JPS61225776A - Operation of fuel cell - Google Patents

Operation of fuel cell

Info

Publication number
JPS61225776A
JPS61225776A JP60063970A JP6397085A JPS61225776A JP S61225776 A JPS61225776 A JP S61225776A JP 60063970 A JP60063970 A JP 60063970A JP 6397085 A JP6397085 A JP 6397085A JP S61225776 A JPS61225776 A JP S61225776A
Authority
JP
Japan
Prior art keywords
electrode
temperature
fuel cell
rated
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60063970A
Other languages
Japanese (ja)
Inventor
Takuro Ihara
井原 卓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60063970A priority Critical patent/JPS61225776A/en
Publication of JPS61225776A publication Critical patent/JPS61225776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain high output voltage in the early stage of operation as high hydrophobic nature is maintained by discharging a cell at high temperature exceeding a rated operation temperature for a specified period before transferring to rated operation after starting. CONSTITUTION:Before transferring to rated operation after starting, a fuel cell is preliminarily discharged at high temperature exceeding a rated operation temperature, preferably at temperature 20 deg.C or more higher than the rated operation temperature, for a specified period. When operation temperature is increased, an affinity between electrode and electrolyte is increased, and wettability of electrolyte to electrode is accelerated and electrode reaction becomes active. High initial voltage is rapidly obtained as high hydrophobic nature is maintained without sacrifice of the life of electrode.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、電解液層を挟んで対向する燃料極と酸化剤
極を存し、各電極へ外部から燃料、M他剤を連続的に供
給することにより、燃料のもつ化学的エネルギーを直接
電気的エネルギーに変換して発電を行う燃料電池の運転
方法に関する。
This invention has a fuel electrode and an oxidizer electrode facing each other with an electrolyte layer in between, and by continuously supplying fuel, M, and other agents to each electrode from the outside, the chemical energy of the fuel can be directly converted into electricity. This invention relates to a method of operating a fuel cell that converts energy into electric power and generates electricity.

【従来技術とその・問題点】[Prior art and its problems]

−mに燃料電池を定格運転条件で連続運転する場合の電
池電圧の経時変化を示すと第1図のごとくであり、運転
開始直後には出力電圧が低く、時間の経過ととも徐々に
電圧が上昇してピーク電圧に達し、一定期間安定に推移
した後に徐々に出力電圧が低下を始めるような傾向を示
す、このような出力電圧の経時変化のパターンは、電極
の電解液に対する親和力、換言すれば電極の疎水性の強
さ、特に燃料電池の特性を左右する酸化剤極の疎水性の
強さが大きく影響する。すなわち酸化剤極の疎水性が強
いと電解液との親和性が弱く、このために電極の寿命が
長(なる反面、運転初期の電極反応が不充分で出力電圧
が低く、ピーク電圧に到達するまでに長時間を要する。 一方、逆に酸化剤極の疎水性が弱いと、運転初期から電
極反応が     ′活発に行われるので出力電圧がピ
ーク電圧に到達するまでの時間が短くなるが、反面電池
の寿命が縮まり、ピーク電圧に到達した後の出力電圧の
低下も早まると言った出力特性面で相反する傾向を示す
。 このために、従来では燃料電池を構成する電極の疎水性
に関して、触媒、ta水゛剤等の電極材料の種類および
混合比を変えたり、電極を構成する製造方法を変えて疎
水性の調節を行っていた。とりわけ前記のうち、従来で
はポリテトラフルオロエチレン等のtn水荊の量および
その添加方法により疎水性の調節を行う例が多い、この
ような方法で電極を構成するに際し、従来では電極寿命
の点からは強い疎水性を持たせることが望ましいにもか
かわらず、運転開始後早期のうちに所定の出力電圧が得
られるようにするために、多少の電極寿命を犠牲にして
電極の疎水性を若干下げるようにして製作しており、こ
の結果として燃料電池の寿命が縮まることになる問題が
あった。
Fig. 1 shows the change in battery voltage over time when the fuel cell is operated continuously under the rated operating conditions. This pattern of output voltage change over time, which shows a tendency for the output voltage to increase and reach a peak voltage, remain stable for a certain period of time, and then gradually start to decrease, is due to the affinity of the electrode for the electrolyte, in other words. The strength of the hydrophobicity of the electrode, especially the strength of the hydrophobicity of the oxidizer electrode, which influences the characteristics of the fuel cell, has a great influence. In other words, if the oxidizer electrode has strong hydrophobicity, it has a weak affinity with the electrolyte, and this results in a long electrode life (on the other hand, the electrode reaction at the beginning of operation is insufficient, resulting in a low output voltage and the peak voltage is reached). On the other hand, if the hydrophobicity of the oxidizer electrode is weak, the electrode reaction will occur actively from the beginning of operation, so the time it takes for the output voltage to reach the peak voltage will be shortened; This shows contradictory trends in terms of output characteristics, such as shortening the life of the battery and accelerating the drop in output voltage after reaching the peak voltage. Hydrophobicity has been adjusted by changing the type and mixing ratio of electrode materials such as TA and water agents, and by changing the manufacturing method of electrodes. In many cases, hydrophobicity is adjusted by adjusting the amount of hydrangea and the method of adding it.When constructing electrodes using this method, it has traditionally been desirable to have strong hydrophobicity from the viewpoint of electrode life. First, in order to obtain the specified output voltage early after the start of operation, the electrodes are manufactured by sacrificing some electrode life to slightly lower the hydrophobicity of the electrodes.As a result, the fuel cell There was a problem that would shorten the lifespan of the

