JPH09204928A - Electrolyte for storage battery, and method of improving charging and discharging efficiency of storage battery by the electrolyte - Google Patents

Electrolyte for storage battery, and method of improving charging and discharging efficiency of storage battery by the electrolyte

Info

Publication number
JPH09204928A
JPH09204928A JP3264296A JP3264296A JPH09204928A JP H09204928 A JPH09204928 A JP H09204928A JP 3264296 A JP3264296 A JP 3264296A JP 3264296 A JP3264296 A JP 3264296A JP H09204928 A JPH09204928 A JP H09204928A
Authority
JP
Japan
Prior art keywords
storage battery
electrolyte
electrolytic solution
germanium compound
organic germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3264296A
Other languages
Japanese (ja)
Inventor
Fumio Nakamata
富美男 仲俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GERMANIUM SEIHIN HANBAI KK
NAKAMATA HIDEMICHI
Original Assignee
GERMANIUM SEIHIN HANBAI KK
NAKAMATA HIDEMICHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GERMANIUM SEIHIN HANBAI KK, NAKAMATA HIDEMICHI filed Critical GERMANIUM SEIHIN HANBAI KK
Priority to JP3264296A priority Critical patent/JPH09204928A/en
Publication of JPH09204928A publication Critical patent/JPH09204928A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To enhance the charging and discharging efficiency of a storage battery, and extend the life by containing an organic germanium compound represented by the formula 1. SOLUTION: An electrolyte represented by the formula 1 has a germyl propionic acid formed of a propionic acid derivative bonded to germanium atom as a basic frame in which germanium atom and oxygen atom are bonded in a ratio of 2:3. The organic germanium compound is manufactured by hydrolyzing a trihalogermyl propionic acid such as trichlorogermyl propionic acid. Dilute sulfuric acid is used as medium, and a coloring agent may be added. A general electrolyte is substituted by an electrolyte containing 55ppm of this organic germanium compound, and charged for 120 minutes with a starting current of 12A. Then, a storage battery having a satisfactory charge and discharge efficiency can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蓄電池用の電解液
及び該電解液による蓄電池の充放電効率改良方法に関す
るものである。
TECHNICAL FIELD The present invention relates to an electrolytic solution for a storage battery and a method for improving the charge / discharge efficiency of the storage battery by the electrolytic solution.

【0002】[0002]

【従来の技術】蓄電池は、一般に陽極及び陰極の間に電
解液を充満することにより起電力を得るものであり、最
も汎用されている鉛蓄電池においては、陽極に硫酸鉛
(PbSO4)、陰極に鉛(Pb)、そして電解液として希硫
酸が使用されている。
2. Description of the Related Art A storage battery generally obtains an electromotive force by filling an electrolytic solution between an anode and a cathode. In the most widely used lead storage battery, lead sulfate (PbSO 4 ) is used as the anode and cathode is used as the cathode. Lead (Pb) and dilute sulfuric acid are used as electrolyte.

【0003】上記構成の鉛蓄電池は、電解液の存在下、
陽極及び陰極における可逆的な化学反応を電力として取
り出すので、理論的には無限に充放電を繰り返すことが
できるのであるが、サルフェーションその他の様々な理
由により、鉛蓄電池にはいわゆる寿命が存在し、永久に
継続使用が可能なわけではない。
The lead-acid battery having the above structure is
Since the reversible chemical reaction in the anode and the cathode is taken out as electric power, it is theoretically possible to repeat charging and discharging infinitely, but due to various reasons such as sulfation, there is a so-called lifetime in the lead storage battery, It cannot be used forever.

【0004】周知のように、寿命の切れ掛かった鉛蓄電
池においては、充電に時間がかかる割には放電量が低下
し、そしてついには使用不能に至るのであるが、エネル
ギーを効率的に利用するという観点から、鉛蓄電池にお
ける陽極及び陰極の化学反応を、できるだけスムースに
進行させ、充放電量を上げることが好ましい。
As is well known, in a lead-acid battery with a short life, the amount of discharge decreases despite the time required for charging, and eventually the battery becomes unusable, but energy is used efficiently. From this point of view, it is preferable to promote the chemical reaction of the anode and the cathode in the lead storage battery as smoothly as possible to increase the charge / discharge amount.

