   As described above, when the first part and the second part are formed by compressing (pressing) a part of the electrode plate in the thickness direction to reduce the thickness, the first part and the second part The positive electrode plate is preferably a positive electrode plate in which the active material is easily peeled off.

本発明によれば、正極板及び負極板の少なくとも一方を、横方向の全長に亘って厚みが薄く形成された第1の部分と、横方向の全長に亘って第1の部分より厚みが厚く形成された第2の部分とにより構成して、第1の部分と第2の部分とが縦方向に交互に並ぶようにしたので、厚みが厚い第2の部分により、極板間の隙間を上下に仕切って、電解液の比重が大きい部分が下方に移動するのを抑制することができ、電池内の上部と下部とで電解液の濃度に大きな差が生じるのを防ぐことができる。   According to the present invention, at least one of the positive electrode plate and the negative electrode plate has a first portion formed with a thin thickness over the entire length in the lateral direction and a thickness greater than the first portion over the entire length in the horizontal direction. Since the first portion and the second portion are alternately arranged in the vertical direction, the gap between the electrode plates is formed by the thick second portion. By partitioning the upper and lower parts, it is possible to suppress a portion where the specific gravity of the electrolytic solution is large from moving downward, and it is possible to prevent a large difference in the concentration of the electrolytic solution between the upper part and the lower part in the battery.

また極板の第1の部分の厚みが薄いことにより、平均極板間距離が長くなるため、電池内での電解液の流動性をよくして、電池の下部に比重が大きい電解液が滞留するのを防ぐことができ、これによっても、極板間の上部と下部とで電解液の濃度に差が生じるのを抑制することができる。   In addition, since the average distance between the electrode plates is increased by reducing the thickness of the first portion of the electrode plate, the fluidity of the electrolyte solution in the battery is improved, and an electrolyte solution having a large specific gravity stays in the lower part of the battery. This can also prevent the difference in electrolyte concentration between the upper and lower parts between the electrode plates.

従って、本発明によれば、電解液の成層化を抑制して、電極の下部でサルフェーションが生じるのを防ぐことができるため、極板の上部のみで反応が起こる状態が生じるのを防ぐことができ、正極板の上部で活物質が剥離する状態が早期に生じて、電池寿命が短くなるのを防ぐことができる。   Therefore, according to the present invention, since stratification of the electrolyte can be suppressed and sulfation can be prevented from occurring at the lower part of the electrode, it is possible to prevent a reaction from occurring only at the upper part of the electrode plate. It is possible to prevent the active material from peeling off at the upper part of the positive electrode plate at an early stage and shortening the battery life.

更に、極板の第1の部分で活物質を厚み方向に圧縮して、活物質の粒子どうしを強固に結合したことにより、活物質が剥離しにくくすることができるため、電池の寿命を長くすることができる。   Furthermore, the active material is compressed in the thickness direction at the first portion of the electrode plate, and the active material particles are firmly bonded to each other, so that the active material can be made difficult to peel off, thereby extending the life of the battery. can do.

また本発明によれば、極板の下部でサルフェーションが生じにくくして、極板の上部でも下部でも反応を行なわせることができるようにしたため、電池の充電受入性を向上させることができる。   In addition, according to the present invention, sulfation is less likely to occur in the lower part of the electrode plate, and the reaction can be performed in both the upper part and the lower part of the electrode plate, so that the charge acceptability of the battery can be improved.

以下図面を参照して本発明の好ましい実施形態を詳細に説明する。
前述のように、本発明においては、正極板及び負極板の少なくとも一方が、極板の横方向の全体に亘って厚みが薄く形成された第1の部分と極板の横方向の全体に亘って前記第1の部分よりも厚みが厚く形成された第2の部分とを有していて、該第1の部分及び第2の部分が極板の縦方向に交互に並ぶように設けられている。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
As described above, in the present invention, at least one of the positive electrode plate and the negative electrode plate has the first portion formed thin in the entire lateral direction of the electrode plate and the entire lateral direction of the electrode plate. A second portion formed thicker than the first portion, and the first portion and the second portion are provided so as to be alternately arranged in the longitudinal direction of the electrode plate. Yes.

