JP2009252535A - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP2009252535A
JP2009252535A JP2008099032A JP2008099032A JP2009252535A JP 2009252535 A JP2009252535 A JP 2009252535A JP 2008099032 A JP2008099032 A JP 2008099032A JP 2008099032 A JP2008099032 A JP 2008099032A JP 2009252535 A JP2009252535 A JP 2009252535A
Authority
JP
Japan
Prior art keywords
cell
active material
battery
cells
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008099032A
Other languages
Japanese (ja)
Inventor
Harumi Murochi
晴美 室地
Tomoya Kikuchi
智哉 菊地
Kazunori Shimoike
和徳 下池
Isao Imon
勲 井門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008099032A priority Critical patent/JP2009252535A/en
Publication of JP2009252535A publication Critical patent/JP2009252535A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve type lead acid battery with three or more cells linearly formed in the same direction, for solving the problem that the deterioration of the cells, particularly, the end cells caused by a difference between their conditions during using the battery precludes a high cycle life property. <P>SOLUTION: The control valve type lead acid battery comprises the three or more cells linearly formed in the same direction. The active material ratio of a negative electrode active material amount to a positive electrode active material amount for the cell, particularly, for the end cell is higher than the active material ratio for the center cell. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、制御弁式鉛蓄電池に関するものである。   The present invention relates to a valve-regulated lead-acid battery.

近年、電動カートおよび電動車椅子といった各種電動車が急速に普及しつつあり、このような電動車用の電源には、ニッケル水素蓄電池やリチウム二次電池に比較して安価な制御弁式鉛蓄電池が広く用いられている。   In recent years, various types of electric vehicles such as electric carts and electric wheelchairs are rapidly spreading, and power sources for such electric vehicles include inexpensive control valve type lead storage batteries as compared to nickel metal hydride storage batteries and lithium secondary batteries. Widely used.

これらの電動車両に用いられる制御弁式鉛蓄電池には高いサイクル寿命特性が要求されており、充放電サイクルを繰り返した電池は、正極においては活物質の軟化膨張、負極においては活物質の膨張や硫酸鉛の固定化および電池内に含有されている電解液減少等により性能が劣化する。   Control valve type lead-acid batteries used in these electric vehicles are required to have high cycle life characteristics, and batteries with repeated charge / discharge cycles are softened and expanded in the active material in the positive electrode and expanded in the active material in the negative electrode. The performance deteriorates due to fixation of lead sulfate and reduction of the electrolyte contained in the battery.

これらの現象は、セル室内に存在する極板群を加圧する極板群圧力が低いほど顕著に現れる。特に、3セル以上の複数セルが同一方向に一列に並ぶ電槽構造を有した制御弁式鉛蓄電池では、当初は同じ極板群圧力であったとしても充放電にあわせて極板群は膨張収縮を繰り返すため、充放電サイクルの進行とともに端セルと中央部セルにおいては極板群への加圧条件が変化することになる。   These phenomena become more prominent as the electrode plate group pressure that pressurizes the electrode plate group existing in the cell chamber is lower. In particular, in a control valve type lead-acid battery having a battery case structure in which a plurality of cells of 3 cells or more are arranged in a line in the same direction, the electrode plate group expands in accordance with charge / discharge even if the same electrode plate pressure is initially set. Since the shrinkage is repeated, the pressurizing condition to the electrode plate group changes in the end cell and the central cell as the charge / discharge cycle progresses.

各セルの極板群圧力は、端セルでは電槽の短側面により極板群の半面が加圧されているが、中央部セルでは極板群はセル間との隔壁を介して隣接セルの極板群の圧力と均衡を保っている。端セルで極板群の半面が接する電槽の短側面は、熱可塑性樹脂により形成されており短側面が充放電に伴い極板群より生じる熱および膨張力を抑えきれずに極板の積層方向へ膨らむ傾向があり、正常な極板群圧力を維持することができなかった。このため、電池の両側に位置する端セルは、中央部セルに比べて極板群圧力が低下する現象が認められる。   As for the electrode plate group pressure of each cell, the half surface of the electrode plate group is pressurized by the short side of the battery case in the end cell, but in the center cell, the electrode plate group is connected to the adjacent cell via the partition between the cells. It maintains the pressure and balance of the electrode group. The short side surface of the battery case where the half surface of the electrode plate group is in contact with the end cell is formed of a thermoplastic resin, and the short side surface is not able to suppress the heat and expansion force generated from the electrode plate group due to charge / discharge, and the electrode plates are laminated. There was a tendency to swell in the direction and normal electrode group pressure could not be maintained. For this reason, in the end cells located on both sides of the battery, a phenomenon in which the electrode plate group pressure is reduced as compared with the center cell is recognized.