【0005】又、上記のように鉛蓄電池においては、硫
酸鉛等の廃棄物としての処理が困難な素材が使用されて
いるので、危険な廃棄物を減らすという観点から、鉛蓄
電池における陽極及び陰極の化学反応を、できるだけ長
期間にわたって進行させ、寿命を延長することが好まし
い。
Further, as described above, the lead-acid battery uses a material such as lead sulfate that is difficult to treat as a waste, so from the viewpoint of reducing hazardous waste, the anode and cathode of the lead-acid battery are reduced. It is preferable to allow the chemical reaction of (1) to proceed for as long as possible to extend the life.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来は
上記の要望を満たすことのできる電解液は提供されてい
なかった。
However, no electrolytic solution has hitherto been provided which can satisfy the above-mentioned demands.

【0007】即ち、本発明は、上記のような従来技術の
難点を解消し、蓄電池の充放電効率を改良することので
きる電解液、及び、この電解液を使用する蓄電池の充放
電効率の改良方法を提供することを目的としてなされた
ものである。
That is, the present invention solves the above-mentioned drawbacks of the prior art and improves the charging / discharging efficiency of a storage battery, and the charging / discharging efficiency of a storage battery using this electrolytic solution. The purpose is to provide a method.

【0008】又、本発明は、上記電解液を使用する蓄電
池の使用期間の延長方法を提供することも目的とする。
Another object of the present invention is to provide a method for extending the period of use of a storage battery using the above electrolyte solution.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用した蓄電池用の電解液の構成は、蓄電池
用の電解液において、式
In order to achieve the above object, the constitution of the electrolytic solution for a storage battery adopted by the present invention is as follows:

【化5】 で表される有機ゲルマニウム化合物を含有することを特
徴とするものであり、同様に本発明が採用した蓄電池の
充放電効率改良方法の構成は、蓄電池の電解液を、上記
式(1)で表される有機ゲルマニウム化合物を含有する
電解液により置換することを特徴とするものである。
Embedded image It is characterized in that it contains an organic germanium compound represented by the following. Similarly, the structure of the charging / discharging efficiency improving method for a storage battery adopted by the present invention has It is characterized in that it is replaced by an electrolytic solution containing the organic germanium compound.

【0010】更に、上記目的を達成するために本発明が
採用した蓄電池の使用期間延長方法の構成は、蓄電池の
電解液を、上記式(1)で表される有機ゲルマニウム化
合物を含有する電解液により置換することを特徴とする
ものである。
Furthermore, in order to achieve the above object, the present invention adopts a method of extending the period of use of a storage battery, wherein the storage battery electrolyte is an electrolyte containing an organic germanium compound represented by the above formula (1). It is characterized by replacing by.

【0011】[0011]

【発明の実施の態様】以下に本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.

【0012】本発明の蓄電池用の電解液は、蓄電池用の
電解液において、上記式(1)で表わされる特定の有機
ゲルマニウム化合物を含有することを特徴としているの
で、まずこの化合物について説明すると、これは、プロ
ピオン酸誘導体とゲルマニウム原子とが結合したゲルミ
ルプロピオン酸を基本骨格とし、当該基本骨格における
ゲルマニウム原子と酸素原子とが2:3の割合で結合し
たものである。
The electrolytic solution for a storage battery of the present invention is characterized by containing the specific organic germanium compound represented by the above formula (1) in the electrolytic solution for a storage battery. First, this compound will be described. This has a basic skeleton of germanylpropionic acid in which a propionic acid derivative and a germanium atom are bonded, and a germanium atom and an oxygen atom in the basic skeleton are bonded at a ratio of 2: 3.

【0013】而して、上記構造の有機ゲルマニウム化合
物は様々な方法により製造することができ、その一例を
示せば、下記反応式に示すように、トリクロルゲルミル
プロピオン酸等のトリハロゲルミルプロピオン酸を加水
分解すれば良いのである。
Thus, the organogermanium compound having the above structure can be produced by various methods. As an example, as shown in the following reaction formula, trihalogermylpropionic acid such as trichlorogermylpropionic acid can be produced. It is enough to hydrolyze.

【化6】 [Chemical 6]

【0014】尚、上記有機ゲルマニウム化合物を表わす
式は、それを結晶として単離した状態に相当するもの
で、水溶液中ではゲルマニウム−酸素結合が加水分解を
受け、
The above-mentioned formula representing the organic germanium compound corresponds to a state in which it is isolated as a crystal, and the germanium-oxygen bond undergoes hydrolysis in an aqueous solution,

【化7】 なる構造をとることがわかっており、更に、上記有機ゲ
ルマニウム化合物は以下の式で表すこともできる。
Embedded image It is known that the organic germanium compound has the following structure, and the organic germanium compound can be represented by the following formula.

