JPS61243910A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS61243910A
JPS61243910A JP8476385A JP8476385A JPS61243910A JP S61243910 A JPS61243910 A JP S61243910A JP 8476385 A JP8476385 A JP 8476385A JP 8476385 A JP8476385 A JP 8476385A JP S61243910 A JPS61243910 A JP S61243910A
Authority
JP
Japan
Prior art keywords
layer
film
monitor
magnetic
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8476385A
Other languages
Japanese (ja)
Inventor
Takao Yamano
山野 孝雄
Masaru Doi
勝 土井
Yoshiaki Shimizu
良昭 清水
Takeo Kondo
近藤 健雄
Hiroyuki Okuda
裕之 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8476385A priority Critical patent/JPS61243910A/en
Publication of JPS61243910A publication Critical patent/JPS61243910A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • G11B5/3166Testing or indicating in relation thereto, e.g. before the fabrication is completed

Abstract

PURPOSE:To make possible the depth control with high accuracy without receiv ing the influence of the difference in the accuracy of pattern formation by connecting two conductor patterns with a conductive magnetic layer via through- holes formed thereon. CONSTITUTION:The pattern of conductor layers 16, 17 and insulating layers 2a, 2b are formed on a substrate 1 which acts as a lower magnetic core and thereafter the conductive magnetic layer 20 to short circuit both conductor layers 16, 17 is formed via through-holes 18, 19 formed by removing part of the insulating layer 2, by which a monitor 15 is completed. The arrival of the polishing at the prescribed position can be recognized from the abrupt change in the electric resistance between the conductor layers 16 and 17 when the thin film magnetic head provided with such monitor 15 is polished. The prescribed depth length is thereby obtd. The influence of the pattern shifting of the monitor and the difference in the accuracy of the pattern formation is thus eliminated and the depth control with high accuracy is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、薄膜磁気ヘッドに関し、特に、磁気記録媒
体対接面のデプス加工を制御するデプス制御用モニター
を備えたものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin-film magnetic head, and more particularly to one equipped with a depth control monitor for controlling depth processing of a surface in contact with a magnetic recording medium.

〔従来の技術〕[Conventional technology]

一般に、薄膜磁気ヘッドは、第9図に示すような構成に
なっており、同図において、(1)は下部磁気コアを構
成する強磁性基板、(2)は絶縁層、(3)は導体層、
1.4)は上部磁気コアを構成する上部磁性層であり、
導体層(3)と、基板(1)および磁性層(4)よりな
る磁気ループとが鎖交されるとともに、絶縁層(2) 
Kより電気的に絶縁されている。
In general, a thin film magnetic head has a configuration as shown in Figure 9, in which (1) is a ferromagnetic substrate constituting the lower magnetic core, (2) is an insulating layer, and (3) is a conductor. layer,
1.4) is the upper magnetic layer constituting the upper magnetic core,
The conductor layer (3) is interlinked with a magnetic loop made of the substrate (1) and the magnetic layer (4), and the insulating layer (2)
It is electrically insulated from K.

そして、この薄膜磁気ヘッドはたとえば第10図に示す
各工程を経て形成される。すなわち、(1)  まず、
同図(a)に示すように、フェライト等の強磁性基板(
1]上に膜厚5KAのS io2膜からなる第1絶縁層
(2a)が形成され、 (10つぎに、同図中)に示すように、絶縁層(2a)
上に、上下にそれぞれ膜厚0.5KAのTi膜(接着が
形成され、 (11D  さらに、同図(C)に示すように、@1絶
縁層(2a)および導体層(3)上に膜厚7KAの5i
n2膜からな6第2絶縁層(2b)が形成され、 6V)  その後、同図(d)に示すように、上下磁気
コア接続部、すなわち導体層(3)を挾んだ2位置にそ
れぞれ両絶縁層(2a)、(2b)を除去してスルーホ
ール(5a)、(5b)が形成され、 (V)同図(e) :C示すように、磁気記録媒体対接
面側のスルーホール(5a)を含む第2絶縁層(2b)
の上面に膜厚5KAのSiO2膜からなるギャップ形成
層(6)が形成され、 位D さらに、同図(f)に示すように、膜厚70KA
のNi −Fe (パーマロイ)膜からなる上部磁性層
1.4)が、一端および他端をそれぞれスルーホール(
5a)、(5b)に埋め込ませて形成され、 (vii)  同図(g)に示すように、上部磁性層1
.4)およびギャップ形成層(6)の上面に膜厚30K
AのSiO+膜からなる保護層(7)が形成される。
This thin film magnetic head is formed through the steps shown in FIG. 10, for example. That is, (1) First,
As shown in Figure (a), a ferromagnetic substrate such as ferrite (
1] A first insulating layer (2a) made of an S io2 film with a film thickness of 5 KA is formed on the insulating layer (2a), as shown in (10) in the same figure.
A Ti film (adhesion) with a film thickness of 0.5 KA is formed on top and bottom, respectively, (11D) Furthermore, as shown in the same figure (C), a film is formed on 5i with thickness 7KA
A second insulating layer (2b) made of an N2 film is formed, and a voltage of 6 V is then applied to the upper and lower magnetic core connection parts, that is, at two positions sandwiching the conductor layer (3), as shown in (d) of the same figure. Both insulating layers (2a) and (2b) are removed to form through holes (5a) and (5b). Second insulating layer (2b) containing holes (5a)
A gap forming layer (6) made of a SiO2 film with a film thickness of 5KA is formed on the upper surface of the film, and as shown in FIG.
The upper magnetic layer 1.4) made of a Ni-Fe (permalloy) film has through holes (
5a) and (5b), and (vii) as shown in FIG.
.. 4) and the top surface of the gap forming layer (6) with a film thickness of 30K.
A protective layer (7) made of the SiO+ film of A is formed.