図1(A)及び(B)はそれぞれ本実施形態で用いる正極板1を模式的に示した正面図及び右側面図である。本実施形態で用いる正極板1は、該極板の横方向に平行に延びる2つの帯状の第1の部分101(図中薄墨色に見える部分)と、同じく極板の横方向に平行に延びる2つの帯状の第2の部分102とからなっていて、第1の部分101と第2の部分102とが、極板の縦方向に交互に並ぶように配列されている。第1の部分101及び第2の部分102は、極板の最上部に第1の部分101が、また極板の最下部に第2の部分102がそれぞれ配置されるように設けられていて、第1の部分101が第2の部分102よりも薄い厚みを持つように形成されている。   1A and 1B are a front view and a right side view schematically showing a positive electrode plate 1 used in this embodiment, respectively. The positive electrode plate 1 used in the present embodiment extends in parallel with two strip-shaped first portions 101 (parts that appear light-colored in the drawing) that extend in parallel to the lateral direction of the electrode plate, and also in the horizontal direction of the electrode plate. The first portion 101 and the second portion 102 are arranged so as to be alternately arranged in the vertical direction of the electrode plate. The first portion 101 and the second portion 102 are provided so that the first portion 101 is disposed at the top of the electrode plate and the second portion 102 is disposed at the bottom of the electrode plate, The first portion 101 is formed to have a thickness thinner than that of the second portion 102.

上記の正極板は、格子体に活物資を充填した後、極板をローラで圧縮して活物質を固める際に、第1の部分101とすべき部分での圧縮量を第2の部分102とすべき部分での圧縮量よりも大きくすることにより作製することができる。   In the positive electrode plate, after the active material is filled in the lattice body, when the active material is hardened by compressing the electrode plate with a roller, the amount of compression in the portion to be the first portion 101 is set to the second portion 102. It can produce by making it larger than the compression amount in the part which should be.

本実施形態では、正極板をその片面側からローラでプレスすることにより、第1の部分101と第2の部分102とを形成しているため、図1(B)に示されているように、第1の部分101及び第2の部分102により正極板1の片面にのみ凹部r及び凸部pが形成され、これらが極板の縦方向に交互に配列される。   In this embodiment, since the first portion 101 and the second portion 102 are formed by pressing the positive electrode plate with a roller from one side, as shown in FIG. The first portion 101 and the second portion 102 form concave portions r and convex portions p only on one surface of the positive electrode plate 1 and these are alternately arranged in the longitudinal direction of the electrode plate.

なお図1において、符号1aを付して示した部分は格子体(図示せず。)の上部に該格子体と一体に形成された集電タブ(耳部)である。   In FIG. 1, a portion denoted by reference numeral 1a is a current collecting tab (ear portion) formed integrally with the lattice body on the upper portion of the lattice body (not shown).

一方本実施形態で用いる負極板は、格子体に活物質を充填した後、その全体をローラにより均一に圧縮して、全体がほぼ均一な厚みを有するように形成される。   On the other hand, the negative electrode plate used in the present embodiment is formed so as to have a substantially uniform thickness as a whole after the lattice material is filled with an active material and then uniformly compressed by a roller.

図2は、上記のようにして得られた正極板1と均一な厚みを有する負極板2とをセパレータ3を介して積層することにより構成された極板群4の一部を示している。図2において、2aは負極板2の格子体に設けられた集電タブである。極板群を構成する一連の正極板の集電タブ1aは、図示しない正極ストラップにより相互に接続され、一連の負極板2の集電タブ2aは負極ストラップにより相互に接続される。図2から明らかなように、本実施形態においては、正極板1の第2の部分102により形成された凸部pが、隣り合う正極板1及び負極板2の間の隙間(厳密には、各正極板1と該正極板に対向するセパレータ3との間の隙間)g内に突出して、隣り合う極板間の隙間gを上下方向に複数の領域に仕切っている。   FIG. 2 shows a part of the electrode plate group 4 formed by laminating the positive electrode plate 1 obtained as described above and the negative electrode plate 2 having a uniform thickness with a separator 3 interposed therebetween. In FIG. 2, reference numeral 2 a denotes a current collecting tab provided on the grid body of the negative electrode plate 2. The current collecting tabs 1a of the series of positive electrode plates constituting the electrode plate group are connected to each other by a positive electrode strap (not shown), and the current collecting tabs 2a of the series of negative electrode plates 2 are connected to each other by a negative electrode strap. As apparent from FIG. 2, in this embodiment, the convex portion p formed by the second portion 102 of the positive electrode plate 1 has a gap between the adjacent positive electrode plate 1 and negative electrode plate 2 (strictly speaking, Projecting into the gaps (g) between each positive electrode plate 1 and the separator 3 facing the positive electrode plate, the gap g between adjacent electrode plates is partitioned into a plurality of regions in the vertical direction.

