JPH0351890Y2 - - Google Patents

Info

Publication number
JPH0351890Y2
JPH0351890Y2 JP1414583U JP1414583U JPH0351890Y2 JP H0351890 Y2 JPH0351890 Y2 JP H0351890Y2 JP 1414583 U JP1414583 U JP 1414583U JP 1414583 U JP1414583 U JP 1414583U JP H0351890 Y2 JPH0351890 Y2 JP H0351890Y2
Authority
JP
Japan
Prior art keywords
electrolyte
lead
gas generating
cylindrical body
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1414583U
Other languages
Japanese (ja)
Other versions
JPS59119564U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1414583U priority Critical patent/JPS59119564U/en
Publication of JPS59119564U publication Critical patent/JPS59119564U/en
Application granted granted Critical
Publication of JPH0351890Y2 publication Critical patent/JPH0351890Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Filling, Topping-Up Batteries (AREA)

Description

【考案の詳細な説明】 本考案は、電解液の上・下間の濃度勾配を減少
するため、ガス発生装置を組込んだ鉛蓄電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lead-acid battery incorporating a gas generator to reduce the concentration gradient between the top and bottom of the electrolyte.

鉛蓄電池は放電時、電解液である希硫酸が消費
されて正・負極活物質がそれぞれ硫酸鉛に変化
し、その結果、電解液の比重は低下する。一方、
充電時には、極板の硫酸鉛から硫酸が放出され
て、電解液比重は次第に上昇し、完全充電状態に
なると放電前の比重値になる。この充電時の電解
液比重の上昇の仕方は、極板からのガス発生と関
係がある。正・負極板から放出される硫酸は、比
重が高いため、極板表面にそつて下方へ流下して
いき電池の底部に溜り、なかなか均一にまじら
ず、電解液の上・下間で大きな濃度勾配が生じ
る。この濃度勾配は過充電時に発生するガスの気
泡が電解液中を上昇する時に攪拌されるので、解
消する。電解液の上・下間で濃度勾配がある状態
で鉛蓄電池を使用すると、放電容量が減少するう
え、極板が早期に劣化するので、寿命が短くなる
という欠点があるため、従来の鉛蓄電池の使用方
法はかなりの過充電を実施していた。このために
正極格子の腐蝕が激しく寿命を大幅に向上させる
ことができなかつた。
When a lead-acid battery discharges, dilute sulfuric acid, which is an electrolytic solution, is consumed, and the positive and negative electrode active materials each change to lead sulfate, and as a result, the specific gravity of the electrolytic solution decreases. on the other hand,
During charging, sulfuric acid is released from the lead sulfate of the electrode plate, and the specific gravity of the electrolyte gradually increases, and when the battery reaches a fully charged state, it returns to the specific gravity before discharge. The manner in which the specific gravity of the electrolyte increases during charging is related to gas generation from the electrode plates. Because the sulfuric acid released from the positive and negative electrode plates has a high specific gravity, it flows downward along the electrode plate surface and accumulates at the bottom of the battery, and is difficult to mix evenly, resulting in a large concentration between the top and bottom of the electrolyte. A gradient occurs. This concentration gradient is eliminated because gas bubbles generated during overcharging are stirred as they rise in the electrolyte. If a lead-acid battery is used with a concentration gradient between the top and bottom of the electrolyte, the discharge capacity will decrease and the electrode plates will deteriorate early, resulting in a shortened lifespan. The method of use resulted in considerable overcharging. For this reason, the positive electrode grid was severely corroded, making it impossible to significantly improve the life.

本考案は上記した欠点を除去するもので、過充
電量が少ない、つまり充電中あまりガスの発生の
ないような使い方においても電解液上・下間の濃
度差が小さい鉛蓄電池を提供するものである。
The present invention eliminates the above-mentioned drawbacks and provides a lead-acid battery with a small amount of overcharging, that is, a small concentration difference between the electrolyte top and bottom even when used without much gas generation during charging. be.