なお、これらの膜形成は真空蒸着、スパッタ等の薄膜形
成技術により行なわれ、パターン化は必要部分をフォト
レジストで覆い不活性ガスあるいは反応性ガスを照射し
て不必要部分の膜を除去することによって行なわれる。
Note that these films are formed using thin film forming techniques such as vacuum evaporation and sputtering, and patterning involves covering the necessary areas with photoresist and removing unnecessary parts of the film by irradiating with inert gas or reactive gas. It is carried out by

そして、このようにして得られた薄膜磁気ヘッドは、切
断工程を経たのち、@11図に示すように、保護膜(7
)上に接着剤(8)を介して保護板(9)を接着し、磁
気記録媒体対接面を研摩して仕上げられる。
After the thin film magnetic head obtained in this way is subjected to a cutting process, a protective film (7
) A protective plate (9) is adhered thereon via an adhesive (8), and the surface facing the magnetic recording medium is polished to finish.

ところで、前述の研摩工程では、対接面α1とデプスエ
ンドとの距離、すなわちデプス長tが5〜10μmとさ
れるため、ミクロンオーダのデプス制御が必要となる。
By the way, in the above-mentioned polishing process, since the distance between the contact surface α1 and the depth end, that is, the depth length t, is set to 5 to 10 μm, depth control on the order of microns is required.

このため、従来より、薄膜磁気ヘッドの薄膜形成工程に
おいて、基板に一体にデプス長測定を行なうためのデプ
ス制御用モニターを作成し、このモニターによるデプス
長測定により研摩量を制御することが行なわれてい乙。
For this reason, conventionally, in the thin film forming process of thin film magnetic heads, a depth control monitor for measuring the depth length has been created integrally with the substrate, and the amount of polishing has been controlled by measuring the depth length using this monitor. Yes.

たとえば、特開昭56−29832号公報においては、
@12図に示すように、薄膜磁気ヘッドの下部磁気コア
を構成する基板(1]上に、第1絶縁層(2a)を介し
て、くしの歯状の多数の歯C11)を有し該各歯αυの
長さがそれぞれ異なるデプス制御用モニター03を設け
、研摩工程において研摩面から見える歯aυの数により
研摩量を測定し、デプス制御することが記載されている
For example, in Japanese Patent Application Laid-open No. 56-29832,
@12 As shown in Figure 12, a large number of comb-shaped teeth C11) are provided on the substrate (1) constituting the lower magnetic core of the thin film magnetic head with a first insulating layer (2a) interposed therebetween. It is described that depth control monitors 03 having different lengths of teeth αυ are provided, and the depth is controlled by measuring the amount of polishing based on the number of teeth aυ visible from the polished surface during the polishing process.

しかし、このような光学的モニター@では、研摩量の測
定を、研摩を中止し研摩面を顕微鏡により観察すること
によって行なう必要があり、工数が大幅シで増大する欠
点がある。
However, with such an optical monitor, it is necessary to measure the amount of polishing by stopping polishing and observing the polished surface with a microscope, which has the drawback of significantly increasing the number of man-hours.

そこで、研摩を中止することなく研摩量測定が行なえる
ものとして、電気的モニターがあり、たとえば、特開昭
57−94923号公報に示されたデプス制御用モニタ
ーは、第13図に示すように、基板(1〕上に、研摩面
に平行な薄膜抵抗膜α3を研摩進行方向に所定間隔で配
置するとともに、各抵抗膜α3を端子導体層α菊で並列
に接続して構成されている。
Therefore, there are electric monitors that can measure the amount of polishing without stopping polishing. For example, the depth control monitor disclosed in Japanese Patent Application Laid-open No. 57-94923 is as shown in FIG. On the substrate (1), thin film resistive films α3 parallel to the polishing surface are arranged at predetermined intervals in the direction of polishing progress, and each resistive film α3 is connected in parallel with a terminal conductor layer α.

したがって、研摩の進行に伴なって各抵抗膜α3が順次
研摩、削除されるため、各抵抗膜α3による抵抗回路の
電気抵抗値が研摩量に応じて第14図に示すように変化
し、この抵抗値変化により研摩量が測定されることにな
る。
Therefore, as the polishing progresses, each resistive film α3 is sequentially polished and removed, so that the electrical resistance value of the resistive circuit formed by each resistive film α3 changes as shown in FIG. 14 according to the amount of polishing. The amount of polishing is measured by the change in resistance value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記した電気的モニターでは、各抵抗膜03間
の研摩時において抵抗値変化が得られず、研摩量の測定
不可能領域が存在することとなり、しかも、各抵抗膜α
3の研摩時においては抵抗値がなだらかに変化し、抵抗
膜断線位置の検出が困難となり、研摩量測定、すなわち
デプス制御が困難になる欠点を有している。
However, with the above-mentioned electrical monitor, no change in resistance value can be obtained during polishing between each resistive film 03, and there is a region in which the amount of polishing cannot be measured.Moreover, each resistive film α
During the polishing step No. 3, the resistance value changes gradually, making it difficult to detect the position of the resistive film breakage and making it difficult to measure the amount of polishing, that is, to control the depth.