このように極板間の隙間が上下に複数の領域に仕切られていると、極板間の隙間が仕切られていない場合に比べて、電槽内の上部で電解液の濃度が薄くなり、電槽内の下部で電解液の濃度が濃くなる、電解液の成層化現象が生じるのを抑制することができるため、極板の下部でサルフェーションが生じるのを抑制して、極板の上部でも下部でも電池反応をほぼ均一に行わせることができ、正極板の上部で活物質の格子体からの剥離などが生じて、電池性能が早期に低下するのを防ぐことができる。また、極板の上部でも下部でも電池反応をほぼ均一に行わせることができるため、電池の充電受入性を向上させることができる。以下本発明の実施例と比較例とについて説明する。   When the gap between the electrode plates is partitioned into a plurality of regions above and below in this way, the concentration of the electrolyte is reduced at the upper part in the battery case, compared to the case where the gap between the electrode plates is not partitioned, Since the electrolyte concentration in the lower part of the battery case is increased and the stratification phenomenon of the electrolyte can be suppressed, the occurrence of sulfation is suppressed in the lower part of the electrode plate. The battery reaction can be performed substantially uniformly even at the lower part, and the active material can be prevented from deteriorating early due to peeling of the active material from the lattice at the upper part of the positive electrode plate. In addition, since the battery reaction can be performed almost uniformly on both the upper and lower sides of the electrode plate, the battery charge acceptability can be improved. Examples of the present invention and comparative examples will be described below.

本実施例では、酸化鉛からなる鉛粉に水と希硫酸とを加えて練合することにより、活物質ペーストを得た。このペーストを鉛格子体に充填した後、正極板の第1の部分101を形成するための大径部と、第2の部分102を形成するための小径部とを有するローラを用いて、極板の片面にその横方向に沿ってローラ掛けをすることにより、図1に示したように、極板の横方向に平行に延びる2つの第1の部分101,101と、第1の部分よりも厚みが厚い第2の部分102,102とを形成して正極板1を作製した。本実施例では、第1の部分101の厚みが1.4mm〜1.6mmの範囲に収まり、第2の部分102の厚みが1.6mm〜1.9mmの範囲に収まるようにした。   In this example, an active material paste was obtained by adding water and dilute sulfuric acid to lead powder made of lead oxide and kneading. After filling this paste into the lead grid, using a roller having a large diameter portion for forming the first portion 101 of the positive electrode plate and a small diameter portion for forming the second portion 102, By rolling the roller along one side of the plate along the lateral direction, as shown in FIG. 1, two first portions 101, 101 extending in parallel to the lateral direction of the electrode plate, and the first portion The positive electrode plate 1 was manufactured by forming the second portions 102 and 102 having a large thickness. In this embodiment, the thickness of the first portion 101 falls within the range of 1.4 mm to 1.6 mm, and the thickness of the second portion 102 falls within the range of 1.6 mm to 1.9 mm.

また負極板は、格子体にペーストを充填した後、極板の全体に均一にローラ掛けをして全体を均一に圧縮することにより、厚みがほぼ1.3mmとなるように作製した。   Further, the negative electrode plate was manufactured to have a thickness of approximately 1.3 mm by filling the grid with paste and then uniformly rolling the electrode plate to uniformly compress the entire plate.