さらに、電動車に制御弁式鉛蓄電池を使用する際には、停車する際や坂道を下る際に生じるエネルギを回生エネルギとして受け入れるシステムが広く用いられている。この回生充電は、大電流充電になるため電池の充電状態により高い充電効率が得られない場合では電解液中の水が電気分解されて電解液が減少する。その結果、負極によるガス吸収反応が過度に進行すると負極活物質中に不活性な硫酸鉛を生じ、充放電サイクルの進行により負極の対極である正極活物質が劣化して軟化膨張するため、極板群の膨張により電槽の短側面が膨らみ、端セルにおいて正常な極板群圧力を維持できなくなる。   Furthermore, when a control valve type lead-acid battery is used in an electric vehicle, a system that receives energy generated when the vehicle stops or goes down a slope as regenerative energy is widely used. Since this regenerative charge is a large current charge, when high charge efficiency cannot be obtained depending on the state of charge of the battery, water in the electrolyte is electrolyzed and the electrolyte is reduced. As a result, if the gas absorption reaction by the negative electrode proceeds excessively, inactive lead sulfate is generated in the negative electrode active material, and the positive electrode active material that is the counter electrode of the negative electrode deteriorates and softens and expands due to the progress of the charge / discharge cycle. The short side surface of the battery case swells due to the expansion of the plate group, and the normal electrode plate group pressure cannot be maintained in the end cell.

このように充放電サイクルの進行により、端セルは中央部セルに比べて極板群圧力が低下するため、ガス吸収反応による負極の不活性な硫酸鉛の固定化現象が促進され、蓄電池全体が寿命となるという課題があった。   As the charge / discharge cycle progresses in this way, the end cell has a lower electrode group pressure than the center cell, which promotes the immobilization of the inactive lead sulfate of the negative electrode due to the gas absorption reaction. There was a problem that the service life was reached.

このため、特許文献1には、中央に位置するセルの温度が上昇して負極劣化が促進するのを防止するため、中央に位置するセルの負極活物質の総量を多くする試みがなされている。しかしながら、電動車両で実走行した場合には、回生等の負荷パターンによって、制御弁式鉛蓄電池は、電槽短側面が膨らみ端セルの負極劣化が進行して寿命にいたる現象を生じていた。すなわち、電動車両に用いられる従来の制御弁式鉛蓄電池は、全セルにおいて、均一なサイクル寿命特性を得ることは困難であった。
特開平7−169503号公報
For this reason, in Patent Document 1, an attempt is made to increase the total amount of the negative electrode active material in the cell located in the center in order to prevent the temperature of the cell located in the center from rising and promoting the deterioration of the negative electrode. . However, when actually running on an electric vehicle, the control valve type lead-acid battery has a phenomenon that the short side surface of the battery case swells and the negative electrode deterioration of the end cell progresses due to the load pattern such as regeneration, leading to a life span. That is, it has been difficult for conventional control valve type lead-acid batteries used in electric vehicles to obtain uniform cycle life characteristics in all cells.
JP 7-169503 A

本発明は、前記したように3セル以上の複数セルが同一方向に直線状に構成された制御弁式鉛蓄電池では、電池使用中における各セルの条件の差により生じる劣化で、特に端セルを主因とする劣化で、高いサイクル寿命特性が得られないという課題を解決するものである。   As described above, the control valve type lead-acid battery in which a plurality of cells of 3 cells or more are linearly formed in the same direction as described above is deteriorated due to a difference in the condition of each cell during battery use. It solves the problem that high cycle life characteristics cannot be obtained due to deterioration mainly.

前記した課題を解決するために、本発明の請求項1に係る発明は、3セル以上の複数セルが同一方向に直線状に構成された制御弁式鉛蓄電池において、セルを構成する負極活物質量/正極活物質量の活物質比率は、端セルの活物質比率>中央部セルの活物質比率、であることを特徴とする制御弁式鉛蓄電池を示すものである。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is a negative electrode active material constituting a cell in a control valve type lead storage battery in which a plurality of cells of three or more cells are linearly formed in the same direction. The active material ratio of the amount / the amount of positive electrode active material indicates an active material ratio of the end cell> the active material ratio of the center cell.