一方、薄膜磁気ヘッドは、第10図で説明した形成工程
により得られるが、この磁気ヘッドのデプスエンドは、
絶縁層(2)およびそのパターン、すなわちスル−ホー
ル(5a) :でより決定され、これがデプス制御モニ
ターの形成とは別工程になるため、当該モニターと絶縁
ノーパターンとのパターンずれ、パターン形成精度の相
異がデプス測定誤差となり、高精度なデプス制御を阻害
することになる。
On the other hand, the thin film magnetic head is obtained by the forming process explained in FIG. 10, but the depth end of this magnetic head is
The insulating layer (2) and its pattern, that is, the through-hole (5a): are determined by the insulating layer (2) and its pattern, and as this is a separate process from the formation of the depth control monitor, pattern deviation between the monitor and the insulating non-pattern, pattern formation accuracy The difference between the two results in a depth measurement error, which impedes highly accurate depth control.

したがって、この発明においては、研摩量測定を明確化
するとともてデプスエンドの形成工程とのパターンずれ
やパターン形成精度の相異のない電気的なデプス制御用
モニターを備えた薄膜磁気ヘッドを得ることを技術的課
題とする。
Therefore, it is an object of the present invention to obtain a thin film magnetic head equipped with an electric depth control monitor that clarifies the measurement of the amount of polishing and that does not cause pattern deviation or difference in pattern formation accuracy from the depth end forming process. is a technical issue.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明は、下部磁気コア上に第1絶縁層を介して導体
層を形成し、前記導体層を覆う第2絶縁層を形成し、前
記両絶縁層にデプスエンドを決定するスフレ−ホールを
形成し、前記スルーホールの下部磁気コア上にギャップ
形成層を介して対向する上部磁気コアを形成し、前記導
体層を前記両磁気コアからなる磁気ループに鎖交させて
なる薄膜磁気ヘッドにおいて、前記下部磁気コア上に形
成された2個の導体パターンと、前記スルーホールの形
成時に前記両絶縁層に形成された前記導体パターン上の
スルーホールを介して前記側導体ハターンを電気的に接
続する導電性磁性層とからな乙デプス制御用モニターを
備えたことを特徴とするものである。
In this invention, a conductor layer is formed on the lower magnetic core via a first insulating layer, a second insulating layer is formed to cover the conductor layer, and souffle holes for determining the depth end are formed in both the insulating layers. In the thin film magnetic head, an upper magnetic core is formed opposite to the lower magnetic core of the through hole via a gap forming layer, and the conductor layer is linked to a magnetic loop formed by both the magnetic cores. A conductor that electrically connects the two conductor patterns formed on the lower magnetic core and the side conductor pattern through the through holes on the conductor patterns formed in both the insulating layers when the through holes are formed. The device is characterized by having a magnetic layer and a depth control monitor.

〔作用〕[Effect]

したがって、前述のように構成されたこの発明の薄膜磁
気ヘッドは、磁気記録媒体対接面の研摩により、デプス
制御用モニターの磁性層による回路の一部が削除されて
断線することにより研摩位置が認知、測定されるもので
あり、この断線位置は、デプスエンドを決定する絶縁層
と同一の絶縁層に、上部磁気コアが下部磁気コアに対向
するスルーホールと同時に形成されたスルーホールを形
成することにより決定され、デプスエンドの形成工程と
のパターンずれ、パターン形成精度の相異が全くなく、
正確なデプス制御が行なわれることになる。
Therefore, in the thin film magnetic head of the present invention configured as described above, when the surface in contact with the magnetic recording medium is polished, a part of the circuit formed by the magnetic layer of the depth control monitor is removed and disconnected, so that the polishing position is changed. This disconnection position is recognized and measured by forming a through hole in the same insulating layer that determines the depth end, where the upper magnetic core is formed at the same time as the through hole facing the lower magnetic core. There is no pattern deviation or difference in pattern formation accuracy from the depth end formation process.
Accurate depth control will be performed.

〔実施例〕〔Example〕

つぎに、この発明を、その実施例を示した簗1図ないし
第8図とともに詳細に説明する。なお、これらの図面に
おいて前記と同一記号は同一もしくは対応するものを示
すものとする。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 8 showing embodiments thereof. Note that in these drawings, the same symbols as above indicate the same or corresponding items.

(@1の実施例) まず、第1の実施例を示した第1図ないし第3図につい
て説明する。
(Embodiment @1) First, FIGS. 1 to 3 showing the first embodiment will be described.

第1図に示すものは、下部磁気コアとなる強磁性基板(
1)と、該基板(υとともに磁気ループを構成する上部
磁気コアとなる上部磁性層(4)と、基板(1)および
磁性層(4)に対し絶縁層(2) VCより電気的に絶
縁され磁気ループに鎖交した導体層(3)とからなる磁
気ヘッド素子に同時形成されたデプス制御用モニターμ
sであり、第2図に示す形成工程により形成される。
The one shown in Figure 1 is a ferromagnetic substrate (
1), an upper magnetic layer (4) that becomes the upper magnetic core that forms a magnetic loop with the substrate (υ), and an insulating layer (2) that is electrically insulated from the VC with respect to the substrate (1) and the magnetic layer (4). A depth control monitor μ formed simultaneously on a magnetic head element consisting of a conductor layer (3) interlinked with a magnetic loop.
s, and is formed by the forming process shown in FIG.