上記のようにして得た正極板1及び負極板2を熟成し、乾燥した後、正極板1と負極板2とを、セパレータ3を介して積層し、正極板の集電タブ同士及び負極板の集電タブ同士をそれぞれ接続する正極ストラップ及び負極ストラップを形成して、正極板7枚、負極板8枚からなる極板群4を多数作製した。セパレータ3としては通常総厚みが0.7〜1.5mmのものが用いられているが、本実施例では、総厚みが0.7mmのセパレータを用いた。このようにして作製した多数の極板群4の中から平均極板間距離が約0.75mm,0.95mm及び1.2mmのものを選んで、同じ平均極板間距離を有する極板群を電槽の各セル室内に収容し、電槽の蓋を溶着して、極板が未化成の状態にあるセル数が6の鉛蓄電池を組み立てた。平均極板間距離が約0.75mm,0.95mm及び1.2mmの極板群を用いた実施例の鉛蓄電池をそれぞれ実施例1、実施例2及び実施例3とした。なお極板間距離は、正極板の凹部rの表面と負極板の表面との間の距離(凹部rの深さ+セパレータ3の厚さ)である。   After the positive electrode plate 1 and the negative electrode plate 2 obtained as described above are aged and dried, the positive electrode plate 1 and the negative electrode plate 2 are laminated via the separator 3, and the current collecting tabs of the positive electrode plate and the negative electrode plate are laminated. A positive electrode strap and a negative electrode strap for connecting the current collecting tabs to each other were formed, and a large number of electrode plate groups 4 including seven positive electrode plates and eight negative electrode plates were produced. As the separator 3, a separator having a total thickness of 0.7 to 1.5 mm is usually used. In this embodiment, a separator having a total thickness of 0.7 mm was used. The electrode plate group having the same average electrode plate distance is selected from the large number of electrode plate groups 4 produced in this way, with the electrode plate distances being approximately 0.75 mm, 0.95 mm and 1.2 mm. A lead-acid battery having 6 cells with an electrode plate in an unformed state was assembled. The lead acid batteries of Examples using electrode plate groups having average electrode plate distances of about 0.75 mm, 0.95 mm, and 1.2 mm were referred to as Example 1, Example 2, and Example 3, respectively. The distance between the electrode plates is a distance between the surface of the concave portion r of the positive electrode plate and the surface of the negative electrode plate (depth of the concave portion r + thickness of the separator 3).

比較例Comparative example

全体が均一な厚み(1.6mm)を有する正極板と全体が均一な厚み(1.3mm)を有する負極板を用い、その他の点は上記実施例と同様とした鉛蓄電池を比較例として組み立てた。   Using a positive electrode plate having a uniform thickness (1.6 mm) as a whole and a negative electrode plate having a uniform thickness (1.3 mm) as a whole, a lead storage battery similar to the above example was assembled as a comparative example.

上記のようにして組み立てた実施例及び比較例の鉛蓄電池の電槽内に電解液(希硫酸)を注入して通電することにより電槽化成を行ない、5時間率容量として36Ah相当の鉛蓄電池を作製した。   The battery is formed by injecting an electrolytic solution (dilute sulfuric acid) into the battery case of the lead acid battery of the examples and comparative examples assembled as described above, and conducting a battery case, and a lead acid battery equivalent to 36 Ah as a 5-hour rate capacity. Was made.

実施例1及び比較例の電池について、25℃でSOC(充電状態)が90%となるように放電を行ない、6時間放置した後、14.0V(100Amax)の定電圧充電を30秒間行なって、充電受入性試験を行なった。   About the battery of Example 1 and a comparative example, it discharged so that SOC (charge condition) might be 90% at 25 degreeC, and after leaving it to stand for 6 hours, it performed constant voltage charge of 14.0V (100Amax) for 30 seconds, A charge acceptance test was conducted.

実施例1及び比較例の電池について測定した結果から、充電電流と充電時間との関係を示す図3に示すような充電カーブを作成し、この充電カーブから5秒目充電電気量での比較を行なって、極板間距離と充電受入性との関係を調べた。5秒目充電電気量を反応面積当りの充電受入性(充電電気量)に換算して、実施例1ないし3について、充電受入性と平均極板間距離との関係を比較した結果を図4に示した。この結果から、極板間距離を長くすることにより充電受入性が向上することが明らかになった。   From the results measured for the batteries of Example 1 and the comparative example, a charging curve as shown in FIG. 3 showing the relationship between the charging current and the charging time is created, and a comparison is made with the charging electric quantity at the fifth second from this charging curve. The relationship between the distance between the electrode plates and the charge acceptability was examined. FIG. 4 shows the result of comparing the relationship between the charge acceptance and the average distance between the electrode plates in Examples 1 to 3 by converting the charge electricity amount at the 5th second into the charge acceptance property (charged electricity amount) per reaction area. It was shown to. From this result, it became clear that the charge acceptability is improved by increasing the distance between the electrode plates.