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、電
極に高い疎水性を与えた電極を採用しつつ、一方では電
池の寿命を損なうことなしに運転開始後早期の内に高い
出力電圧特性が得られるようにした燃料電池の運転方法
を提供することを目的とする。
This invention was developed in consideration of the above points, and while adopting an electrode with high hydrophobicity, it also achieves high output voltage characteristics within an early period after the start of operation without impairing the life of the battery. The object of the present invention is to provide a method of operating a fuel cell that can be obtained.

【発明の要点】[Key points of the invention]

上記目的はこの発明により、燃料電池の運転開始に際し
、定格運転への移行に先立って少なくとも定格運転温度
をこえる高温度、望ましくは定格運転温度より20℃以
上高い温度条件で所定期間放電する予備運転操作を行う
ことにより達成される。 すなわち一般に燃料電池の電極は、運転温度を高くする
程寿命が短くなる傾向を示すことは良く知られているが
、一方では電池の出力電圧が運転開始後ピーク値に到達
するまでの時間も運転温度が高い程短縮されることが発
明者の行った実験結果から確認されている。第2図はこ
の様子を表したもので、縦軸は図示の各運転温度条件で
の運転から定格運転温度に戻した場合の電池の出力電圧
経時変化を示しており、図示特性から明らかなように運
転温度が高い程、初期出力電圧の立ち上がりが早くなる
Ill向を示す、この理由は、運転温度を高めるとti
と電解液との親和性が高まり、これにより電極は運転開
始前の乾燥状態から短時間のうちに電解液が程よく浸透
するよう電極に対する電解液の慣れが促進され、この結
果として電極反応が活発化するためと推測さる。 したがって上述のように燃料電池の運転開始当初にのみ
、定格温度を超える高温条件の予備運転操作を行い、出
力電圧がピーク電圧に到達□した後は電池温度を定格温
度に戻して定常運転を行うようにすれば、電極の高い疎
水性を維持し、かつ電極寿命を損なうことなく、一方で
は速やかに所定の初期電圧を得ることができることにな
る。
The above object is achieved by the present invention, when starting the operation of a fuel cell, prior to transition to rated operation, a preliminary operation in which discharge is performed for a predetermined period at a high temperature that exceeds at least the rated operating temperature, preferably at least 20°C higher than the rated operating temperature. This is accomplished by performing an operation. In other words, it is well known that the lifespan of fuel cell electrodes generally tends to be shorter as the operating temperature increases, but on the other hand, the time it takes for the battery's output voltage to reach its peak value after the start of operation also depends on the operating temperature. It has been confirmed from the results of experiments conducted by the inventor that the higher the temperature, the shorter the time. Figure 2 shows this situation, and the vertical axis shows the change over time in the battery's output voltage when returning to the rated operating temperature from operation under each operating temperature condition shown in the figure, as is clear from the characteristics shown. The higher the operating temperature, the faster the initial output voltage rises.The reason for this is that when the operating temperature is raised, the
This increases the affinity between the electrode and the electrolyte, which promotes the electrolyte to become accustomed to the electrode so that the electrolyte penetrates into the electrode in a short period of time from the dry state before operation starts, and as a result, the electrode reaction becomes active. It is speculated that this is to make the world more popular. Therefore, as mentioned above, only at the beginning of fuel cell operation, a preliminary operation is performed under high temperature conditions exceeding the rated temperature, and after the output voltage reaches the peak voltage, the cell temperature is returned to the rated temperature and steady operation is performed. By doing so, it is possible to maintain the high hydrophobicity of the electrode and quickly obtain a predetermined initial voltage without impairing the life of the electrode.