【化8】 Embedded image

【0015】上記有機ゲルマニウム化合物を含有させて
本発明の電解液とするための媒体は、従来より鉛蓄電池
の電解液として使用されていた希硫酸であり、その濃度
は例えば約27%である。
The medium for containing the above-mentioned organic germanium compound as the electrolytic solution of the present invention is dilute sulfuric acid which has been conventionally used as an electrolytic solution of a lead storage battery, and its concentration is, for example, about 27%.

【0016】上記希硫酸に対する上記有機ゲルマニウム
化合物の添加量としては、1ppm以上、好ましくは5
5ppm〜100ppmという範囲を例示することがで
きる。
The amount of the organic germanium compound added to the diluted sulfuric acid is 1 ppm or more, preferably 5 ppm.
A range of 5 ppm to 100 ppm can be exemplified.

【0017】又、本発明の鉛蓄電池の電解液には、従来
の電解液に使用されていた成分を添加しても差し支えな
く、このような成分としては、例えば、着色料を挙げる
ことができる。
The components used in conventional electrolytes may be added to the electrolyte of the lead-acid battery of the present invention. Examples of such components include colorants. .

【0018】尚、本発明の電解液を使用する蓄電池の充
放電効率の改良方法及び蓄電池の使用期間の延長方法を
実施するには、単に対象となる蓄電池の電解液を、本発
明の電解液によって置換すればよい。
In order to carry out the method for improving the charge / discharge efficiency of a storage battery and the method for extending the usage period of the storage battery using the electrolytic solution of the present invention, simply use the electrolytic solution of the target storage battery as the electrolytic solution of the present invention. You can replace by.

【0019】[0019]

【実施例】次に本発明を実施例により更に詳細に説明す
る。
EXAMPLES The present invention will now be described in more detail with reference to Examples.

【0020】有機ゲルマニウム化合物の合成 トリクロルゲルミルプロピオン酸を加水分解し、分取及
び乾燥することにより、式(1)で表される有機ゲルマ
ニウム化合物を得た。
Synthesis of Organic Germanium Compound Trichlorogermylpropionic acid was hydrolyzed, separated and dried to obtain an organic germanium compound represented by the formula (1).

【0021】実施例1 鉛蓄電池(古河バッテリー製EBE-65)の電解液を、前記
式(1)で表される有機ゲルマニウム化合物を55pp
m含有する本発明電解液(以下、実施例における「本発
明電解液」はこれを意味する)により置換し、以下の条
件で充電した。 充電時間:120分 充電開始電流:12アンペア
Example 1 An electrolyte solution of a lead acid battery (EBE-65 manufactured by Furukawa Battery) was added with an organic germanium compound represented by the above formula (1) at 55 pp.
The electrolytic solution of the present invention containing m (hereinafter referred to as “the electrolytic solution of the present invention” in Examples means this) and charged under the following conditions. Charging time: 120 minutes Charging start current: 12 amps

【0022】比較例1 実施例1と同一の鉛蓄電池に通常の電解液を注入し、実
施例1と同様に充電した。
Comparative Example 1 The same lead acid battery as in Example 1 was charged with a normal electrolytic solution and charged in the same manner as in Example 1.

【0023】結果を示す図1及び図2に明らかなよう
に、電圧の上昇はほぼ同じであるが、実施例1の蓄電池
における電流の降下は、比較例1のそれよりも緩やかで
あり、実施例1の蓄電池では本発明電解液の効果により
充電効率が向上していることがわかる。
As is apparent from FIGS. 1 and 2 showing the results, the increase in voltage is almost the same, but the drop in current in the storage battery of Example 1 is gentler than that of Comparative Example 1, and It can be seen that the storage battery of Example 1 has improved charging efficiency due to the effect of the electrolytic solution of the present invention.

【0024】実施例2 鉛蓄電池(古河バッテリー製EBE-65)の電解液を、本発
明電解液により置換し、以下の条件で放電した。 放電開始電流:10アンペア
Example 2 The electrolytic solution of a lead storage battery (EBE-65 manufactured by Furukawa Battery) was replaced with the electrolytic solution of the present invention and discharged under the following conditions. Discharge starting current: 10 amps

【0025】比較例2 実施例2と同一の鉛蓄電池に通常の電解液を注入し、実
施例2と同様に放電した。
Comparative Example 2 The same lead acid battery as in Example 2 was charged with a normal electrolytic solution and discharged in the same manner as in Example 2.

