JP2967635B2 - Operation method of metal halogen battery - Google Patents

Operation method of metal halogen battery

Info

Publication number
JP2967635B2
JP2967635B2 JP3330318A JP33031891A JP2967635B2 JP 2967635 B2 JP2967635 B2 JP 2967635B2 JP 3330318 A JP3330318 A JP 3330318A JP 33031891 A JP33031891 A JP 33031891A JP 2967635 B2 JP2967635 B2 JP 2967635B2
Authority
JP
Japan
Prior art keywords
battery
charging
current
zinc
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3330318A
Other languages
Japanese (ja)
Other versions
JPH05166551A (en
Inventor
保雄 安藤
裕司 橋口
寛 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP3330318A priority Critical patent/JP2967635B2/en
Priority to TW081109923A priority patent/TW229335B/zh
Priority to AT92121198T priority patent/ATE138503T1/en
Priority to DE69210972T priority patent/DE69210972T2/en
Priority to CA002085139A priority patent/CA2085139C/en
Priority to US07/989,167 priority patent/US5302472A/en
Priority to EP92121198A priority patent/EP0548716B1/en
Priority to KR1019920024052A priority patent/KR0143883B1/en
Publication of JPH05166551A publication Critical patent/JPH05166551A/en
Application granted granted Critical
Publication of JP2967635B2 publication Critical patent/JP2967635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

A method of operating a metal-halogen battery such as a zinc-bromine battery, intended to prevent dendrite from formation on an electrode during charging the battery. The method comprises the step of carrying out an operation of discharging the battery at a predetermined constant current having a first current value throughout charging the battery; and the step of initiating an operation of charging the battery at a second current value of two times the first current value and maintaining the charging operation at a third current value which linearly decreases from the second current value to a zero value toward a termination of charging the battery. <IMAGE>

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は亜鉛臭素電池等の金属ハ
ロゲン電池の充電時に生じるデンドライトを防止する技
術に係り、特に金属ハロゲン電池の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for preventing dendrite generated during charging of a metal halide battery such as a zinc bromine battery, and more particularly to a method of operating a metal halide battery.

【0002】[0002]

【従来の技術】金属ハロゲン電池、例えば亜鉛臭素電池
は高い電圧を取り出すため、電気的直列積層構成を採っ
ている。この亜鉛臭素電池は、主に図3の原理図に示す
ように電解液循環形であって、電池本体と、電解液貯蔵
槽と、これらの間に電解液を循環させる配管系とから構
成されている。
2. Description of the Related Art Metal-halogen batteries, for example, zinc bromine batteries, employ an electrical series lamination structure in order to extract a high voltage. This zinc bromine battery is mainly of an electrolyte circulation type as shown in the principle diagram of FIG. 3, and is composed of a battery main body, an electrolyte storage tank, and a piping system for circulating the electrolyte between them. ing.

【0003】即ち図3において、積層された電池の単セ
ルを、セパレータにより仕切って正極室と負極室を形成
し、正極室には正極側貯蔵槽から正極電解液をポンプに
よって循環し、負極室には負極側貯蔵槽から負極電解液
をポンプによって循環している。
In FIG. 3, a single cell of a stacked battery is partitioned by a separator to form a positive electrode chamber and a negative electrode chamber, and a positive electrode electrolyte is circulated from a positive electrode side storage tank by a pump in the positive electrode chamber. A negative electrode electrolyte is circulated from the negative electrode side storage tank by a pump.

【0004】[0004]

【発明が解決しようとする課題】前記亜鉛臭素電池は、
充電時負極表面上に金属亜鉛が電着し、放電時に亜鉛が
溶解するという反応で電位を生じる。しかし亜鉛の電着
形態が可逆的でなく、デンドライト形態を生じる理由に
より、寿命の低下をひきおこしている。これを改善する
ために抑制剤の添加や、電池の充放電1サイクルで1回
電着しているZnを電気的にとってしまうという完全放
電等の対策が講じられていた。
The zinc bromine battery has the following features.
A potential is generated by a reaction in which metal zinc is electrodeposited on the surface of the negative electrode during charging and zinc is dissolved during discharging. However, the reason why the electrodeposited form of zinc is not reversible and that the zinc forms a dendrite form causes a reduction in life. In order to improve this, countermeasures such as addition of a suppressor and complete discharge such that Zn electrodeposited once in one charge / discharge cycle of the battery is electrically used are taken.