即ち、本考案は、プラスチツクやガラスなどの
耐酸性、電気絶縁性材質よりなる筒状体の下端部
の近傍に電解液吸入口を、この筒状体の上端部の
近傍に電解液吐出口を、それぞれ設け、前記筒状
体の内部に棒状または線状の鉛合金製のガス発生
電極を装着したガス発生装置を電解液中に配置
し、かつガス発生装置のガス発生電極を負極側に
接続してなる鉛蓄電池を提供するものである。
That is, the present invention has an electrolyte inlet near the bottom end of a cylindrical body made of acid-resistant, electrically insulating material such as plastic or glass, and an electrolyte discharge port near the top end of the cylindrical body. , respectively, and a gas generating device equipped with a rod-shaped or wire-shaped lead alloy gas generating electrode inside the cylindrical body is disposed in the electrolytic solution, and the gas generating electrode of the gas generating device is connected to the negative electrode side. The present invention provides a lead-acid battery made of

以下、本考案を図面を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

図は本考案鉛蓄電池の一実施例を示す概略構成
図で、1は本考案による鉛蓄電池で、2は正極
板、3は負極板、4はセパレータ、5は電解液、
(希硫酸)である。6は正極端子、7は負極端子
を示す。8はプラスチツクまたはガラスなどの耐
酸性、電気絶縁性材質からなる筒状体10を有す
るガス発生装置で、このガス発生装置8は、その
下端部近傍に電解液を吸入するための吸入口11
を、その上端部近傍に電解液を放出するための吐
出口12を設けた筒状体10内に、棒状または線
状の鉛合金製ガス発生電極9が装着された構造で
ある。13はガス発生電極9を筒状体10内に固
定するためのエポキシ樹脂のような耐酸性、電気
絶縁性のある封口剤である。14はガス発生電極
9と負極端子7を接続するリード線、15は電池
の排気栓、16は水素ガスの気泡である。
The figure is a schematic configuration diagram showing one embodiment of the lead-acid battery of the present invention, in which 1 is the lead-acid battery according to the present invention, 2 is a positive electrode plate, 3 is a negative electrode plate, 4 is a separator, 5 is an electrolyte,
(dilute sulfuric acid). 6 indicates a positive terminal, and 7 indicates a negative terminal. Reference numeral 8 denotes a gas generator having a cylindrical body 10 made of an acid-resistant, electrically insulating material such as plastic or glass, and the gas generator 8 has an inlet 11 near its lower end for sucking an electrolyte.
It has a structure in which a rod-shaped or wire-shaped lead alloy gas generating electrode 9 is mounted inside a cylindrical body 10 having a discharge port 12 near its upper end for discharging an electrolyte. Reference numeral 13 denotes a sealant having acid resistance and electrical insulation properties, such as epoxy resin, for fixing the gas generating electrode 9 inside the cylindrical body 10. 14 is a lead wire connecting the gas generating electrode 9 and the negative electrode terminal 7, 15 is a battery exhaust plug, and 16 is a hydrogen gas bubble.

