JPS61232632A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS61232632A
JPS61232632A JP7473085A JP7473085A JPS61232632A JP S61232632 A JPS61232632 A JP S61232632A JP 7473085 A JP7473085 A JP 7473085A JP 7473085 A JP7473085 A JP 7473085A JP S61232632 A JPS61232632 A JP S61232632A
Authority
JP
Japan
Prior art keywords
wiring
layer
layers
conductor pattern
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7473085A
Other languages
Japanese (ja)
Other versions
JPH0697687B2 (en
Inventor
Takashi Iwai
崇 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7473085A priority Critical patent/JPH0697687B2/en
Publication of JPS61232632A publication Critical patent/JPS61232632A/en
Publication of JPH0697687B2 publication Critical patent/JPH0697687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the degree of integration of a three-dimensional LSI, and to inhibit trouble on wirings by forming a conductor pattern having general- purpose properties to the same layer as a semiconductor element as a lower layer, trimming the conductor pattern according to a custom wiring design and constituting a wiring by the conductor pattern and a wiring layer shaped onto a semiconductor element as an upper layer. CONSTITUTION:A large number of conductor patterns 4 are formed mutually in parallel among the arrays of semiconductor elements 3 by using gate electrode layers for FETs, and one parts of the conductor patterns 4 mutually connect gate electrodes for adjacent FETs. An SiO2 film 5 as a first insulating film is applied onto a wafer, and semiconductor elements 6 as second layers are shaped onto the film 5. The semiconductor elements 6 as the second layers are overlapped onto the semiconductors 3 as first layers, and disposed to an array shape. The conductor patterns 4 buried are utilized sufficiently as a use in a division manner into a plurality of wiring sections on the design of wirings, and wirings meeting the demand are constituted by employing wiring layers by aluminum, etc. fitted onto the semiconductor elements 6 as second layers through a second insulating film and the conductor patterns 4.

Description

【発明の詳細な説明】 〔4既要〕 この発明は、3次元半導体集積回路装置をマスクスライ
ス方式で製造するに際して、 下層となる半導体素子と同層に汎用性を有する導体パタ
ーンを設け、これをカスタム配線設計に従ってトリミン
グし、上層の半導体素子上に形成する配線に接続するこ
とにより、 その集積度を高め、かつ配線障害を抑制するようにする
ものである。
[Detailed Description of the Invention] [Required 4] The present invention provides a method for manufacturing a three-dimensional semiconductor integrated circuit device using a mask slicing method, by providing a versatile conductor pattern in the same layer as the underlying semiconductor element, and The device is trimmed according to a custom wiring design and connected to the wiring formed on the upper layer semiconductor element, thereby increasing the degree of integration and suppressing wiring failures.

〔産業上の利用分野〕[Industrial application field]

開発期間の短縮及び経済性の向上等の条件の下でシステ
ムの多様化に対処し、より高度の大規模半導体集積回路
装置(以下LSIと略称する)を実現するために、カス
タム1、Slの製造方法としてマスクスライス(mas
ter 5lice)方式か広く行われている。マスク
スライス方式は必要な素子を形成した半導体ウェー八を
予め準備し、これに顧客の要求に応じた配線接続を行っ
てLSIを完成する方法であり、カスタムLSIの実現
に大きい効果を与えている。
In order to cope with the diversification of systems under the conditions of shortening the development period and improving economic efficiency, and to realize more advanced large-scale semiconductor integrated circuit devices (hereinafter referred to as LSI), Custom 1, Sl. The manufacturing method is mask slicing (mas
ter 5lice) method is widely used. The mask slicing method is a method in which an LSI is completed by preparing a semiconductor wafer with the necessary elements in advance and connecting it with wiring according to the customer's requirements, and it has a great effect on the realization of custom LSIs. .