すなわち、このモニター+1!19の形成工程を第10
図で示した磁気ヘッド素子の形成工程(従来の技術で説
明した(1)〜(Vi+)の工程)に対応させて説明す
ると、 (5) まず、第2図(a)に示すように、磁気ヘッド
素子の作成に先立ち、基板(1)上に、上下に膜厚0 
、5KAのTi膜(接着層)を有する膜厚10にAのC
u膜からなる2つの導体層αQ、ケηをパターン形成す
る。
In other words, the formation process of this monitor +1!19 is the 10th
To explain the process of forming the magnetic head element shown in the figure (steps (1) to (Vi+) described in the conventional technique), (5) First, as shown in FIG. 2(a), Prior to creating the magnetic head element, a film with a thickness of 0 is applied on the top and bottom of the substrate (1).
, C of A with a film thickness of 10 having a Ti film (adhesive layer) of 5KA
Two conductor layers αQ and η made of U film are patterned.

(ト)つぎに、第2図(b)に示すように、第10図(
a)、 (b) 、 (C)の工程により基板(1)お
よび両溝体層oQ。
(G) Next, as shown in FIG. 2(b), as shown in FIG.
The substrate (1) and both trench layers oQ are formed by the steps a), (b) and (C).

′J′i)上に@1.第2絶縁層(2a)、(2b)を
形成する。
'J'i) on @1. Second insulating layers (2a) and (2b) are formed.

(q さらに、第3図(C)に示すように、@io図(
d)の工程の上下磁気コア接続部の絶縁層(2a)、(
2b)の除去、すなわちスル−ホール(5a)、(5b
)の形成と同時に、両導体層αQ、αη上の絶縁層(2
a)。
(q Furthermore, as shown in Figure 3 (C), @io diagram (
Insulating layer (2a) of the upper and lower magnetic core connection parts in step d), (
2b), i.e. through-holes (5a), (5b
) is simultaneously formed, an insulating layer (2
a).

(2b)の一部を除去してスルーホール(至)、α9を
形成する。この絶縁層(2a)、(2b)の除去に際し
ては、両溝体層ae、αηのCu膜のみならず基板(1
)のフエ ライ トが侵されない方法をとる必要があり
、たとえばCF4プラズマによるエツチングが有効テあ
る。ここで、研摩面に近い方のスルーホールα窃におい
ては、その研摩面との反対側の端縁とデプスエンド位置
(スルーホール(5a)の研摩面との反対側の端縁)と
の研摩方向における距離が所定のデプス長になるよう冗
設定されている。
A part of (2b) is removed to form a through hole (to) α9. When removing the insulating layers (2a) and (2b), not only the Cu films of both trench layers ae and αη but also the substrate (1
) It is necessary to use a method that does not attack the ferrite. For example, etching using CF4 plasma is effective. Here, in the through-hole α which is closer to the polished surface, the edge opposite to the polished surface and the depth end position (the edge opposite to the polished surface of the through-hole (5a)) are polished. Redundancy is set so that the distance in the direction is a predetermined depth length.

つぎに、@10図(e)の工程、すなわちギャップ形成
層(6)の工程では、マスク蒸着5・こよって膜形成を
行ない、モニタ一部にギャップ形成層(6)が形成され
ないようにする。
Next, in the step shown in Figure 10 (e), that is, the gap forming layer (6) step, mask vapor deposition 5 is performed to form a film to prevent the gap forming layer (6) from being formed on a part of the monitor. .

0 そして、第3図(d)に示すように、@lO図<f
)の工程で両スルーホール(至)、α9を介して両溝体
層Ql 、 071を短絡する膜厚70KAのNi−F
e膜からなる導電性磁性層−を形成し、モニターQFJ
を完成する。
0 Then, as shown in Figure 3(d), @lO diagram < f
), a Ni-F film with a thickness of 70 KA is made to short-circuit both groove layers Ql and 071 via both through holes (to) and α9.
A conductive magnetic layer consisting of e-film is formed, and a monitor QFJ is formed.
complete.

したがって、このようなモニター/JGを備えた薄膜磁
気ヘッドを研摩すると、その研摩過程において両溝体層
Q* 、 Qの間の電気抵抗値が@3図に示すように変
化し、その急激な抵抗値変化により研摩が第1図の1点
鎖線の位置まで達したことが認識され、所定のデプス長
が得られたことがわかる。
Therefore, when a thin film magnetic head equipped with such a monitor/JG is polished, the electrical resistance value between both groove layers Q* and Q changes as shown in Figure @3 during the polishing process, and the abrupt change occurs. It is recognized that the polishing has reached the position indicated by the one-dot chain line in FIG. 1 based on the resistance value change, and it can be seen that the predetermined depth length has been obtained.

この1点鎖線の位置は、絶縁層(2a)、(2b)のパ
ターン、すなわちスルーホール01により決定すれ、し
かも、これがデプスエンドを決定する絶縁Jl(2a)
、(2b)と同−膜、同一エツチングによるため、この
位置とデプスエンドとの相対位置ずれがフォトマスク作
成精度co、5μm以内)におさえられることになる。
The position of this one-dot chain line is determined by the pattern of the insulating layers (2a) and (2b), that is, the through hole 01, and this also determines the depth end of the insulating layer Jl (2a).
, (2b), the same film and the same etching are used, so the relative positional deviation between this position and the depth end can be suppressed to within 5 μm (accuracy of photomask production).