なお図4の横軸の「平均極板間距離」は、正極板の凹部表面と負極板の表面との間の距離の平均値で、正極板の凸部表面と負極板の表面との間の距離(セパレータの厚さ)と、正極板の凹部表面と負極板の表面との間の距離とを凸部面積と凹部面積との比で加重平均したものである。実施例では、正極板の一面側では、凸部表面積:凹部表面積=4:6であり、正極板の他面側では、凸部表面積:凹部表面積=10:0であるため、凸部表面積と凹部表面積との比を14:6として加重平均を行なった。   The “average distance between the electrode plates” on the horizontal axis in FIG. 4 is the average value of the distance between the concave surface of the positive electrode plate and the surface of the negative electrode plate, and is between the convex surface of the positive electrode plate and the surface of the negative electrode plate. (The thickness of the separator) and the distance between the concave surface of the positive electrode plate and the surface of the negative electrode plate are weighted averages by the ratio of the convex area to the concave area. In the example, the convex surface area: concave surface area = 4: 6 on one surface side of the positive electrode plate, and the convex surface area: concave surface area = 10: 0 on the other surface side of the positive electrode plate. The weighted average was performed with the ratio to the surface area of the recess being 14: 6.

実施例1ないし3及び比較例の詳細なデータは下記の表1の通りである。

Figure 2009272203
Detailed data of Examples 1 to 3 and Comparative Example are shown in Table 1 below.
Figure 2009272203

表1において、充電電気量(Ah/cm)を演算する式を実施例1のデータを用いて示すと下記の通りである。
(49A×30sec)÷(10cm×10cm×2/枚×7枚/セル×6セル×3600sec)=4.9×10−5Ah/cm
上記の式において、「10cm×10cm」は正極板のサイズを示し、「2/枚」は、表裏両面について演算していることを示し、「7枚/セル」は1セル当たりの正極板の枚数を示している。
In Table 1, the equation for calculating the amount of charged electricity (Ah / cm 2 ) is shown below using the data of Example 1.
(49A × 30sec) ÷ (10cm × 10cm × 2 / sheet × 7sheet / cell × 6cell × 3600sec) = 4.9 × 10 −5 Ah / cm 2
In the above formula, “10 cm × 10 cm” indicates the size of the positive electrode plate, “2 / sheet” indicates that the calculation is performed on both the front and back surfaces, and “7 sheets / cell” indicates the positive electrode plate per cell. Indicates the number of sheets.

次に実施例1ないし3の鉛蓄電池と、比較例の鉛蓄電池とについて、JISで定められている軽負荷試験を行なった。この試験では、25Aの定電流放電を4分行なった後、14.8V(25Amax)の定電圧充電を10分行なう過程を1サイクルとして、放電と充電とを繰り返し行なった。そして480サイクル毎に430A放電を行なって、その30秒目の電圧を測定し、30秒目電圧が7.2Vを下回った時点を寿命とした。この軽負荷試験の結果を図5に示した。図5から明らかなように、いずれの実施例も、比較例に比べて、サイクル寿命が向上している。   Next, the light load test defined by JIS was performed on the lead storage batteries of Examples 1 to 3 and the lead storage battery of the comparative example. In this test, the discharge and charge were repeated with one cycle consisting of a constant current discharge of 25 A for 4 minutes and then a constant voltage charge of 14.8 V (25 Amax) for 10 minutes. Then, 430 A was discharged every 480 cycles, the voltage at the 30th second was measured, and the time when the voltage at the 30th second fell below 7.2V was regarded as the life. The results of this light load test are shown in FIG. As is clear from FIG. 5, the cycle life of each of the examples is improved as compared with the comparative example.