他方、LSIの一層の高集積化、高速化等を目的として
、半導体素子を立体集積化する3次元構造が開発されて
いる。3次元構造についてもカスタムLSIの製造方法
としてマスクスライス方式が要望されるが、積層された
下層の半導体素子等への配線接続が大きい問題である。
On the other hand, with the aim of further increasing the integration and speed of LSIs, three-dimensional structures for three-dimensionally integrating semiconductor elements have been developed. Regarding three-dimensional structures, a mask slicing method is desired as a manufacturing method for custom LSIs, but wiring connections to stacked lower layer semiconductor elements and the like are a major problem.

〔従来の技術〕[Conventional technology]

マスクスライス方式では、通常各チップ領域の中央部分
を例えば論理回路等の機能ブロックを構成するに必要な
単位セル(複数のトランジスタや抵抗等からなる基本回
路)をアレイ状に配置する領域、その周囲を入出力セル
等の周辺回路領域として、例えば電界効果トランジスタ
(PET)素子についてはゲート電極及びソース、ドレ
イン領域まで形成した標準化半導体ウェーハを用いる。
In the mask slicing method, the central part of each chip area is usually divided into an area where unit cells (basic circuits consisting of multiple transistors, resistors, etc.) necessary to construct a functional block such as a logic circuit are arranged in an array, and the surrounding area. For peripheral circuit areas such as input/output cells, for example, for field effect transistor (PET) elements, standardized semiconductor wafers are used in which gate electrodes, source, and drain regions are formed.

各ブロックの機能に応じて単位セル内の素子を接続する
配線パターンが設計され、LSIとして要求される機能
に対応して、機能ブロック及び周辺回路間を接続するチ
ップ全体の配線パターンが設計される。
A wiring pattern that connects elements within a unit cell is designed according to the function of each block, and a wiring pattern for the entire chip that connects functional blocks and peripheral circuits is designed according to the functions required for the LSI. .

従来のマスクスライス方式では、この配線パターンは通
常配線層数を2層とし配線層毎に主たる配線方向を決め
て、下方の第1層配線で機能ブロックの内部配線とアレ
イ間の配線領域上の配線とを平行に設定し、上方の第2
層配線は第1層配線と直交させ、この第2層配線は主と
して第1層配線に接続されている。
In the conventional mask slicing method, this wiring pattern usually has two wiring layers, the main wiring direction is determined for each wiring layer, and the lower first layer wiring connects the internal wiring of the functional block and the wiring area between the arrays. Set it parallel to the wiring, and
The layer wiring is orthogonal to the first layer wiring, and the second layer wiring is mainly connected to the first layer wiring.

この配線層数を抑制し、或いは配線の自由度を増すため
に、半導体素子と同一層を用いた不純物拡散領域或いは
ゲート電極層により、例えばセルアレイ間の配線領域な
どに7レイ状等の導電パターンを予め形成しておき、こ
れを選択して第1の配線層として使用する試みもある。
In order to suppress the number of wiring layers or increase the degree of freedom in wiring, a conductive pattern such as a 7-lay pattern is formed in the wiring area between cell arrays by using an impurity diffusion region or a gate electrode layer using the same layer as the semiconductor element. There is also an attempt to form a layer in advance, select this layer, and use it as the first wiring layer.

他方上述の如< LSIの一層の高集積化、高速化等を
目的として、半導体素子を立体集積化する3次元構造が
開発されている。3次元LSIでは少なくとも第2層以
上の半導体素子は、Sol (Si l icon(S
emiconductor) on In5ulato
r)構造となる。
On the other hand, as mentioned above, three-dimensional structures for three-dimensionally integrating semiconductor elements have been developed for the purpose of further increasing the integration and speed of LSIs. In a three-dimensional LSI, semiconductor elements in at least the second layer or higher are Sol (Silicon (S
emiconductor) on In5ulato
r) structure.