ここで、研摩が1点鎖線の位置に近づくと、磁性層−が
徐々に研摩され、電気回路の一部を構成する磁性層(ホ
)の新面積が小さくなるが、この部分の長さは絶縁層(
2a)、(2b) (7)膜厚(1〜2um)に相当し
極めて短いため、全体としての抵抗値変化は小さくおさ
えられ、抵抗値変化は:まとんどなく、磁性層(1)の
断線時の抵抗値変化が容易に識別される。
Here, as the polishing approaches the position indicated by the dashed-dotted line, the magnetic layer - is gradually polished, and the new area of the magnetic layer (e) that forms part of the electric circuit becomes smaller, but the length of this part is Insulating layer (
2a), (2b) (7) Because it is extremely short and corresponds to the film thickness (1 to 2 um), the overall resistance change is kept small; The change in resistance value when the wire is disconnected can be easily identified.

たとえば、スルーホールa9の研摩面に平行な幅を4μ
m9両絶縁層(2a)、(2b)の全体の厚さを2μm
、磁性層−の比抵抗を20μΩcmとすれば、研摩が第
1図の1点鎖線の直前0.5μmまで進行したときのこ
の部分の抵抗は0.2Ωとなり、すなわち研摩による抵
抗増加が0.2Ω以内と極めて小さいものとなる。
For example, set the width of through hole a9 parallel to the polished surface to 4μ.
m9 The total thickness of both insulating layers (2a) and (2b) is 2 μm.
If the specific resistance of the magnetic layer is 20 .mu..OMEGA.cm, then when the polishing progresses to 0.5 .mu.m just before the dashed line in FIG. It is extremely small, within 2Ω.

(第2の実施例) つぎに、第2の実施例を示した第4図ないし第8図につ
いて説明する。
(Second Embodiment) Next, FIGS. 4 to 8 showing a second embodiment will be described.

これらの図面は、磁気記録媒体対接面の研摩量に応じて
抵抗値変化が階段状とな乙デプス制御用モニター’lf
9を備又た薄膜磁気ヘッドを示し、その形成工程を@4
図ないし第6図で説明する。
These drawings show a depth control monitor in which the resistance value changes stepwise depending on the amount of polishing of the surface in contact with the magnetic recording medium.
9 is shown, and its formation process is shown at @4.
This will be explained with reference to FIGS.

まず、@4図に示すように、下部磁気コアとなる強磁性
基板(1]上に膜厚5KAのAt20s膜からなるギャ
ップ形成層(6;を形成し、その上に膜厚IK^。
First, as shown in Figure @4, a gap forming layer (6) made of an At20s film with a film thickness of 5 KA is formed on a ferromagnetic substrate (1) that will become the lower magnetic core, and a film with a film thickness of IK^ is formed on it.

幅4μm、長さ500μmのパーマロイ膜からなる3個
(1)モ:−9−用第1 、 第2 、 第3 抵抗1
[(21a)、(21b)、(21C)を研摩面に直交
する方向に10μmの間隔で並べて形成する。さらに、
ギャップ形成層(6)および各抵抗膜(21a ) =
 (2l b ) e (21c ) ノ上面に膜厚3
KAのS iOz膜からなる第1絶縁層(2a)を形成
後、上下に膜厚0 、5KAのTi4膜(接着層)を有
する膜厚10KAのCu膜からなる導体層(3)および
モニター用の2つの導体層αQ、1ηを同時形成する。
3 pieces (1) made of permalloy film with a width of 4 μm and a length of 500 μm: 1st, 2nd, and 3rd resistor 1 for -9-
[(21a), (21b), and (21C) are formed side by side at intervals of 10 μm in the direction perpendicular to the polished surface. moreover,
Gap forming layer (6) and each resistive film (21a) =
(2l b) e (21c) Film thickness 3 on the top surface
After forming the first insulating layer (2a) made of a KA SiOz film, a conductor layer (3) made of a Cu film with a thickness of 10 KA and a Ti film (adhesive layer) with a thickness of 0 and 5 KA on the upper and lower sides, and a monitor layer are formed. Two conductor layers αQ and 1η are formed simultaneously.

つぎに、第5図に示すように、第1絶縁層(2a)およ
び各導体層(3) 、 Qf9 、 ffηの上面に膜
厚7KAのSiO2膜からなる第2絶縁層(2b)を形
成後、絶縁層(2a)、(2b)のパターン化を行なう
。すなわち、上下磁気コア接続部における絶縁層(2a
)、(2b)、導体層0Q、αη上の絶縁層(2a)、
(2b)および各抵抗膜(21a)、(21b)、(2
1C)の両端部における絶縁層(2a)、(2b)を同
一エツチングで除去し、それぞれ上下磁気コア接続部の
スルーホール(5a)、(5b)、導[1tQe、’1
17)上(7) スJl/−ホー71/ agJ# Q
l bよび抵抗膜(21a)、(21b)、(21C)
の両端のスルーホール勾、勾を形成する。
Next, as shown in FIG. 5, after forming a second insulating layer (2b) made of a SiO2 film with a thickness of 7KA on the top surface of the first insulating layer (2a) and each conductor layer (3), Qf9, ffη. , the insulating layers (2a) and (2b) are patterned. That is, the insulating layer (2a
), (2b), conductor layer 0Q, insulating layer (2a) on αη,
(2b) and each resistive film (21a), (21b), (2
The insulating layers (2a) and (2b) at both ends of 1C) are removed by the same etching process, and the through-holes (5a) and (5b) of the upper and lower magnetic core connection parts, respectively, and the conductor [1tQe, '1
17) Upper (7) SuJl/-Ho71/agJ#Q
lb and resistive film (21a), (21b), (21C)
Form the through-hole slope and slope at both ends.