本発明の請求項2に係る発明は、前記端セルの活物質比率が、前記中央部セルの活物質比率に比べて、0.05〜0.15高い比率とすることを特徴とする請求項1記載の制御弁式鉛蓄電池を示すものである。   The invention according to claim 2 of the present invention is characterized in that the active material ratio of the end cell is 0.05 to 0.15 higher than the active material ratio of the central cell. The control valve type lead acid battery of 1 description is shown.

前記した本発明の構成によれば、端セルの特性改善により中央部セルと同レベルの特性を得ることができ、特に各セルが均一な寿命特性が得られるという顕著な効果を有することができるため、工業上、有用である。   According to the configuration of the present invention described above, characteristics at the same level as the center cell can be obtained by improving the characteristics of the end cells, and in particular, each cell can have a remarkable effect that uniform life characteristics can be obtained. Therefore, it is useful industrially.

本発明の実施の形態による鉛蓄電池の構成を説明する。   A configuration of the lead storage battery according to the embodiment of the present invention will be described.

図1は、本発明を適用する制御弁式鉛蓄電池の構成図であり、ポリプロピレン樹脂よりなる電槽1には複数のセル2が同一方向に連接されて構成されている。各セル2には、正極板3、負極板4がガラス繊維を主体とするセパレータ5を介して積層されて同極性の極板をストラップ6一体化した極板群7が収納され、隔壁8を介して接続体9により隣接セルの極板群へ接続されている。さらに、電槽上部には各セルからの排気構造10を有した蓋11が溶着一体化され電池が構成されている。   FIG. 1 is a configuration diagram of a control valve type lead storage battery to which the present invention is applied. A battery case 1 made of polypropylene resin is configured by a plurality of cells 2 connected in the same direction. Each cell 2 accommodates an electrode plate group 7 in which a positive electrode plate 3 and a negative electrode plate 4 are laminated via a separator 5 mainly composed of glass fibers, and an electrode plate of the same polarity is integrated with a strap 6. The connection body 9 is connected to the electrode plate group of the adjacent cell. Further, a lid 11 having an exhaust structure 10 from each cell is welded and integrated at the upper part of the battery case to constitute a battery.

一般的な鉛蓄電池は6セル構成であるので、この場合では端セル2aは1番目と6番目のセルであり、中央部セル2bは2〜5セルを指し示すものである。端セル2aは、電池外部へ電気を導出入するための接続端子12と接続体9を有しており、極板群7は電槽1の外装の一部である短側面13と隔壁8間で極板群圧が加えられている。特に、制御弁式鉛蓄電池の極板群7は、20kg/dm2で加圧されるため、端セル2aに位置する極板群7の半面が接する短側面13の表面には補強のためにリブ14を設けることがある。 Since a general lead storage battery has a 6-cell configuration, in this case, the end cell 2a is the first and sixth cells, and the central cell 2b indicates 2 to 5 cells. The end cell 2a has a connection terminal 12 and a connection body 9 for leading and extracting electricity to the outside of the battery, and the electrode plate group 7 is between the short side surface 13 and the partition wall 8 which are a part of the exterior of the battery case 1. The plate group pressure is applied. In particular, since the electrode plate group 7 of the control valve type lead-acid battery is pressurized at 20 kg / dm 2 , the surface of the short side surface 13 where the half surface of the electrode plate group 7 located in the end cell 2a contacts is for reinforcement. Ribs 14 may be provided.

中央部セル2bは、隣接セルとの隔壁8間に収納されているが、隔壁8の反対面には他の極板群が収納されているため、実使用時の充放電サイクル繰り返しによる極板群7の膨張は、隣接セルの極板群が同様に膨張するため実質極板群圧力が高くなったとしても、圧力の逃げる方向はなく、現実的には電槽1等の寸法形状への変化を生じることはない。   The center cell 2b is housed between the partition walls 8 with the adjacent cells, but another plate group is housed on the opposite surface of the partition wall 8, so that the electrode plate is obtained by repeating the charge / discharge cycle during actual use. The expansion of the group 7 is similar to the expansion of the electrode plate group of the adjacent cell, so even if the substantial electrode plate group pressure increases, there is no direction in which the pressure escapes. It will not change.