【0005】しかしながらこれらのデンドライト抑制対
策には次のような問題点があった。 (1)抑制剤添加による抑制方法 (1−1)有機系抑制剤の添加 寿命に問題があり長期安定した効果を期待できない。 (1−2)無機系抑制剤の添加 一般に亜鉛と共析しデンドライトを抑制するが、偏析を
生じ長期安定性に乏しい。 (2)完全放電による抑制方法 1回の充放電で確実に1回数時間の完全放電を実施しな
くてはならず不便である。また完全放電装置が必要とな
る。
However, these measures for suppressing dendrite have the following problems. (1) Suppression method by addition of inhibitor (1-1) Addition of organic inhibitor There is a problem in the life, and a long-term stable effect cannot be expected. (1-2) Addition of Inorganic Inhibitor In general, eutectoid with zinc suppresses dendrite, but segregation occurs and long-term stability is poor. (2) Suppression method by complete discharge It is inconvenient to perform complete discharge for one time for one charge / discharge. In addition, a complete discharge device is required.

【0006】本発明は上記の点に鑑みてなされたもので
その目的は、常時安定したデンドライト抑制効果が期待
できるとともに、電池のメンテナンスを妨げることのな
い金属ハロゲン電池の運転方法を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for operating a metal halogen battery which can always be expected to have a stable effect on suppressing dendrite and which does not hinder battery maintenance. is there.

【0007】[0007]

【課題を解決するための手段】本発明は、電極板とセパ
レータ板とを交互に積層し一体化した電池の、正極室お
よび負極室に夫々電解液を循環して充放電を行う金属ハ
ロゲン電池の運転方法において、放電時は所定の定電流
で放電を行い、充電時は、前記放電電流の2倍の大きさ
の電流で充電を開始するとともに、充電期間中の充電電
流値を前記充電開始電流から零に至るまで直線的に減少
せしめることを特徴としている。
SUMMARY OF THE INVENTION The present invention is directed to a metal-halogen battery in which an electrode plate and a separator plate are alternately laminated and integrated, and a battery is charged and discharged by circulating an electrolyte in each of a positive electrode chamber and a negative electrode chamber. In the operation method of (1), discharging is performed at a predetermined constant current at the time of discharging, and charging is started at a current twice as large as the discharging current at the time of charging. It is characterized by a linear decrease from the current to zero.

【0008】[0008]

【作用】例えば亜鉛臭素電池について前記の充放電パタ
ーンで電池の運転を行うと、電極上に電着する亜鉛の結
晶は粒にならず平滑なものとなる。このためデンドライ
ト発生を防止することができる。
For example, when the battery is operated in the above-described charge / discharge pattern for a zinc bromine battery, the zinc crystals electrodeposited on the electrode become smooth without forming grains. For this reason, generation of dendrite can be prevented.

【0009】[0009]

【実施例】以下図面を参照しながら本発明の一実施例を
説明する。本発明では充放電時の電流を、従来のように
定電流とせずに充電初期は大きくしておき、充電末期に
は零となるように直線的に減少させるものであり、次の
ような実験を行った。
An embodiment of the present invention will be described below with reference to the drawings. According to the present invention, the current at the time of charging and discharging is not constant current as in the prior art, but is increased at the initial stage of charging and linearly decreased to zero at the end of charging. Was done.

【0010】実施例1 小型のセルを用意し、その中に2.75mol/lのZ
2+、4.5mol/lのBr-、1mol/lのCl-
の混合液を入れ、電極として一方にカーボンプラスチッ
ク電極、対極として99.99%の亜鉛板を用意し、カ
ーボンプラスチック電極4.5h(時間)、20mA/
cm2で亜鉛を電着させた。その後次の方法で充放電を
行った。
Example 1 A small cell was prepared, and 2.75 mol / l of Z was placed therein.
n 2+ , 4.5 mol / l Br , 1 mol / l Cl
, A carbon plastic electrode was prepared on one side as an electrode, and a 99.99% zinc plate was prepared as a counter electrode, and the carbon plastic electrode was 4.5 h (hour), 20 mA /
Zinc was electrodeposited in cm 2 . Thereafter, charging and discharging were performed by the following method.