ここで、第5図(a) ’IC示すように、抵抗膜(2
1a)、(21b)、(2IC)の研摩面側のスルーホ
ール翰においては、その研摩面との反対側の端縁がデプ
スエンドを決定するスルーホール(5a)の端縁に対し
各抵抗膜(21a)、(21b)、(21c)毎に間隔
dx、d2、daを有するよう階段状に形成され、また
、両スルーホール勾、(至)間の間隔が各抵抗膜(21
a L (21b)、(21c)毎yc tl、t2.
ta ic ナル、k ウ設定すしており、たとえばt
l =200μm 、 z2 =73 =−4QQ7z
mである。
Here, as shown in FIG. 5(a)'IC, the resistive film (2
1a), (21b), and (2IC), the edge on the opposite side to the polished surface is connected to the edge of the through hole (5a) that determines the depth end of each resistive film. (21a), (21b), and (21c) are formed in a step-like manner with intervals dx, d2, and da, and the through-hole slopes and the interval between each resistive film (21
a L (21b), (21c) every yc tl, t2.
ta ic naru, k u setting, for example, t
l = 200μm, z2 = 73 = -4QQ7z
It is m.

さらに、@6図に示すように、上下磁気コア接続部の一
方、すなわち研摩面との反対側のスルーホール(5b)
 [おけるギャップ形成層(6)をパターン化して除去
したのち、上下磁気コア接続部のスルーホール(5a)
、(5b)間およびモニタ一部分におけるスルーホール
(至)、部間、スルーホールα9゜(1)間にそれぞれ
、膜厚70 KAのNi−Fe膜からなる上部磁気コア
の上部磁性層14)および磁性層(20a)。
Furthermore, as shown in Figure @6, there is a through hole (5b) on one side of the upper and lower magnetic core connection parts, that is, on the opposite side to the polished surface.
[After patterning and removing the gap forming layer (6), the through hole (5a) of the upper and lower magnetic core connection parts is formed.
, (5b) and between the through holes (to) in the monitor part, between the parts, and between the through holes α9° (1), respectively, the upper magnetic layer 14) of the upper magnetic core made of a Ni-Fe film with a film thickness of 70 KA; Magnetic layer (20a).

(20b)を形成し、基板(1]と上部磁性層(4)と
を接続して導体層(3) VC鎖交した磁気ループを構
成するとともに、両溝体層Qf9 、 ff9間を磁性
層(20a)、第1゜第2.第3抵抗膜(21a)、(
21b)、(2IC)および磁性層(’20b)を介し
て接続し、デプス制御用モニター/IQを構成する。
(20b), connects the substrate (1) and the upper magnetic layer (4) to form a magnetic loop interlinked with the conductor layer (3), and also connects the magnetic layer between both groove layers Qf9 and ff9. (20a), 1st°, 2nd, 3rd resistance film (21a), (
21b), (2IC) and a magnetic layer ('20b) to constitute a depth control monitor/IQ.

その後、基板(1)上の全面に膜厚30KAのSiO2
膜からなる保護層(7)を形成する。
After that, a SiO2 film with a thickness of 30 KA was applied to the entire surface of the substrate (1).
A protective layer (7) consisting of a film is formed.

したがって、前述のようなモニター〇〇においては、導
体層QO、’lη間に磁性層(20a L (20b)
を介して第1.第2.第3抵抗膜(21a)、(21b
)、(21c)が並列に接続されることになり、このと
き、磁性層(20a )、 (20b)は膜厚が大きく
これを構成するCuの導電率が大きいため、その電気抵
抗値は小さく、このため、@7図に示すように、@1.
第2、第3抵抗膜(21a)、 (21b)、 (21
c) vCよる抵抗(Ra)、(R,、b)、(Rc)
の並列回路が構成されることになる。
Therefore, in the monitor 〇〇 as described above, a magnetic layer (20a L (20b)
via the 1st. Second. Third resistance film (21a), (21b
) and (21c) are connected in parallel, and at this time, the magnetic layers (20a) and (20b) have a large film thickness and the conductivity of the Cu that constitutes them is high, so their electrical resistance value is small. , Therefore, as shown in Figure @7, @1.
Second and third resistive films (21a), (21b), (21
c) Resistance due to vC (Ra), (R,, b), (Rc)
A parallel circuit will be constructed.

ここで、抵抗膜(21a)、(21b)、(21c)を
構成するパーマロイの比抵抗を20μΩcmとすれ、ば
、各抵抗膜(21a)、(21b)、(21c) cn
寸法zt 、 t2. tsによる抵抗(Ra)*(R
bL(Rc) c’)抵、抗値ハソレソれ、100Ω、
200Ω、200Ωとなる。
Here, assuming that the specific resistance of permalloy constituting the resistive films (21a), (21b), and (21c) is 20 μΩcm, then each resistive film (21a), (21b), and (21c) cn
Dimensions zt, t2. Resistance due to ts (Ra) * (R
bL(Rc) c') Resistance, resistance value, 100Ω,
200Ω, 200Ω.