しかしながら、制御弁式鉛蓄電池は、充放電サイクルの進行にともない正極板活物質等による極板群の膨張により徐々に端セル2a方向へ圧力が逃げるようになる。この現象は、端セル2aの短側面13には外部からの圧力が加わらず、構成材料が樹脂であるため短側面13において外側に膨れるためであり、中央部セル2bの膨張分が端セル2aへ移行することになる。   However, in the control valve type lead-acid battery, pressure gradually escapes toward the end cell 2a due to the expansion of the electrode plate group due to the positive electrode plate active material or the like as the charge / discharge cycle proceeds. This phenomenon is because no external pressure is applied to the short side surface 13 of the end cell 2a, and the constituent material is resin, so that the short side surface 13 swells outward, and the expansion of the center cell 2b is the end cell 2a. Will be transferred to.

正極板3と負極板4の活物質量比率が全セル同じ電池の場合は、充放電サイクルにより端セル2aは極板群圧が低下し、ガス吸収反応による負極活物質への硫酸鉛の固定化が進んで容量の低下により寿命に至る。寿命特性を改善するには、端セル2aにおけるガス発生量を抑制する必要があり、ガスを発生する正極とガスを吸収する負極活物質との関係において、端セル2aの負極活物質/正極活物質の比率を中央部セル2bに比べて多い構成とした制御弁式鉛蓄電池が考えられる。   In the case of a battery in which the active material amount ratio of the positive electrode plate 3 and the negative electrode plate 4 is the same in all cells, the end cell 2a is reduced in the electrode plate group pressure by the charge / discharge cycle, and lead sulfate is fixed to the negative electrode active material by gas absorption reaction Progresses to the end of its life due to a decrease in capacity. In order to improve the life characteristics, it is necessary to suppress the amount of gas generated in the end cell 2a. In the relationship between the positive electrode that generates gas and the negative electrode active material that absorbs gas, the negative electrode active material / positive electrode active of the end cell 2a. A control valve type lead-acid battery having a structure in which the ratio of the substance is larger than that of the central cell 2b is conceivable.

しかしながら、実質的に限定されたセル内における正極と負極の活物質の総量はほぼ同じであるため、さらに高いレベルのサイクル寿命を得るために負極活物質量を多くして負極活物質量/正極活物質量の活物質比率が高くなり過ぎると正極の特性が低下することで蓄電池の容量が少なくなり、逆に活物質比率が小になるとガス吸収能が低下して電解液の減少により充放電サイクルの進行とともに急速に容量が低下してしまう。このため、端セルと中間部セルとの前記活物質比率の差を設定する必要がある。   However, since the total amount of the active material of the positive electrode and the negative electrode in the substantially limited cell is almost the same, the negative electrode active material amount / positive electrode is increased by increasing the negative electrode active material amount in order to obtain a higher level of cycle life. If the active material ratio of the amount of active material becomes too high, the capacity of the storage battery will decrease due to the deterioration of the characteristics of the positive electrode. Conversely, if the active material ratio becomes small, the gas absorption capacity will decrease and charge / discharge will occur due to the decrease in electrolyte. The capacity decreases rapidly as the cycle progresses. For this reason, it is necessary to set the difference in the active material ratio between the end cell and the intermediate cell.

供試電池として、6セルが同一方向に並ぶ12V60Ahモノブロック制御弁式鉛蓄電池を作成した。蓄電池正極端子側のセルを1セル目および負極端子側のセルを6セル目が端セルで、中央に位置する2セル目〜5セル目を中央部セルとして構成されている。   As a test battery, a 12V60Ah monoblock control valve type lead storage battery in which 6 cells are arranged in the same direction was prepared. The cells on the storage battery positive terminal side are the first cells and the cells on the negative electrode terminal side are the end cells, and the second to fifth cells located in the center are configured as the central cells.