Sol構造は例えば二酸化シリコン(SiO□)等の絶
縁膜上に多結晶シリコン(Si)等を堆積してレーザ光
走査等の方法で単結晶化し、ここにトランジスタ素子等
を形成し配線接続を行うものである。このSQ、I構造
は半導体基板にトランジスタ素子を形成する通常の構造
に比較して基板との間のキャパシタンスが減少し、素子
間隔を短縮してもランチアンプを生じないなどの特徴が
あり、LSIの高速化、高集積化に適している。この特
徴からSol構造はまず単一層で開発され、3次元構造
の第1層にもしばしば通用される。
In the Sol structure, for example, polycrystalline silicon (Si) is deposited on an insulating film such as silicon dioxide (SiO□), and then made into a single crystal by a method such as laser beam scanning. Transistor elements and the like are formed here and wiring connections are made. It is something. This SQ, I structure has the characteristics that the capacitance between the substrate and the substrate is reduced compared to the usual structure in which transistor elements are formed on a semiconductor substrate, and no launch amplifier is generated even if the element spacing is shortened. Suitable for high speed and high integration. Because of this feature, the Sol structure was first developed as a single layer, and is often applied to the first layer of a three-dimensional structure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様な3次元LSIにマスクスライス方式を適用しよ
うとする場合には、半導体素子を予め積層して形成した
ウェーハに種々の配線接続を設けることが必要となる。
When applying the mask slicing method to such a three-dimensional LSI, it is necessary to provide various wiring connections on a wafer formed by stacking semiconductor elements in advance.

下層の半導体素子への接続はその上部を半導体素子を設
けない配線領域とすれば可能であるが、これでは3次元
構造が無意味となり、上下の半導体素子形成領域を重ね
、かつ下層を配線にも十分に活用して集積度を高める必
要がある。
Connection to the semiconductor element in the lower layer can be made by using the upper layer as a wiring area without a semiconductor element, but this makes the three-dimensional structure meaningless, and it is necessary to overlap the upper and lower semiconductor element formation areas and use the lower layer as a wiring area. It is also necessary to make full use of these facilities to increase the degree of integration.

なお配線層数が増加すればステンプカハレーシ不良等に
よる障害が顕著となるために、配線層数を抑制すること
が3次元LSIでは特に望ましい。
Note that as the number of wiring layers increases, failures such as stencil failures become more prominent, so it is particularly desirable for three-dimensional LSIs to suppress the number of wiring layers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の実施例の工程順模式平面図を示す第1図に見ら
れる如く、前記問題点は、 第1層の半導体素子3の近傍に導体パターン4を配設し
、 該第1層の半導体素子3及び該導体パターン4上に第1
の絶縁膜5を形成して該第1の絶縁膜5上に第2層の半
導体素子6を形成し、 該第1の絶縁膜5に開ロアを設けて表出する該導体パタ
ーン4を切断し、 該第2層の半導体素子6及び該開ロア上に第2の絶縁膜
を形成し、 該第2の絶縁膜上に該導体パターン4に接続された配線
8を形成する本発明による半導体集積回路装置の製造方
法により解決される。
As seen in FIG. 1, which is a schematic plan view of the process order of the embodiment of the present invention, the above problem is solved by disposing the conductor pattern 4 near the semiconductor element 3 of the first layer, and the semiconductor element of the first layer. A first layer is formed on the element 3 and the conductor pattern 4.
forming an insulating film 5, forming a second layer semiconductor element 6 on the first insulating film 5, and cutting the exposed conductor pattern 4 by providing an open lower part in the first insulating film 5; A second insulating film is formed on the second layer semiconductor element 6 and the open lower part, and a wiring 8 connected to the conductor pattern 4 is formed on the second insulating film. The problem is solved by a method of manufacturing an integrated circuit device.

〔作 用〕[For production]

本発明による製造方法では、下層となる半導体素子と同
層に汎用性を有する導体パターンを予め設けて、これを
カスタム配線設計に従ってトリミングし、この導体パタ
ーンと上層の半導体素子上に形成する配線層とで配線を
構成する。
In the manufacturing method according to the present invention, a versatile conductor pattern is previously provided on the same layer as the underlying semiconductor element, this is trimmed according to a custom wiring design, and a wiring layer is formed on the conductor pattern and the upper semiconductor element. Configure the wiring with.