上記のように充電受入性及びサイクル寿命が向上する理由は下記の通りであると考えられる。即ち、正極板の第1の部分101により平均極板間距離が長くなることにより電解液の流動性が向上するため、電池内の下部に電解液の比重が大きい部分が滞留するのを防ぐことができる。また正極板の第2の部分により形成される凸部pによって極板間の隙間が上下に仕切られることで電解液の比重が大きい部分が下方に移動するのを抑制することができ、これらにより、電池の上部の電解液濃度と下部の電解液濃度との差を少なくして、電解液の成層化を抑制できる。そのため、電極の下部でサルフェーションが生じるのを抑制することができ、極板の上部でのみ反応が起こって、正極板の上部で活物質の剥離が生じるのを防ぐことができる。また極板の上部でも下部でも反応を行なわせることができるため、充電受入性を向上させることができる。   The reason why the charge acceptability and the cycle life are improved as described above is considered as follows. That is, the first electrode portion 101 of the positive electrode plate increases the distance between the electrode plates, thereby improving the fluidity of the electrolyte solution, thereby preventing the portion having a high specific gravity of the electrolyte solution from staying in the lower part of the battery. Can do. Moreover, it can suppress that the part with large specific gravity of electrolyte solution moves below because the clearance gap between electrode plates is divided up and down by the convex part p formed by the 2nd part of a positive electrode plate, and these. The difference between the electrolytic solution concentration at the upper part of the battery and the electrolytic solution concentration at the lower part can be reduced, and stratification of the electrolytic solution can be suppressed. Therefore, it is possible to suppress the occurrence of sulfation at the lower part of the electrode, and it is possible to prevent the reaction from occurring only at the upper part of the electrode plate and the separation of the active material at the upper part of the positive electrode plate. In addition, since the reaction can be performed at the upper part or the lower part of the electrode plate, the charge acceptability can be improved.

上記の例では、正極板のみを第1の部分と第2の部分とにより構成したが、図6に示すように、正極板1を厚みが薄い第1の部分101と厚みが厚い第2の部分102とにより構成するとともに、負極板2を厚みが薄い第1の部分201と厚みが厚い第2の部分202とにより構成するようにしてもよい。   In the above example, only the positive electrode plate is composed of the first portion and the second portion. However, as shown in FIG. 6, the positive electrode plate 1 is composed of the first portion 101 having a small thickness and the second portion having a large thickness. The negative electrode plate 2 may be configured by the first portion 201 having a small thickness and the second portion 202 having a large thickness.

また負極板のみを第1の部分と第2の部分とにより構成し、正極板は均一な厚みを有するように構成してもよい。   Further, only the negative electrode plate may be constituted by the first portion and the second portion, and the positive electrode plate may be constituted so as to have a uniform thickness.

(A)及び(b)はそれぞれ本発明の実施形態で用いる正極板を模式的に示した正面図及び右側面図である。(A) And (b) is the front view and right view which each showed typically the positive electrode plate used by embodiment of this invention. 図1の正極板と均一な厚みを有する負極板とを用いて構成した極板群の一部を模式的に示した側面図である。It is the side view which showed typically a part of electrode group comprised using the positive electrode plate of FIG. 1, and the negative electrode plate which has uniform thickness. 実施例及び比較例の充電受入性を調べる実験で得られた測定結果に基づいて作成した充電カーブを示すグラフである。It is a graph which shows the charge curve created based on the measurement result obtained by the experiment which investigates the charge acceptance of an Example and a comparative example. 本発明の実施例1ないし3の充電受入性と平均極板間距離との関係を比較して示したグラフである。It is the graph which compared and showed the relationship between the charge acceptance of Example 1 thru | or 3 of this invention, and the average distance between electrode plates. 本発明の実施例1ないし3と比較例とについて行なった軽負荷試験の結果を示したグラフである。It is the graph which showed the result of the light load test done about Example 1 thru | or 3 of this invention, and the comparative example. 本発明の他の実施形態に係わる鉛蓄電池で用いる極板群の一部を模式的に示した側面図である。It is the side view which showed typically a part of electrode group used with the lead storage battery concerning other embodiment of this invention.