正極板は、高さ120mm、幅100mm、厚み1.2mmであり、負極板は、高さおよび幅が正極板と同じで、厚み1.0mmであり、正極板11枚/負極板12枚で極板群を構成した。供試電池は、中央部のセル活物質量を正極1000gおよび負極950gで負極活物質量/正極活物質比率は0.95として構成した。その他の供試電池の端セル活物質量は、正極が960gおよび1000gとし、負極は中央部より多くして、980g、1000g、1100gおよび1150gを選定し、これらの組合せによる端セルを作成した。   The positive electrode plate has a height of 120 mm, a width of 100 mm, and a thickness of 1.2 mm. The negative electrode plate has the same height and width as the positive electrode plate and has a thickness of 1.0 mm, and 11 positive electrode plates / 12 negative electrode plates. An electrode plate group was constructed. The test battery was configured such that the amount of the cell active material in the center was 1000 g of the positive electrode and 950 g of the negative electrode, and the ratio of the negative electrode active material / positive electrode active material ratio was 0.95. The amount of the end cell active material of other test batteries was 960 g and 1000 g for the positive electrode, and the negative electrode was larger than the central portion, and 980 g, 1000 g, 1100 g, and 1150 g were selected, and end cells were formed by combining these.

これらの供試電池6種類について、正極活物質量および負極活物質量を変化させて活物質比率の構成条件を表1に示した。その他の供試電池の作成条件は常法により作成した。   Table 6 shows the constituent conditions of the active material ratio for these six types of test batteries by changing the amount of the positive electrode active material and the amount of the negative electrode active material. The other test battery preparation conditions were prepared by a conventional method.

Figure 2009252535
Figure 2009252535

しかしながら、NO.6の電池の端セルは、正極および負極活物質の総量が2150gと従来例の1950gに比して多く極板群を端セル内部に挿入することができず、電池評価はNo.1〜No.5の電池について初期容量およびサイクル寿命特性を評価した。   However, NO. The end cell of the battery No. 6 has a total amount of positive electrode and negative electrode active materials of 2150 g, which is larger than the conventional 1950 g, and the electrode plate group cannot be inserted into the end cell. 1-No. The initial capacity and cycle life characteristics of 5 batteries were evaluated.

(実験1)
実験1として初期容量試験を実施した。初期容量試験は、充電状態の供試電池を25℃雰囲気中に12時間静置した後、20Aの定電流にて電池電圧が9.9Vに達するまで放電した時の容量を測定した。
(Experiment 1)
As Experiment 1, an initial capacity test was performed. In the initial capacity test, the charged test battery was allowed to stand in a 25 ° C. atmosphere for 12 hours, and then the capacity was measured when the battery voltage was discharged at a constant current of 20 A until the battery voltage reached 9.9 V.

(実験2)
実験2としてサイクル寿命試験を実施した。サイクル寿命試験は、以下の手順に従い、25℃雰囲気中で行った。
(Experiment 2)
As experiment 2, a cycle life test was performed. The cycle life test was performed in an atmosphere at 25 ° C. according to the following procedure.

1)供試電池を表2に示す充放電パターンで、定電力充放電を260回繰り返す。
なお、表2の充放電電力の欄において数値の前の記号は、−が放電を、+が充電を示す。
1) Constant power charge / discharge is repeated 260 times with the charge / discharge pattern shown in Table 2 for the test battery.
In addition, in the column of charge / discharge power in Table 2, the symbol in front of the numerical value indicates-is discharge and + is charge.

2)供試電池を、開路状態で30分休止する。   2) Pause the test battery in an open circuit for 30 minutes.

3)供試電池を、表3に示す5段の定電流充電パターンにて充電する。   3) The test battery is charged with the five-stage constant current charging pattern shown in Table 3.

4)供試電池を、開路状態で1時間休止する。   4) Pause the test battery for 1 hour in an open circuit.

5)上記1)〜4)の操作を1サイクルとし、このサイクルを繰り返し行う。   5) The above operations 1) to 4) are defined as one cycle, and this cycle is repeated.

6)100サイクル毎にサイクル寿命試験を停止する。   6) Stop the cycle life test every 100 cycles.

7)25℃雰囲気中に12時間以上静置する。   7) Leave in a 25 ° C. atmosphere for 12 hours or more.

8)20Aの定電流で、電池電圧が9.9Vになるまで放電する。   8) Discharge at a constant current of 20A until the battery voltage reaches 9.9V.

9)3)と同じ充電を行った後の1)において、電池電圧が8.4Vまで低下した場合は充放電サイクルを停止させ、それまでのサイクル数をサイクル寿命の値とした。その後に、7)および8)の条件で各セルの電圧を測定しつつ容量確認を実施した。   9) In 1) after performing the same charge as 3), when the battery voltage dropped to 8.4 V, the charge / discharge cycle was stopped, and the number of cycles up to that time was defined as the cycle life value. Thereafter, the capacity was confirmed while measuring the voltage of each cell under the conditions of 7) and 8).