【0011】従来の方法……2h、20mA/cm2
電流でカーボンプラスチック電極上の亜鉛を放電させ、
次に2h、20mA/cm2定電流の充電を行い、この
充放電を5回繰り返しカーボンプラスチック電極表面を
観察した。 本発明の方法……2h、20mA/cm2定電流でカー
ボンプラスチック電極上の亜鉛を放電させ、次に2hで
40mA/cm2から0mA/cm2まで直線的に電流を
減少させる充電を行い、この充放電を5回繰り返しカー
ボンプラスチック電極表面を観察した。
Conventional method: Discharging zinc on a carbon plastic electrode at a constant current of 20 mA / cm 2 for 2 hours,
Next, charging was performed at a constant current of 20 mA / cm 2 for 2 hours, and the charging and discharging were repeated five times, and the surface of the carbon plastic electrode was observed. The method of the present invention: discharging the zinc on the carbon plastic electrode at a constant current of 20 mA / cm 2 for 2 h, and then performing a charge for linearly reducing the current from 40 mA / cm 2 to 0 mA / cm 2 in 2 h; This charge / discharge was repeated five times, and the surface of the carbon plastic electrode was observed.

【0012】実施例2 電極面積830cm2の電極を用いて8セル積層した液
循環型亜鉛臭素電池を作製し、これを前記実施例1と同
じ充放電パターンで運転し最後に0Vまで放電して効率
を測定した。
EXAMPLE 2 A liquid-circulating zinc-bromine battery having eight cells stacked using an electrode having an electrode area of 830 cm 2 was manufactured, operated in the same charge / discharge pattern as in Example 1, and finally discharged to 0V. The efficiency was measured.

【0013】前記の実験結果は次のとおりであった。 (1)実施例1の従来の方法ではカーボンプラスチック
電極表面は図2のように粒状の亜鉛形態となった。この
結晶粒がデンドライトの核となり生成をうながす。尚図
2(a)は電極表面を上から見たところ、図2(b)は
電極表面を横から見たところを示している。 (2)実施例1の本発明の方法では図1のように電極表
面の亜鉛の結晶は粒になっておらず横に伸び、平滑な亜
鉛形態となった。このためデンドライト抑制効果が有る
ことがわかる。 (3)実施例2における電池の効率は、従来の方法によ
る充放電パターンで運転した場合62%であったが、本
発明の方法による充放電パターンで運転した場合78%
となった。このため本発明によれば亜鉛電着の改善によ
り効率の低下はないことがわかる。
The results of the above experiments were as follows. (1) In the conventional method of Example 1, the surface of the carbon plastic electrode was in the form of granular zinc as shown in FIG. These crystal grains serve as nuclei of the dendrite to induce the formation. FIG. 2A shows the electrode surface viewed from above, and FIG. 2B shows the electrode surface viewed from the side. (2) In the method of the present invention of Example 1, as shown in FIG. 1, the zinc crystals on the electrode surface did not become grains but extended laterally, resulting in a smooth zinc form. Therefore, it can be seen that there is a dendrite suppression effect. (3) The efficiency of the battery in Example 2 was 62% when operated with the charge / discharge pattern according to the conventional method, but 78% when operated with the charge / discharge pattern according to the method of the present invention.
It became. For this reason, according to the present invention, it is understood that the efficiency is not reduced by the improvement of the zinc electrodeposition.

【0014】[0014]

【発明の効果】以上のように本発明によれば放電時は所
定の定電流で放電を行い、充電時は、前記放電電流の2
倍の大きさの電流で充電を開始するとともに、充電期間
中の充電電流値を前記充電開始電流から零に至るまで直
線的に減少せしめるようにしたので次のような優れた効
果が得られる。
As described above, according to the present invention, discharging is performed at a predetermined constant current during discharging, and 2% of the discharging current is performed during charging.
Since the charging is started at twice the current and the charging current value during the charging period is linearly reduced from the charging starting current to zero, the following excellent effects can be obtained.