【0026】結果を示す図3及び図4に明らかなよう
に、実施例2の蓄電池における電流の降下は、比較例2
のそれよりも緩やかであり、実施例2の蓄電池では本発
明電解液の効果により放電効率が向上していることがわ
かる。
As is apparent from FIGS. 3 and 4 showing the results, the current drop in the storage battery of Example 2 was
It is found that the discharge efficiency is improved by the effect of the electrolytic solution of the present invention in the storage battery of the second embodiment.

【0027】実施例3 鉛蓄電池(湯浅製94X2843AYG)の電解液を、本発明電解
液により置換した後、充電量を積算しつつタイマーによ
り5時間充電し、フォークリフトに搭載した。放電量を
積算しつつ通常の荷役作業を行い、蓄電池容量警告ラン
プが点灯するまで作業を行った。
Example 3 After replacing the electrolytic solution of a lead storage battery (94X2843AYG manufactured by Yuasa) with the electrolytic solution of the present invention, the battery was charged for 5 hours by a timer while accumulating the charged amount and mounted on a forklift. Normal cargo handling work was performed while accumulating the amount of discharge, and work was performed until the storage battery capacity warning lamp was lit.

【0028】比較例3 実施例3と同一の鉛蓄電池に通常の電解液を注入し、同
一のフォークリフトに搭載して実施例3と同様に作業を
行った。
Comparative Example 3 The same lead acid battery as in Example 3 was charged with a normal electrolytic solution and mounted on the same forklift, and the same operation as in Example 3 was performed.

【0029】結果を示す以下の表1に明らかなように、
実施例3の蓄電池における電力引出率は約100%であ
り、比較例2のそれよりも約28%上回っており、実施
例3の蓄電池では本発明電解液の効果により充電量を完
全に利用し得ることがわかる。
As can be seen in Table 1 below, which shows the results,
The power extraction rate in the storage battery of Example 3 is about 100%, which is higher than that of Comparative Example 2 by about 28%. In the storage battery of Example 3, the charged amount is completely utilized due to the effect of the electrolytic solution of the present invention. You know you will get.

【0030】[0030]

【表1】 [Table 1]

【0031】実施例4 一旦廃棄された鉛蓄電池(日本電池製65D25R)の電解液
を、本発明電解液により置換し、以下の条件で充放電し
た。 充電時間:3時間 放電電流:10アンペア(固定)
Example 4 The electrolytic solution of the lead storage battery (65D25R manufactured by Nippon Battery) which had been once discarded was replaced with the electrolytic solution of the present invention and charged and discharged under the following conditions. Charging time: 3 hours Discharge current: 10 amps (fixed)

【0032】比較例4 実施例4と同一の鉛蓄電池に通常の電解液を注入し、実
施例4と同様に充放電した。
Comparative Example 4 The same lead acid battery as in Example 4 was charged with a normal electrolytic solution and charged and discharged in the same manner as in Example 4.

【0033】結果を示す以下の表2に明らかなように、
実施例4の蓄電池における電力引出率及び引出時間は比
較例2のそれに比べて倍増しており、廃棄された蓄電池
を本発明電解液の効果により再利用し得ることがわか
る。
As is evident in Table 2 below, which shows the results,
The power extraction rate and the withdrawal time of the storage battery of Example 4 are doubled as compared with those of Comparative Example 2, and it can be seen that the discarded storage battery can be reused by the effect of the electrolytic solution of the present invention.

【0034】[0034]

【表2】 [Table 2]

【0035】実施例5 鉛蓄電池(FB製VCD9S)の電解液を、本発明電解液に
より置換した後に充電し、フォークリフトに搭載した。
放電量を積算しつつ通常の荷役作業を行い、作業終了後
に電圧測定を行った。
Example 5 After replacing the electrolytic solution of a lead acid battery (VCD9S manufactured by FB) with the electrolytic solution of the present invention, the battery was charged and mounted on a forklift.
Normal cargo handling work was performed while accumulating the discharge amount, and voltage was measured after the work was completed.

【0036】比較例5 実施例5と同一の鉛蓄電池に通常の電解液を注入し、同
一のフォークリフトに搭載して実施例5と同様に電圧測
定を行った。
Comparative Example 5 The same lead acid battery as in Example 5 was charged with a normal electrolytic solution and mounted on the same forklift, and the voltage was measured in the same manner as in Example 5.