Figure 2009252535
Figure 2009252535

Figure 2009252535
Figure 2009252535

上記の実験1および実験2を実施した供試電池の放電容量、サイクル寿命特性、サイクル寿命試験終了後の放電試験で最も劣化して放電電圧が低いセルのそれぞれの結果を、表1に示した端セル活物質比率とともに表4に示す。   Table 1 shows the results of the discharge capacity, cycle life characteristics, and cells with the lowest deterioration in the discharge test after the end of the cycle life test and the low discharge voltage of the test batteries in which Experiment 1 and Experiment 2 were conducted. It shows in Table 4 with an edge cell active material ratio.

Figure 2009252535
Figure 2009252535

今回試作した供試電池でNo.1電池は、全セル正極活物質と負極活物質との比率は同じであり、寿命特性は730サイクルであった。サイクル試験終了後の容量確認では、端セルの6セル目の放電電圧は、低く劣化しており、電解液の減少に起因する負極活物質の不導体化現象を生じていた。   This is a test battery that was prototyped this time. In one battery, the ratio of the all-cell positive electrode active material to the negative electrode active material was the same, and the life characteristic was 730 cycles. In the capacity check after the end of the cycle test, the discharge voltage of the sixth cell of the end cell was deteriorated to a low level, and the negative electrode active material was made non-conductive due to the decrease in the electrolyte.

供試電池No.2は、サイクル試験終了後の容量確認で劣化したセルは、端セルに位置する6セル目であったが、No.1と比較して端セルの寿命が延長することにより電池全体の寿命は870サイクルまで延びた。   Test battery No. In No. 2, the cell deteriorated by the capacity check after the end of the cycle test was the sixth cell located in the end cell. The lifetime of the whole cell was extended to 870 cycles by extending the lifetime of the end cell compared to 1.

供試電池No.3及びNo.4は、端セルの活物質比率がNo.2よりもさらに大きく、中央部セルとの比率差が0.05〜0.15で、供試電池No.2よりもさらに長寿命になり、サイクル終了後の容量試験においても劣化セルが中央部セルであった。これは、端セルのガス発生量が抑制され、充放電サイクルによる負極活物質の容量低下が減少したためと考えられる。   Test battery No. 3 and no. No. 4 has an active material ratio of No. 2 and a difference in the ratio with the center cell is 0.05 to 0.15. The life was even longer than 2, and the deteriorated cell was the center cell in the capacity test after the end of the cycle. This is presumably because the amount of gas generated in the end cell was suppressed, and the decrease in the capacity of the negative electrode active material due to the charge / discharge cycle was reduced.

供試電池No.5は、端セルの正極活物質量を減らすことにより活物質比率を大きく設定しており、No.1よりは長寿命でありかつサイクル停止後の劣化セルは中央に位置する4セル目であった。しかし、他の電池と比べると放電容量が当初より少なくサイクル寿命回数はNo.2〜No.4に比べて短くなったと考えられる。   Test battery No. No. 5 has a large active material ratio by reducing the amount of positive electrode active material in the end cell. The deterioration cell after the cycle stop was the 4th cell located in the center. However, compared with other batteries, the discharge capacity is less than the original, and the cycle life is no. 2-No. It is thought to be shorter than 4.

以上の結果により、端セルに相当する1セル目及び6セル目が中央部セルに相当する2セル目〜5セル目の負極活物質量/正極活物質量の活物質比率よりも大きくすることにより、端セルでの容量低下を抑制できる長寿命の制御弁式鉛蓄電池が得られることが確認できた。さらに、端セルと中央部セルとの活物質比率の差を0.05〜0.15とした際に、顕著な効果を得られることも確認できた。   Based on the above results, the first cell and the sixth cell corresponding to the end cells should be larger than the active material ratio of the negative electrode active material amount / the positive electrode active material amount of the second cell to the fifth cell corresponding to the center cell. Thus, it was confirmed that a long-life control valve type lead-acid battery capable of suppressing a decrease in capacity at the end cell was obtained. Furthermore, when the difference of the active material ratio of an edge cell and a center part cell was 0.05-0.15, it has also confirmed that a remarkable effect was acquired.