この配線構成により、3次元LSIの集積度を高め、か
つ配線障害を抑制することが可能となる。
This wiring configuration makes it possible to increase the degree of integration of the three-dimensional LSI and to suppress wiring failures.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図F8)参照 従来技術により、St半導体基板1上にSiO□絶縁膜
2を厚さ例えば1μm程度に形成し、このSiO2膜2
上にSt多結晶層を厚さ例えば0.5μm程度に形成し
、例えばレーザ光の走査によりこれを単結晶とする。
Refer to FIG. 1 F8) According to the conventional technique, an SiO□ insulating film 2 is formed on the St semiconductor substrate 1 to a thickness of, for example, about 1 μm, and this SiO2 film 2 is
An St polycrystalline layer is formed thereon to a thickness of, for example, about 0.5 μm, and is made into a single crystal by scanning with a laser beam, for example.

例えばMOS FETなどのSOI構造の半導体素子3
を、このSi単結晶層を用いて従来技術により形成する
ことができるが、本実施例では半導体素子3と並行して
、標準化され汎用性に冨む導体パターン4を形成する。
For example, a semiconductor element 3 with an SOI structure such as a MOS FET
can be formed by conventional techniques using this Si single crystal layer, but in this embodiment, a standardized conductor pattern 4, which is highly versatile, is formed in parallel with the semiconductor element 3.

すなわち本実施例ではFETのゲーI・電極層を用いて
半導体素子3のアレイの間に多数の導体パターン4を相
互に並行に形成しており、この導体パターン4の一部は
隣接するF[iTのゲート電極を相互に接続している。
That is, in this embodiment, a large number of conductor patterns 4 are formed in parallel with each other between an array of semiconductor elements 3 using the gate I/electrode layer of the FET, and some of these conductor patterns 4 are connected to the adjacent F[ The gate electrodes of the iTs are interconnected.

なお本発明による導体パターンは、Si単結晶層のパタ
ーニング及び高濃度の不純物導入を、前記第1層の半導
体素子である半導体素子3と導体パターン4とについで
それぞれ同時に行って形成することも可能であり、また
そのパターニングをエツチングではなくフィールド酸化
膜形成によって行うことも可能である。
Note that the conductor pattern according to the present invention can also be formed by simultaneously performing the patterning of the Si single crystal layer and the introduction of high concentration impurities for the semiconductor element 3, which is the semiconductor element of the first layer, and the conductor pattern 4. It is also possible to perform the patterning not by etching but by field oxide film formation.

第1図(b)参照 前記ウェーハ上に前記第1の絶縁膜であるSiO□膜5
を被着し、その−1=に第2層の半導体素子6を形成す
る。この第2層の半導体素子6は第1層の半導体素子3
上に重畳してアレイ状に配設されている。
Refer to FIG. 1(b). SiO□ film 5, which is the first insulating film, is formed on the wafer.
is deposited, and a second layer of semiconductor element 6 is formed on -1=. This second layer semiconductor element 6 is similar to the first layer semiconductor element 3.
They are arranged in an array, superimposed on top of each other.

この半導体素子3.6を上下2層に形成したウェーハが
本実施例のマスクスライスである。
A wafer on which semiconductor elements 3.6 are formed in two layers, upper and lower, is the mask slice of this embodiment.

このうニームに顧客の要求によりカスタム配線を配設す
るが、まず配線設計では、埋設された導体パターン4を
複数の配線部分に分割使用するなどこれを十分に利用し
て、第2Nの半導体素子6上に前記第2の絶縁膜(図示
を省略、)を介して設ける、アルミニウム(AI’)等
による配線層と導体パターン4とを用いて要求に応する
配線を構成する。
Customized wiring is arranged in accordance with the customer's request in this neem. First, in the wiring design, the buried conductor pattern 4 is divided into multiple wiring parts, etc., to make full use of this, and to connect the 2N semiconductor element. A wiring layer made of aluminum (AI') and the conductor pattern 4 provided on the conductor pattern 4 via the second insulating film (not shown) are used to construct a wiring according to the requirements.