【0015】(1)電池運転の効率を低下させることな
く常時安定したデンドライト抑制効果が期待できる。 (2)完全放電を行わなくても良いので、電池のメンテ
ナンスを妨げることがない。 (3)完全放電装置が不要となる。
(1) A stable and stable dendrite suppressing effect can be expected without lowering the efficiency of battery operation. (2) Since it is not necessary to perform complete discharge, maintenance of the battery is not hindered. (3) A complete discharge device is not required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による充放電を行った場合の
電極表面の亜鉛結晶を示し、(a)は正面図、(b)は
断面図。
FIG. 1 shows zinc crystals on an electrode surface when charging and discharging are performed according to an embodiment of the present invention, (a) is a front view, and (b) is a cross-sectional view.

【図2】従来方法による充放電を行った場合の電極表面
の亜鉛結晶を示し、(a)は正面図、(b)は断面図。
FIGS. 2A and 2B show zinc crystals on an electrode surface when charge and discharge are performed by a conventional method, where FIG. 2A is a front view and FIG. 2B is a cross-sectional view.

【図3】亜鉛臭素電池の原理図。FIG. 3 is a principle diagram of a zinc bromine battery.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極板とセパレータ板とを交互に積層し
一体化した電池の、正極室および負極室に夫々電解液を
循環して充放電を行う金属ハロゲン電池の運転方法にお
いて、放電時は所定の定電流で放電を行い、充電時は、
前記放電電流の2倍の大きさの電流で充電を開始すると
ともに、充電期間中の充電電流値を前記充電開始電流か
ら零に至るまで直線的に減少せしめることを特徴とする
金属ハロゲン電池の運転方法。
1. A method of operating a metal halide battery in which an electrode plate and a separator plate are alternately laminated and integrated to perform charging and discharging by circulating an electrolyte in a positive electrode chamber and a negative electrode chamber, respectively, Discharge with a predetermined constant current, and when charging,
Starting a charge with a current twice as large as the discharge current and linearly decreasing a charge current value during the charge period from the charge start current to zero. Method.
JP3330318A 1991-12-13 1991-12-13 Operation method of metal halogen battery Expired - Lifetime JP2967635B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP3330318A JP2967635B2 (en) 1991-12-13 1991-12-13 Operation method of metal halogen battery
TW081109923A TW229335B (en) 1991-12-13 1992-12-10
DE69210972T DE69210972T2 (en) 1991-12-13 1992-12-11 Method for operating a metal halide battery
CA002085139A CA2085139C (en) 1991-12-13 1992-12-11 Method of operating metal-halogen battery
AT92121198T ATE138503T1 (en) 1991-12-13 1992-12-11 METHOD FOR OPERATING A METAL HALOGEN BATTERY
US07/989,167 US5302472A (en) 1991-12-13 1992-12-11 Method of operating metal-halogen battery
EP92121198A EP0548716B1 (en) 1991-12-13 1992-12-11 Method of operating metal-halogen battery
KR1019920024052A KR0143883B1 (en) 1991-12-13 1992-12-12 Method pof operating metal halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330318A JP2967635B2 (en) 1991-12-13 1991-12-13 Operation method of metal halogen battery

Publications (2)

Publication Number Publication Date
JPH05166551A JPH05166551A (en) 1993-07-02
JP2967635B2 true JP2967635B2 (en) 1999-10-25

Family

ID=18231293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330318A Expired - Lifetime JP2967635B2 (en) 1991-12-13 1991-12-13 Operation method of metal halogen battery

Country Status (8)

Country Link
US (1) US5302472A (en)
EP (1) EP0548716B1 (en)
JP (1) JP2967635B2 (en)
KR (1) KR0143883B1 (en)
AT (1) ATE138503T1 (en)
CA (1) CA2085139C (en)
DE (1) DE69210972T2 (en)
TW (1) TW229335B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650239A (en) * 1995-06-07 1997-07-22 Zbb Technologies, Inc. Method of electrode reconditioning
US10090515B2 (en) 2011-05-11 2018-10-02 Gridtential Energy, Inc. Bipolar hybrid energy storage device
DK2668683T3 (en) 2011-05-11 2016-03-07 Gridtential Energy Inc Improved battery and assembly process
US10008713B2 (en) 2011-05-11 2018-06-26 Gridtential Energy, Inc. Current collector for lead acid battery
KR101206251B1 (en) 2012-03-16 2012-11-28 천명학 Charger having a function of self circulation about electrolyte
ES2719957T3 (en) 2013-10-14 2019-07-17 Nantenergy Inc Method for operating and conditioning electrochemical cells comprising electrodeposited fuel
EP3105812B1 (en) 2014-02-12 2017-11-01 Fluidic, Inc. Method of operating electrochemical cells comprising electrodeposited fuel