本発明の構成によれば、同一方向に並ぶ複数セルにおいて、セル毎に均等な寿命特性が得られる制御弁式鉛蓄電池を提供することが可能となるため、その工業的、価値は高い。   According to the configuration of the present invention, in a plurality of cells arranged in the same direction, it is possible to provide a control valve type lead storage battery capable of obtaining a uniform life characteristic for each cell, and therefore, its industrial value is high.

本発明の制御弁式鉛蓄電池の構成図Configuration diagram of control valve type lead-acid battery of the present invention

符号の説明Explanation of symbols

1 電槽
2 セル
2a 端セル
2b 中央部セル
3 正極板
4 負極板
5 セパレータ
6 ストラップ
7 極板群
8 隔壁
9 接続体
10 排気構造
11 蓋
12 接続端子
13 短側面
14 リブ
DESCRIPTION OF SYMBOLS 1 Battery case 2 Cell 2a End cell 2b Center part cell 3 Positive electrode plate 4 Negative electrode plate 5 Separator 6 Strap 7 Electrode plate group 8 Bulkhead 9 Connection body 10 Exhaust structure 11 Lid 12 Connection terminal 13 Short side surface 14 Rib

Claims (2)

3セル以上の複数セルが同一方向に直線状に構成された制御弁式鉛蓄電池において、セルを構成する負極活物質量/正極活物質量の活物質比率は、端セルの活物質比率>中央部セルの活物質比率、であることを特徴とする制御弁式鉛蓄電池。 In a valve-regulated lead-acid battery in which three or more cells are linearly configured in the same direction, the active material ratio of the negative electrode active material amount / positive electrode active material amount constituting the cell is the active material ratio of the end cell> center. A valve-regulated lead-acid battery, characterized in that the active material ratio of the partial cell. 前記端セルの活物質比率は、前記中央部セルの活物質比率に比べて0.05〜0.15高い比率とすることを特徴とする請求項1記載の制御弁式鉛蓄電池。 The control valve type lead acid battery according to claim 1, wherein the active material ratio of the end cell is 0.05 to 0.15 higher than the active material ratio of the central cell.
JP2008099032A 2008-04-07 2008-04-07 Control valve type lead acid battery Pending JP2009252535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099032A JP2009252535A (en) 2008-04-07 2008-04-07 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099032A JP2009252535A (en) 2008-04-07 2008-04-07 Control valve type lead acid battery

Publications (1)

Publication Number Publication Date
JP2009252535A true JP2009252535A (en) 2009-10-29

Family

ID=41313054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099032A Pending JP2009252535A (en) 2008-04-07 2008-04-07 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP2009252535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124137A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Method for maintaining assembled battery
EP2824749A1 (en) * 2012-03-08 2015-01-14 Nissan Motor Co., Ltd. Laminated-structure battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124137A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Method for maintaining assembled battery
EP2824749A1 (en) * 2012-03-08 2015-01-14 Nissan Motor Co., Ltd. Laminated-structure battery
EP2824749A4 (en) * 2012-03-08 2015-04-22 Nissan Motor Laminated-structure battery

Similar Documents

Publication Publication Date Title
JP5138391B2 (en) Control valve type lead acid battery
KR20200014317A (en) Lead acid battery
JP2014123510A (en) Lead storage battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
CN107112598B (en) lead-acid battery
JPWO2019087684A1 (en) Lead-acid battery for idling stop
JP5012105B2 (en) Control valve type lead acid battery
JP2009252535A (en) Control valve type lead acid battery
JP5720947B2 (en) Lead acid battery
JP6653070B2 (en) Control valve type lead storage battery and its battery case
WO2011077640A1 (en) Valve-regulated lead acid battery
JP2015022921A (en) Liquid-type lead storage battery, and method for manufacturing liquid-type lead storage battery
JP2009272203A (en) Lead acid storage battery
JP6651128B2 (en) Lead-acid battery for idling stop vehicle and idling stop vehicle
JP2006156022A (en) Charging method of control valve type lead acid storage battery
Buengeler et al. Lead-Acid–Still the Battery Technology with the Largest Sales
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP2001085046A (en) Sealed lead-acid battery
RU2809551C2 (en) Lead acid battery
JP2010020905A (en) Lead-acid battery
JP2009140739A (en) Control valve type lead-acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP6766811B2 (en) Lead-acid battery
JP2005149916A (en) Control valve type lead storage battery
RU89766U1 (en) LEAD BATTERY