そして、前述のようにして構成されモニターαiを備え
た薄膜磁気ヘッドにおいて、磁気記録媒体対接面の研摩
によりデプス長がdx 、 d2. daVcなると、
両導体層aQ、αη間を連結している抵抗膜(21a 
)、(21b)、(21c)が順次断線し、@8図に示
すように、導体層α* 、 ’t′?)間の抵抗値が5
0Ωから100Ω、100Ωから200Ω、200Ωか
ら(1)に不連続的に変化することになる。
In the thin film magnetic head constructed as described above and equipped with the monitor αi, the depth lengths are changed to dx, d2, . When it comes to daVc,
A resistive film (21a) connects both conductor layers aQ and αη.
), (21b), and (21c) are sequentially disconnected, and as shown in Figure @8, the conductor layers α*, 't'? ) is 5
It changes discontinuously from 0Ω to 100Ω, from 100Ω to 200Ω, and from 200Ω to (1).

なお、実施例では下部磁気コアを強磁性基板(1]によ
り構成した場合を示したが、非磁性基板上に磁性膜から
なる下部磁気コアを形成した場合でもこの発明を同種に
実施できるのは勿論である。
In addition, although the example shows the case where the lower magnetic core is made of a ferromagnetic substrate (1), the present invention can also be carried out in the same way even when the lower magnetic core is formed of a magnetic film on a non-magnetic substrate. Of course.

また、モニターへ* 、 ajにおいては、研摩により
削除されて断線する連結部が基板(1)表面ではなくス
ルーホールa侍、(イ)における垂直方向の積層部分に
なることから、磁気ヘッドのトラック幅方向の占有領域
が非常に小さくなり、このため、複数個のこの種モニタ
ーをトラック幅方向に並べて設置することが容易となり
、デプス検出不可能領域を小さくできるものである。
In addition, in the case of the monitor* and aj, the connection part that is removed by polishing and disconnected is not on the surface of the substrate (1) but on the vertically laminated part of the through hole (a), so the track of the magnetic head is The area occupied in the width direction becomes extremely small, and therefore, it becomes easy to install a plurality of monitors of this type in line in the track width direction, and the area where depth detection is impossible can be made smaller.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の薄膜磁気ヘッドによると、記
録媒体対71面の研摩に伴ないデプス制御用モニターの
導体パターン間に不連続的な抵抗値変化が得られ乙ため
、研摩量、すなわちデプス長の明確な識別が可能になり
、しかも、モニターの回路切断点がデプスエンドを決定
する絶縁層パターンと同一工程で形成されるため、モニ
ターの一ノfターンずれ、パターン形成精度の相異の影
響が全くなくなり、極めて高精度なデプス制御が可能に
なるものである。
As described above, according to the thin film magnetic head of the present invention, a discontinuous change in resistance value is obtained between the conductor patterns of the depth control monitor as the recording medium pair 71 is polished. It is possible to clearly identify the depth length, and since the circuit cutting point of the monitor is formed in the same process as the insulating layer pattern that determines the depth end, there is no difference in the monitor's one-f turn deviation or pattern formation accuracy. This completely eliminates the effects of

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし@8図はこの発明の薄膜磁気ヘッドの実施
例を示し、第1図ないし第3図は第1の実施例を示し、
第1図(a)および(b)はデプス制御用モニターの平
面図および断面図、第2図(a)〜(d)はそれぞれモ
ニターの形成工程を示す断面図、@3図はモニターの研
摩量に対する電気抵抗値の特性図、第4図ないし第8図
は第2の実施例を示し、@4図、@5図および第6図は
それぞれモニターを冨む磁気ヘッドの形成工程を示し、
それぞれの(a)は平面図、それぞれの(b)およびそ
れぞれの(C)はそれぞれの(a)におけるX−X線お
よびY−Y線の断面図、第7図はモニターによる電気回
路図、第8図は第3図に対応する特性図、@9図ないし
第11図は一般の薄膜磁気ヘッドを示し、第9図(a)
および(b)は平面図および断面図、第10図(a)〜
(ロ))はそれぞれ形成工程の断面図、第11図は完成
後の断面図、@12図(a)および(b)は従来のデプ
ス制御用モニターの平面図および断面図、@13図は従
来の他のモニターの平面図、第14図は@13図のモニ
ターの第3図に対応する特性図である。 !1) ・・・強磁性基板、(2a)、(2b) −@
 1 、第2絶縁層、(3) ・・・導体層、C4)、
、、上部磁性層、(5a)、(5b)・・・スルーホー
ル、(6) t (6)・・・ギャップ形成層、α9゜
O6・・・デプス制御用モニター、αQ、αη・・・導
体層、(ト)、Ql・・・スルーホール、(2o) 、
 (2oa ) 、 (2ob ) −・・導電性磁性
層。
1 to 8 show embodiments of the thin film magnetic head of the present invention, and FIGS. 1 to 3 show the first embodiment,
Figures 1 (a) and (b) are a plan view and a cross-sectional view of the depth control monitor, Figures 2 (a) to (d) are cross-sectional views showing the process of forming the monitor, and Figure @3 is the polishing of the monitor. Characteristic diagrams of electrical resistance value versus quantity, Figures 4 to 8 show the second embodiment, Figure @4, Figure @5 and Figure 6 respectively show the formation process of a magnetic head with a monitor,
Each (a) is a plan view, each (b) and each (C) is a sectional view taken along the X-X line and Y-Y line in each (a), and FIG. 7 is an electric circuit diagram as shown on a monitor. Figure 8 is a characteristic diagram corresponding to Figure 3, @ Figures 9 to 11 show general thin film magnetic heads, and Figure 9 (a)
and (b) are plan views and cross-sectional views, and FIGS.
(b)) is a cross-sectional view of the forming process, Figure 11 is a cross-sectional view after completion, @12 Figures (a) and (b) are a plan view and cross-sectional view of a conventional depth control monitor, and Figure @13 is a cross-sectional view of the conventional depth control monitor. A plan view of another conventional monitor, FIG. 14, is a characteristic diagram corresponding to FIG. 3 of the monitor shown in FIG. @13. ! 1) ...Ferromagnetic substrate, (2a), (2b) -@
1, second insulating layer, (3) ... conductor layer, C4),
,, upper magnetic layer, (5a), (5b)... through hole, (6) t (6)... gap forming layer, α9°O6... depth control monitor, αQ, αη... Conductor layer, (g), Ql... through hole, (2o),
(2oa), (2ob) --- Conductive magnetic layer.