【0037】結果を示す以下の表3に明らかなように、
実施例5の蓄電池においては蓄電池容量の約25〜38
%に相当する110〜167Ahを使用しても、電圧の
効果は1ボルトであったが、比較例5においては蓄電池
容量の約20%に相当する90Ahを使用した段階で、
電圧の効果は2ボルトであり、実施例5の蓄電池では本
発明電解液の効果により、使用量に対する電圧の降下が
減少していることがわかる。
As is apparent in Table 3 below, which shows the results,
The storage battery of Example 5 has a storage battery capacity of about 25 to 38.
%, The effect of voltage was 1 volt even when 110% to 167 Ah was used, but in Comparative Example 5, when 90 Ah corresponding to about 20% of the storage battery capacity was used,
The effect of voltage is 2 V, and it can be seen that in the storage battery of Example 5, the voltage drop with respect to the amount used is reduced due to the effect of the electrolytic solution of the present invention.

【0038】[0038]

【表3】 [Table 3]

【0039】実施例6及び比較例6 鉛蓄電池(FB製VCD9S)の電解液を、本発明電解液に
より置換した後に充電し、充電後のセル内の温度測定を
行い(実施例6)、同一の鉛蓄電池に通常の電解液を注
入し、同様にセル内の温度測定を行った(比較例6)と
ころ、実施例6では34〜40℃であったが、比較例6
では42〜50℃と高温であり、実施例6の蓄電池では
本発明電解液の効果により、充電時の温度上昇が少な
く、電解液の蒸発が少ないばかりか、蓄電池の寿命にも
良い影響を与えることがわかる。
Example 6 and Comparative Example 6 The electrolyte of the lead acid battery (VCD9S manufactured by FB) was replaced with the electrolyte of the present invention and then charged, and the temperature inside the cell after charging was measured (Example 6). A normal electrolytic solution was injected into the lead acid battery of No. 1 and the temperature inside the cell was measured in the same manner (Comparative Example 6).
The temperature is as high as 42 to 50 ° C., and in the storage battery of Example 6, due to the effect of the electrolytic solution of the present invention, the temperature rise during charging is small, the evaporation of the electrolytic solution is small, and the life of the storage battery is also positively affected. I understand.

【0040】実施例7乃至17及び比較例7、8 以下の表4に示す鉛蓄電池の電解液を、本発明電解液に
より置換した後に充電して業務用四輪車に搭載する一
方、以下の表4に示す鉛蓄電池に通常の電解液を注入し
て業務用四輪車に搭載し、通常の業務に使用したとこ
ろ、表4に示すように実施例7乃至17の蓄電池では本
発明電解液の効果により、明らかに長寿命化した。
Examples 7 to 17 and Comparative Examples 7 and 8 The electrolytic solution of the lead storage battery shown in Table 4 below was replaced with the electrolytic solution of the present invention and then charged and mounted on a four-wheeled vehicle for business use. When the lead storage batteries shown in Table 4 were filled with a normal electrolyte and mounted on a commercial four-wheeled vehicle and used for normal work, as shown in Table 4, in the storage batteries of Examples 7 to 17, the electrolyte of the present invention was used. By the effect of, the life was obviously extended.

【表4】 [Table 4]

【0041】[0041]

【発明の効果】本発明の蓄電池用の電解液は、蓄電池用
の電解液において、上記式(1)で表わされる特定の有
機ゲルマニウム化合物を含有することを特徴とし、蓄電
池の充放電効率を改良することができるばかりか、蓄電
池の長寿命化をはかることができる。
The electrolytic solution for a storage battery of the present invention is characterized in that, in the electrolytic solution for a storage battery, the specific organic germanium compound represented by the above formula (1) is contained, and the charge / discharge efficiency of the storage battery is improved. Not only can this be done, but the life of the storage battery can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蓄電池用の電解液を使用した蓄電池の
充電状態を示すグラフである。
FIG. 1 is a graph showing a state of charge of a storage battery using an electrolyte solution for a storage battery of the present invention.

【図2】通常の電解液を使用した蓄電池の充電状態を示
すグラフである。
FIG. 2 is a graph showing a charge state of a storage battery using a normal electrolytic solution.

【図3】本発明の蓄電池用の電解液を使用した蓄電池の
放電状態を示すグラフである。
FIG. 3 is a graph showing a discharged state of a storage battery using the electrolytic solution for the storage battery of the present invention.