複数の配線部分に分割使用する場合、或いはキャパシタ
ンスを減少させる目的などによるこの導体パターン4の
切断は、SiO□膜5に図中図で示す開ロアを設&Jて
、導体パターン4をエツチングすることにより容易に実
施できる。
When the conductor pattern 4 is to be divided into multiple wiring parts or for the purpose of reducing capacitance, the conductor pattern 4 can be cut by providing an open lower part as shown in the figure in the SiO□ film 5 and etching the conductor pattern 4. It can be easily implemented by

A1配線層による配線8(図は一部のみを示す)は通常
相互に並行に導体パターン4に直交して形成され、例え
ば図中図で示す接続点9で導体パターン4、第2層の半
導体素子6及び第1層の半導体素子3に接続される。
The wiring 8 (the figure shows only a part) of the A1 wiring layer is usually formed parallel to each other and perpendicular to the conductor pattern 4, and for example, the conductor pattern 4 and the second layer semiconductor are connected at the connection point 9 shown in the figure. It is connected to the element 6 and the first layer semiconductor element 3.

この接続は従来技術によって実施可能であるが、本実施
例で第1層の半導体素子3への接続は、例えば前記の導
体パターン4を切断するエツチングと同時に、接続位置
上の第2層の半導体素子6に予め開口を設けて行ってい
る。
Although this connection can be made using conventional techniques, in this embodiment, the connection to the first layer semiconductor element 3 is performed simultaneously with etching to cut the conductor pattern 4, and simultaneously etching the second layer semiconductor element 3 at the connection position. An opening is provided in the element 6 in advance.

導体パターン4の形成及びトリミングは以上説明した如
く、従来の製造方法の工程数をそのために増加すること
なく容易に実施することができ、またAI等による配線
層を1層に止めることも多くの場合に可能であり、マス
クスライス方式による3次元LSIの集積度を高め、障
害を低減する効果が得られる。
As explained above, the formation and trimming of the conductor pattern 4 can be easily carried out without increasing the number of steps in the conventional manufacturing method, and it is often possible to limit the number of wiring layers to one using AI or the like. This is possible in some cases, and the mask slicing method can increase the degree of integration of three-dimensional LSIs and reduce failures.

なお更に規模を増大するために、AI等による配線層を
2層にすることも支障なく可能である。
Furthermore, in order to further increase the scale, it is possible to use two wiring layers using AI or the like without any problem.

〔発明の効果〕〔Effect of the invention〕

以」二説明した如(本発明によれば、3次元LSIをマ
スクスライス方式により製造するに際して、工程数の増
加を伴うことなくその集積度を高め、かつ配線の多層化
による障害を低減する効果が得られる。
As explained below (according to the present invention), when manufacturing a three-dimensional LSI by the mask slicing method, the degree of integration can be increased without increasing the number of steps, and the problems caused by multilayer wiring can be reduced. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、(blは本発明の実施例を示す模式平面
図である。 図において、 1は半導体基板、 2は絶縁膜、 3は第1層の半導体素子、 4ば導体パターン、 5は絶縁膜、 6ば第2層の半導体素子、 7は導体パターンを切断する開口、 8はAI等による配線、 9は配線の接続点を示す。
FIG. 1 (al, (bl) is a schematic plan view showing an embodiment of the present invention. In the figure, 1 is a semiconductor substrate, 2 is an insulating film, 3 is a first layer semiconductor element, 4 is a conductor pattern, 5 6 is an insulating film, 6 is a semiconductor element in the second layer, 7 is an opening for cutting the conductor pattern, 8 is wiring by AI or the like, and 9 is a connection point of the wiring.