Claims (1)

【特許請求の範囲】[Claims] (1)下部磁気コア上に第1絶縁層を介して導体層を形
成し、前記導体層を覆う第2絶縁層を形成し、前記両絶
縁層にデプスエンドを決定するスルーホールを形成し、
前記スルーホールの下部磁気コア上にギャップ形成層を
介して対向する上部磁気コアを形成し、前記導体層を前
記両磁気コアからなる磁気ループに鎖交させてなる薄膜
磁気ヘッドにおいて、前記下部磁気コア上に形成された
2個の導体パターンと、前記スルーホールの形成時に前
記両絶縁層に形成された前記導体パターン上のスルーホ
ールを介して前記両導体パターンを電気的に接続する導
電性磁性層とからなるデプス制御用モニターを備えたこ
とを特徴とする薄膜磁気ヘッド。
(1) forming a conductor layer on the lower magnetic core via a first insulating layer, forming a second insulating layer covering the conductor layer, and forming a through hole in both the insulating layers to determine the depth end;
In the thin-film magnetic head, an upper magnetic core is formed on the lower magnetic core of the through hole to face the lower magnetic core via a gap forming layer, and the conductor layer is linked to a magnetic loop formed by both the magnetic cores. conductive magnetic material that electrically connects the two conductor patterns through two conductor patterns formed on the core and through holes on the conductor patterns formed in both the insulating layers when the through holes are formed; A thin film magnetic head characterized by being equipped with a depth control monitor consisting of a layer.
JP8476385A 1985-04-20 1985-04-20 Thin film magnetic head Pending JPS61243910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8476385A JPS61243910A (en) 1985-04-20 1985-04-20 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8476385A JPS61243910A (en) 1985-04-20 1985-04-20 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS61243910A true JPS61243910A (en) 1986-10-30

Family

ID=13839718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8476385A Pending JPS61243910A (en) 1985-04-20 1985-04-20 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS61243910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384711U (en) * 1986-11-22 1988-06-03
JPS6384712U (en) * 1986-11-22 1988-06-03

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698712A (en) * 1980-01-07 1981-08-08 Hitachi Ltd Manufacture of thin-film magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698712A (en) * 1980-01-07 1981-08-08 Hitachi Ltd Manufacture of thin-film magnetic head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384711U (en) * 1986-11-22 1988-06-03
JPS6384712U (en) * 1986-11-22 1988-06-03
JPH0433528Y2 (en) * 1986-11-22 1992-08-11
JPH0433527Y2 (en) * 1986-11-22 1992-08-11

Similar Documents

Publication Publication Date Title
US4321641A (en) Thin film magnetic recording heads
US4743988A (en) Thin-film magnetic head
US5784772A (en) Method of simultaneously forming MR sensors in a dual element MR head
US6777778B2 (en) Thin-film resistor and method for manufacturing the same
JPS61243910A (en) Thin film magnetic head
JPH0453012A (en) Manufacture of thin film magnetic head
US4267510A (en) Integrated thin layer magnetic field sensor
JP2765244B2 (en) Magnetoresistive element and method of manufacturing the same
JPS6337811A (en) Yoke type magnetoresistance effect type thin film magnetic head
JPH05114118A (en) Production of thin-film magnetic head
JP2572213B2 (en) Thin film magnetic head
JPS6045922A (en) Magneto-resistance effect type magnetic head
JPS6135976Y2 (en)
JP2510574B2 (en) Thin film magnetic head
JP2586680B2 (en) Magnetoresistive element and manufacturing method thereof
JPH05101339A (en) Production of thin-film magnetic head
JP2873861B2 (en) Differential magnetoresistive element
JPS62248117A (en) Thin film magnetic head and its manufacture
JPS6226616A (en) Thin film magnetic head
JPH0421912A (en) Method for forming thin film magnetic head
JPH05101338A (en) Manufacture of thin film magnetic head
JPH0325036B2 (en)
JPH0836712A (en) Mr-type magnetic head and its manufacture
JPS6226618A (en) Thin film magnetic head
JPS63131313A (en) Thin film magnetic head and its manufacture