【図4】通常の電解液を使用した蓄電池の放電状態を示
すグラフである。
FIG. 4 is a graph showing a discharged state of a storage battery using a normal electrolytic solution.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池用の電解液において、式 【化1】 で表される有機ゲルマニウム化合物を含有することを特
徴とする蓄電池用の電解液。
1. In an electrolyte solution for a storage battery, the formula: An electrolytic solution for a storage battery, which contains an organic germanium compound represented by:
【請求項2】 式(1)で表される有機ゲルマニウム化
合物を1ppm以上含有する請求項1に記載の蓄電池用
の電解液。
2. The electrolytic solution for a storage battery according to claim 1, containing 1 ppm or more of the organic germanium compound represented by the formula (1).
【請求項3】 蓄電池の電解液を、式 【化2】 で表される有機ゲルマニウム化合物を含有する電解液に
より置換することを特徴とする蓄電池の充電効率改良方
法。
3. The electrolyte of a storage battery is represented by the formula: A method for improving the charging efficiency of a storage battery, which comprises substituting with an electrolytic solution containing an organic germanium compound represented by.
【請求項4】 蓄電池の電解液を、式 【化3】 で表される有機ゲルマニウム化合物を含有する電解液に
より置換することを特徴とする蓄電池の放電効率改良方
法。
4. The electrolyte of a storage battery is represented by the formula: A method for improving discharge efficiency of a storage battery, which comprises replacing with an electrolytic solution containing an organic germanium compound represented by
【請求項5】 蓄電池の電解液を、式 【化4】 で表される有機ゲルマニウム化合物を含有する電解液に
より置換することを特徴とする蓄電池の使用期間延長方
法。
5. The electrolyte of a storage battery is represented by the formula: A method of extending the period of use of a storage battery, which comprises substituting with an electrolytic solution containing an organic germanium compound represented by.
JP3264296A 1996-01-26 1996-01-26 Electrolyte for storage battery, and method of improving charging and discharging efficiency of storage battery by the electrolyte Pending JPH09204928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3264296A JPH09204928A (en) 1996-01-26 1996-01-26 Electrolyte for storage battery, and method of improving charging and discharging efficiency of storage battery by the electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3264296A JPH09204928A (en) 1996-01-26 1996-01-26 Electrolyte for storage battery, and method of improving charging and discharging efficiency of storage battery by the electrolyte

Publications (1)

Publication Number Publication Date
JPH09204928A true JPH09204928A (en) 1997-08-05

Family

ID=12364513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3264296A Pending JPH09204928A (en) 1996-01-26 1996-01-26 Electrolyte for storage battery, and method of improving charging and discharging efficiency of storage battery by the electrolyte

Country Status (1)

Country Link
JP (1) JPH09204928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468517A (en) * 2010-11-12 2012-05-23 陈清利 Novel electrolyte for storage battery and preparation method of novel electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468517A (en) * 2010-11-12 2012-05-23 陈清利 Novel electrolyte for storage battery and preparation method of novel electrolyte

Similar Documents

Publication Publication Date Title
JP6168138B2 (en) Liquid lead-acid battery
EP0120128A1 (en) Forming of tetrabasic lead sulfate battery electrodes
JP3608904B2 (en) Method for manufacturing electrode of lithium secondary battery
JP2002025630A (en) Power supply system of running vehicle
JPH09204928A (en) Electrolyte for storage battery, and method of improving charging and discharging efficiency of storage battery by the electrolyte
JP3386801B1 (en) Lead-acid battery electrolyte composition
JP4715075B2 (en) Control valve type lead acid battery
US7875386B2 (en) Energy converter cell for the direct conversion of radiation and/or thermal energy into electrical energy
JP3226500U (en) Metal tape for extending battery life and improving function
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JPS61138470A (en) Battery augmentation
JP2982368B2 (en) Battery storage method for lead-acid batteries
JPH0850925A (en) Charging method for lead-acid battery
JP2003323913A (en) Method for manufacturing lead storage battery
JPH0679493B2 (en) Lead-acid battery function recovery agent and lead-acid battery function recovery method
JP3951285B2 (en) Control valve type lead acid battery
JPS61245471A (en) Lead storage battery employing fluid electrolyte
JP2002216774A (en) Positive electrode plate for lead acid battery and its producing method
JP2001126771A (en) Charging method of sealed lead-acid battery
JPH0887999A (en) Manufacture of lead-acid battery
JP2964555B2 (en) Battery storage method for lead-acid batteries
JPH0745301A (en) Sealed lead-acid battery
JPS6316554A (en) Non-sintered type cadmium anode for alkaline storage battery
JP2008034286A (en) Closed lead battery