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639173A (en) * 1967-10-16 1972-02-01 Yardney International Corp Method of controlling zinc dendrite growth
GB1227630A (en) * 1968-08-23 1971-04-07
US3813301A (en) * 1971-11-18 1974-05-28 Occidental Energy Dev Co Process of charging and discharging a metal halogen cell
US3912999A (en) * 1973-07-11 1975-10-14 California Inst Of Techn Zinc-halide battery with molten electrolyte
IT1019480B (en) * 1973-10-27 1977-11-10 Deutsche Automobilgesellsch IMPROVEMENT IN PICARICABLE ZINC ELECTRODES
NL7702457A (en) * 1977-03-08 1978-09-12 S E I Electronics DEVICE FOR CHARGING ACCUMULATORS.
CA1222281A (en) * 1983-06-17 1987-05-26 Yasuo Ando Secondary battery having the separator
JPS60124372A (en) * 1983-12-07 1985-07-03 Meidensha Electric Mfg Co Ltd Operation of secondary battery
JPS61290669A (en) * 1985-06-19 1986-12-20 Meidensha Electric Mfg Co Ltd Operation of zinc-halogen secondary battery
CA1311268C (en) * 1988-04-11 1992-12-08 Karl Kordesch Method and a taper charger for the resistance free charging of a rechargeable battery
JP2906422B2 (en) * 1989-01-20 1999-06-21 ソニー株式会社 Charging device
JPH0386566U (en) * 1989-12-21 1991-09-02
DE4018223C1 (en) * 1990-06-07 1991-08-22 Dornier Gmbh, 7990 Friedrichshafen, De

Also Published As

Publication number Publication date
DE69210972T2 (en) 1996-10-02
DE69210972D1 (en) 1996-06-27
US5302472A (en) 1994-04-12
CA2085139C (en) 1996-07-23
ATE138503T1 (en) 1996-06-15
EP0548716B1 (en) 1996-05-22
EP0548716A1 (en) 1993-06-30
KR940016986A (en) 1994-07-25
CA2085139A1 (en) 1993-06-14
KR0143883B1 (en) 1998-08-17
JPH05166551A (en) 1993-07-02
TW229335B (en) 1994-09-01

Similar Documents

Publication Publication Date Title
JPH11506863A (en) How to restore electrode activity
JP2967635B2 (en) Operation method of metal halogen battery
JP2008130516A (en) Liquid lead-acid storage battery
US4857419A (en) Method of operating zinc-halogen secondary battery
JPH01278239A (en) Charge controller of auxiliary battery for fuel battery
JP4081698B2 (en) Lead-acid battery charging method
JP3307048B2 (en) Operating method of zinc-bromine battery
JPH084016B2 (en) Charge control system for lead-acid batteries
JP3396892B2 (en) Operating method of electrolyte flowing battery
CN201041946Y (en) Self-excited negative impulse voltage stabilization balance battery
JP6894649B1 (en) Fuel cell charge state maintenance device
JP3018406B2 (en) Battery forming method for sealed lead-acid batteries
JPS60124371A (en) Operation of secondary battery
JP3010691B2 (en) Battery forming method for sealed lead-acid batteries
CN103682500A (en) Quick charging method for lithium ion power battery
JPH0159706B2 (en)
JP2518257B2 (en) Zinc bromide secondary battery charging method
SU1758716A1 (en) Method f charging lead-acid storage batteries
JPH01161680A (en) Charging method for zinc bromine battery
JPS60240071A (en) Zinc-halogen secondary battery
JP2964555B2 (en) Battery storage method for lead-acid batteries
Berndt Conditions to operate stationary batteries under deep discharge performance with limited time and energy for recharge
JPH0654661B2 (en) Sealed lead acid battery
JPH0419672B2 (en)
JP2002165378A (en) Charging system of control valve type lead-acid battery