次にかかる実施例の動作を説明すると、蓄電池
の充電時、ガス発生電極9は負極端子7に接続さ
れているため、その電位は負極板3とほぼ同じで
あり、充電の進行とともに次第に電位が低くなり
ガス発生電極9から水素ガスの気泡16が発生し
始める。水素の発生は、理論的には水の電気分解
が起る電圧(理論分解電圧1.23V)を越えると始
まるが、鉛電極の場合には水素過電圧が非常に大
きいので鉛蓄電池の開路電圧においてもほとんど
起らない。しかし、実際には充電によつて負極板
の電位、即ちそれに接続された鉛合金製のガス発
生電極9の電位が開路電位よりも更に0.2〜0.3V
卑に分極されるとガス発生電極9の表面から水素
ガス気泡の発生が始まる。通常充電中、鉛蓄電池
の端子電圧が約2.4Vを越えるとガス発生電極9
表面での水の分解によるガス発生が著しくなる。
水素ガスの気泡16は筒状体10内を上昇する
が、この時のガス気泡16の上方への流れに伴つ
て電解液もいっしょに移動し上方への流れを引き
起こす。またガス発生電極9から発生した水素ガ
スの気泡16は筒状体10内を上昇する時、次第
に小さな気泡が集まつて大きな気泡になり、これ
が筒状体10内を満して上昇する時、ポンプ作用
によつて電解液5を上方へ吸い上げる。このよう
にして本考案による鉛蓄電池1では充電時、ガス
発生装置8の下端の吸入口11より比重の高い電
解液を筒状体10内に吸収し、上部の吐出口12
より水素ガスとともに放出するという電解液の循
環を行なうので、電池内における電解液5の上・
下間の比重差を解消することができる。なお、鉛
蓄電池の充電中に発生する水素ガスは、放電電気
量に対して70%程度充電した時から発生し始め、
充電量が約90%を越えると、かなりの速度で発生
する。また充電量が約120%以上に達すると、充
電電流はほとんど水の電気分解、つまりガス発生
に使われる。本考案による鉛蓄電池は、発生した
水素ガスの気泡が、限定された筒内を上昇するこ
とにより、主に筒内を上昇するガス気泡のピスト
ン作用によつて効果的に電解液が押し上げられる
ので、発生したガス量の3〜4倍の電解液を移動
させることができる。特に発生ガスが少量で筒内
を断続的に上昇するような状態が効率がよい。こ
のように少量の水素ガスの発生で十分電解液の循
環に効果のあるガス発生装置を備えているので、
放電量に対する充電量が100〜105%、即ち過充電
量が0〜5%で、電池電解液濃度は十分均一にな
る。このため従来のように約20%も過充電する必
要がなく、充電に要するエネルギーが少なくて良
いという利点がある。また本考案による鉛蓄電池
は過充電量が0〜5%と少なくてよいので、正極
格子の腐蝕が少なく、1000サイクル充放電を行つ
た時の腐蝕量は、同じ充放電サイクル数の従来形
鉛蓄電池(過充電量20%)の正極格子のそれの
1/3であり、寿命を著しく向上させることがで
きる。
Next, to explain the operation of this embodiment, when charging the storage battery, the gas generating electrode 9 is connected to the negative electrode terminal 7, so its potential is almost the same as that of the negative electrode plate 3, and as the charging progresses, the potential gradually decreases. As the temperature decreases, hydrogen gas bubbles 16 begin to be generated from the gas generating electrode 9. Theoretically, hydrogen generation begins when the voltage at which electrolysis of water occurs (theoretical decomposition voltage 1.23V) is exceeded, but in the case of a lead electrode, the hydrogen overvoltage is extremely large, so even at the open circuit voltage of a lead-acid battery. It almost never happens. However, in reality, due to charging, the potential of the negative electrode plate, that is, the potential of the lead alloy gas generating electrode 9 connected to it, increases by 0.2 to 0.3 V further than the open circuit potential.
When polarized to the base, hydrogen gas bubbles begin to be generated from the surface of the gas generating electrode 9. During normal charging, if the terminal voltage of the lead-acid battery exceeds approximately 2.4V, the gas generating electrode 9
Gas generation due to water decomposition on the surface becomes significant.
The hydrogen gas bubbles 16 rise within the cylindrical body 10, and as the gas bubbles 16 flow upward at this time, the electrolyte also moves together, causing an upward flow. Further, when the hydrogen gas bubbles 16 generated from the gas generating electrode 9 rise inside the cylindrical body 10, the small bubbles gradually gather to form a large bubble, and when this bubble fills the inside of the cylindrical body 10 and rises, The electrolyte 5 is sucked upward by the pump action. In this way, in the lead-acid battery 1 according to the present invention, during charging, the electrolyte having a high specific gravity is absorbed into the cylindrical body 10 through the suction port 11 at the lower end of the gas generator 8, and the electrolyte solution having a high specific gravity is absorbed into the cylindrical body 10 through the discharge port 12 at the upper end.
Since the electrolyte is circulated by being released together with hydrogen gas, the upper part of the electrolyte 5 in the battery is
It is possible to eliminate the difference in specific gravity between the lower parts. In addition, hydrogen gas generated during charging of a lead-acid battery starts to be generated when the battery is charged to about 70% of the amount of discharged electricity.
This happens at a fairly rapid rate when the charge level exceeds about 90%. Furthermore, when the charge reaches about 120% or more, most of the charging current is used for water electrolysis, or gas generation. In the lead-acid battery according to the present invention, the generated hydrogen gas bubbles rise in a limited cylinder, and the electrolyte is effectively pushed up mainly by the piston action of the gas bubbles rising in the cylinder. , it is possible to move 3 to 4 times as much electrolyte as the amount of gas generated. Particularly efficient is a state in which a small amount of generated gas rises intermittently inside the cylinder. In this way, it is equipped with a gas generator that is effective in circulating the electrolyte with the generation of a small amount of hydrogen gas.
When the charge amount relative to the discharge amount is 100 to 105%, that is, the overcharge amount is 0 to 5%, the battery electrolyte concentration becomes sufficiently uniform. Therefore, there is no need to overcharge the battery by about 20%, which is the case with conventional batteries, and there is an advantage that less energy is required for charging. In addition, since the lead-acid battery according to the present invention requires only a small overcharge amount of 0 to 5%, there is little corrosion of the positive electrode grid, and the amount of corrosion after 1000 charge/discharge cycles is lower than that of conventional lead-acid batteries with the same number of charge/discharge cycles. This is 1/3 of that of the positive electrode grid of a storage battery (20% overcharge), which can significantly improve the lifespan.