符号の説明Explanation of symbols

1 正極板
101 第1の部分
102 第2の部分
2 負極板
3 セパレータ
4 極板群
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 101 1st part 102 2nd part 2 Negative electrode plate 3 Separator 4 Electrode plate group

Claims (3)

正極活物質を格子体に充填してなる正極板と負極活物質を格子体に充填してなる負極板とをセパレータを介して積層してなる極板群を備えた鉛蓄電池において、
前記正極板及び負極板の少なくとも一方は、極板の横方向の全体に亘って厚みが薄く形成された第1の部分と極板の横方向の全体に亘って前記第1の部分よりも厚みが厚く形成された第2の部分とを有し、
前記第1の部分及び第2の部分は極板の縦方向に交互に並ぶように設けられていることを特徴とする鉛蓄電池。
In a lead storage battery comprising an electrode plate group in which a positive electrode plate formed by filling a positive electrode active material in a grid and a negative electrode plate formed by filling a negative electrode active material in a lattice through a separator,
At least one of the positive electrode plate and the negative electrode plate is thinner than the first part and the first part formed to have a small thickness over the entire lateral direction of the electrode plate and the first part over the entire lateral direction of the electrode plate. Has a second portion formed thick,
The lead acid battery according to claim 1, wherein the first part and the second part are provided so as to be alternately arranged in the longitudinal direction of the electrode plate.
前記第1の部分は、極板の一部を厚み方向にプレスして厚みを減じることにより形成されている請求項1に記載の鉛蓄電池。   The lead storage battery according to claim 1, wherein the first portion is formed by pressing a part of the electrode plate in the thickness direction to reduce the thickness. 前記第1の部分と第2の部分とを有する極板は、その最上部に位置する部分が第1の部分からなるように形成されている請求項1または2に記載の鉛蓄電池。   3. The lead acid battery according to claim 1, wherein the electrode plate having the first part and the second part is formed such that a part located at the uppermost part is formed of the first part. 4.
JP2008123102A 2008-05-09 2008-05-09 Lead acid storage battery Pending JP2009272203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123102A JP2009272203A (en) 2008-05-09 2008-05-09 Lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123102A JP2009272203A (en) 2008-05-09 2008-05-09 Lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2009272203A true JP2009272203A (en) 2009-11-19

Family

ID=41438572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123102A Pending JP2009272203A (en) 2008-05-09 2008-05-09 Lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2009272203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319375A (en) * 2014-11-03 2015-01-28 太仓派欧技术咨询服务有限公司 C-shaped electrode plate for starting and stopping battery
CN104319376A (en) * 2014-11-03 2015-01-28 太仓派欧技术咨询服务有限公司 S-shaped electrode plate for starting and stopping battery
CN104332605A (en) * 2014-11-03 2015-02-04 太仓派欧技术咨询服务有限公司 Bridge-type lead acid battery electrode plate and baffle structure
CN104362351A (en) * 2014-11-03 2015-02-18 太仓派欧技术咨询服务有限公司 Novel electrode plate structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319375A (en) * 2014-11-03 2015-01-28 太仓派欧技术咨询服务有限公司 C-shaped electrode plate for starting and stopping battery
CN104319376A (en) * 2014-11-03 2015-01-28 太仓派欧技术咨询服务有限公司 S-shaped electrode plate for starting and stopping battery
CN104332605A (en) * 2014-11-03 2015-02-04 太仓派欧技术咨询服务有限公司 Bridge-type lead acid battery electrode plate and baffle structure
CN104362351A (en) * 2014-11-03 2015-02-18 太仓派欧技术咨询服务有限公司 Novel electrode plate structure

Similar Documents

Publication Publication Date Title
US9356321B2 (en) Lead-acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6045329B2 (en) Lead acid battery
JP2009272203A (en) Lead acid storage battery
CN107112598B (en) lead-acid battery
JP6198046B2 (en) Liquid lead-acid battery
JP6398111B2 (en) Lead acid battery
JP6333595B2 (en) Storage battery system operation method and storage battery system operation device
JP5573785B2 (en) Lead acid battery
WO2014097516A1 (en) Lead storage battery
CN1531132A (en) Sealed nickel-metal compound accumulator and mixing electric vehicle therewith
JP7152441B2 (en) liquid lead acid battery
JP6921037B2 (en) Lead-acid battery
JP2013191351A (en) Lead acid battery
JP6255696B2 (en) Lead acid battery
JP6582386B2 (en) Lead acid battery
JP4529707B2 (en) Lead acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP6651128B2 (en) Lead-acid battery for idling stop vehicle and idling stop vehicle
JP2015022796A (en) Lead storage battery
RU2809551C2 (en) Lead acid battery
JP2009252535A (en) Control valve type lead acid battery
WO2016147240A1 (en) Lead storage cell
JP5754607B2 (en) Lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method