Claims (1)

【特許請求の範囲】 第1層の半導体素子(3)の近傍に導体パターン(4)
を配設し、 該第1層の半導体素子(3)及び該導体パターン(4)
上に第1の絶縁膜(5)を形成して該第1の絶縁膜(5
)上に第2層の半導体素子(6)を形成し、 該第1の絶縁膜(5)に開口(7)を設けて表出する該
導体パターン(4)を切断し、 該第2層の半導体素子(6)及び該開口(7)上に第2
の絶縁膜を形成し、 該第2の絶縁膜上に該導体パターン(4)に接続された
配線(8)を形成することを特徴とする半導体集積回路
装置の製造方法。
[Claims] A conductive pattern (4) in the vicinity of the first layer semiconductor element (3)
the first layer semiconductor element (3) and the conductor pattern (4);
A first insulating film (5) is formed on the first insulating film (5).
) a second layer of semiconductor elements (6) is formed on the second layer, an opening (7) is provided in the first insulating film (5) and the exposed conductor pattern (4) is cut; on the semiconductor element (6) and the opening (7).
1. A method of manufacturing a semiconductor integrated circuit device, comprising: forming an insulating film, and forming a wiring (8) connected to the conductor pattern (4) on the second insulating film.
JP7473085A 1985-04-09 1985-04-09 Method for manufacturing semiconductor integrated circuit device Expired - Lifetime JPH0697687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7473085A JPH0697687B2 (en) 1985-04-09 1985-04-09 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7473085A JPH0697687B2 (en) 1985-04-09 1985-04-09 Method for manufacturing semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS61232632A true JPS61232632A (en) 1986-10-16
JPH0697687B2 JPH0697687B2 (en) 1994-11-30

Family

ID=13555631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7473085A Expired - Lifetime JPH0697687B2 (en) 1985-04-09 1985-04-09 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0697687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312239A (en) * 1989-05-26 1990-12-27 Nec Corp Formation of wiring of integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312239A (en) * 1989-05-26 1990-12-27 Nec Corp Formation of wiring of integrated circuit

Also Published As

Publication number Publication date
JPH0697687B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
KR101552024B1 (en) Semiconductor logic circuits fabricated using multi-layer structures
JPS5843905B2 (en) Manufacturing method of semiconductor integrated circuit
JPS61232632A (en) Manufacture of semiconductor integrated circuit device
US5068702A (en) Programmable transistor
JPH0613552A (en) Heterojunction bipolar transistor integrated circuit device and manufacture thereof
JPH0693480B2 (en) Semiconductor integrated circuit device
JPS5835969A (en) Semiconductor device
JPS6018143B2 (en) Manufacturing method of semiconductor integrated circuit
JPH031838B2 (en)
JP2003060174A (en) Method for manufacturing semiconductor integrated circuit and reticle as well as semiconductor integrated circuit device
JPH0475665B2 (en)
JPS60105251A (en) Semiconductor integrated circuit
JPH04111324A (en) Semiconductor device
JPH07153756A (en) Semiconductor integrated circuit device
JPS58194356A (en) Semiconductor integrated circuit device
JP2003060056A (en) Method for producing semiconductor integrated circuit and reticle and semiconductor integrated circuit device
JPH0196947A (en) Semiconductor device and manufacture thereof
JPH08279556A (en) Semiconductor integrated circuit device and manufacture thereof
JPS5911660A (en) Semiconductor integrated circuit device
JPS61154142A (en) Manufacture of semiconductor device
JPH03283663A (en) Manufacture of semiconductor integrated circuit device
JPH03112151A (en) Active layer stacked element
JPH0638450B2 (en) Method for manufacturing semiconductor device
JPH08321551A (en) Semiconductor integrated circuit device and its manufacture
JPH0269977A (en) Semiconductor integrated circuit device and method of forming the same