以上延べたように本考案によれば、過充電量の
少ないような使い方でも電解液上・下間の濃度差
を小さくでき、そのため従来のように電解液の
上・下間の比重差をなくすための過充電を行なう
必要がなく、またそのために正極格子の腐蝕を少
なくして寿命を大幅に向上させることができる等
の優れた利点を奏することができる。
As mentioned above, according to the present invention, the difference in concentration between the top and bottom of the electrolyte can be reduced even in applications where the amount of overcharge is small, and therefore the difference in specific gravity between the top and bottom of the electrolyte can be eliminated as in the conventional method. There is no need to perform overcharging for this purpose, and as a result, corrosion of the positive electrode lattice can be reduced, resulting in excellent advantages such as a significantly improved lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

図は本考案鉛蓄電池の一実施例を示す概略構成
図である。 2……正極板、3……負極板、4……セパレー
タ、5……電解液、6……正極端子、7……負極
端子、8……ガス発生装置、9……ス発生電極、
10……筒状体、11……吸入口、12……吐出
口。
The figure is a schematic diagram showing an embodiment of the lead-acid battery of the present invention. 2... Positive electrode plate, 3... Negative electrode plate, 4... Separator, 5... Electrolyte, 6... Positive electrode terminal, 7... Negative electrode terminal, 8... Gas generator, 9... Gas generating electrode,
10... Cylindrical body, 11... Suction port, 12... Discharge port.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 耐酸性、電気絶縁性材質よりなる筒状体の下端
部の近傍に電解液吸入口を、この筒状体の上端部
の近傍に電解液吐出口を、それぞれ設け、前記筒
状体の内部に棒状または線状の鉛合金製のガス発
生電極を装着したガス発生装置を電解液中に配置
し、かつガス発生装置のガス発生電極を負極側に
接続してなる鉛蓄電池。
An electrolyte inlet is provided near the lower end of a cylindrical body made of an acid-resistant, electrically insulating material, and an electrolyte outlet is provided near the upper end of the cylindrical body. A lead-acid battery comprising a gas generating device equipped with a rod-shaped or wire-shaped lead alloy gas generating electrode placed in an electrolytic solution, and the gas generating electrode of the gas generating device being connected to the negative electrode side.
JP1414583U 1983-02-01 1983-02-01 lead acid battery Granted JPS59119564U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1414583U JPS59119564U (en) 1983-02-01 1983-02-01 lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1414583U JPS59119564U (en) 1983-02-01 1983-02-01 lead acid battery

Publications (2)

Publication Number Publication Date
JPS59119564U JPS59119564U (en) 1984-08-11
JPH0351890Y2 true JPH0351890Y2 (en) 1991-11-08

Family

ID=30145519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1414583U Granted JPS59119564U (en) 1983-02-01 1983-02-01 lead acid battery

Country Status (1)

Country Link
JP (1) JPS59119564U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284030B2 (en) * 2014-06-17 2018-02-28 株式会社Gsユアサ Lead-acid battery system

Also Published As

Publication number Publication date
JPS59119564U (en) 1984-08-11

Similar Documents

Publication Publication Date Title
CN105226338B (en) A kind of lead-acid accumulator rapid internalization is into charging method
CN108321344A (en) A kind of aluminium-air cell, battery pack and generating set
JP5138391B2 (en) Control valve type lead acid battery
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
Atlung et al. Failure mode of the negative plate in recombinant lead/acid batteries
JPH0351890Y2 (en)
JP4507483B2 (en) Control valve type lead acid battery
JP5089176B2 (en) Control valve type lead storage battery manufacturing method
TW200409393A (en) Valve regulated lead acid battery
CN209472027U (en) A kind of electronic automobile-used combined moving power lead-acid accumulator
JP2007294124A (en) Manufacturing method of lead-acid battery
CN220797031U (en) Lead-acid storage battery
CN213184426U (en) Solar cell with deep-cycle formula
JPH0628169B2 (en) Sealed lead acid battery
JPH0234757Y2 (en)
CN208142310U (en) It is a kind of to facilitate the battery for being radiated and being kept the temperature
JPH0414758A (en) Lead-acid accumulator
US3433671A (en) Storage battery having positive and negative electrode in direct contact
CN207233807U (en) A kind of maintenance-free battery precipitation tank
JP3951285B2 (en) Control valve type lead acid battery
JPH0234758Y2 (en)
JP2832218B2 (en) Cathode absorption type sealed lead storage battery and charging method thereof
JPS62139248A (en) Lead-acid battery system
JPH044361Y2 (en)
JPS58158874A (en) Lead storage battery