【発明の実施例】[Embodiments of the invention]

次にこの発明の詳細な説明する。まず燃料電池を構成す
る燃料極としては、パラジウム添加活性炭触媒に十分な
量のポリテトラフルオロエチレンを添加混合したものを
電極基村上に薄膜成型し、一方の酸化剤極には白金添加
カーボンブランク触媒に高疎水性を与えるように十分な
量のポリテトラフルオロエチレンを添加混合したものを
薄膜成型して燃料極および酸化剤極を構成し、かかる燃
料電池を7規定水酸化カリウム水溶液の電解液中で運転
温度を85℃(定格運転温度は65℃)に昇温して12
0時間の予備運転操作を行い、その後に定格運転温度に
戻して定常運転を行った。なお電池の運転温度を高める
には、電池の電極へ供給する反応ガスの予熱温度を調節
することにより行われる。 第3図は上記の高温条件の予備運転操作を行った場合の
出力電圧の経時変化(実線イ)と、同じ高疎水性の電極
を用いて前記の予備運転操作を行わずに運転開始当初か
ら定格温度のままで運転を行った場合の出力電圧経時変
化(点線口)を実験結果から求めて表したものであり、
図示特性図から判るように、高温条件の予備運転操作を
行うことにより、電圧がピーク値Voに到達するまでの
時間が大幅に短縮される。また第4図は上記の予備運転
操作を行って運転した場合と、あらかじめ酸化剤極への
lJi水剤の添加量を城1ul1節して低疎水性に構成
した電極を用い、かつ前記の予備放電操作を行わずに当
初から定格温度で運転開始した従来の運転方法による場
合の長時間連続運転による電圧経時変化を発明者の行っ
た実験結果から求めて表した燃料電池の出力特性図“で
あり、図中実線八がこの発明の実施例による特性線、点
線二が従来の運転方法による特性線を示してしる。この
特性図からも明らかなように、この発明の運転方法に起
因する電池の寿命低下は認められず、高疎水性の電極を
用いて前記した高温の予備運転操作を行った場合の方が
長寿命である良好な結果が得られた。
Next, this invention will be explained in detail. First, as the fuel electrode that constitutes the fuel cell, a palladium-added activated carbon catalyst and a sufficient amount of polytetrafluoroethylene are mixed and formed into a thin film on the electrode base, and one oxidizer electrode is made of a platinum-added carbon blank catalyst. A sufficient amount of polytetrafluoroethylene is added and mixed to give it high hydrophobicity, and the mixture is formed into a thin film to form the fuel electrode and the oxidizer electrode, and the fuel cell is placed in an electrolyte of 7N potassium hydroxide aqueous solution. Raise the operating temperature to 85℃ (rated operating temperature is 65℃) and
A preliminary operation was performed for 0 hours, and then the temperature was returned to the rated operating temperature and steady operation was performed. Note that the operating temperature of the battery can be increased by adjusting the preheating temperature of the reaction gas supplied to the electrodes of the battery. Figure 3 shows the change in output voltage over time (solid line A) when the preliminary operation under the above-mentioned high-temperature condition was performed, and the change in output voltage over time (solid line A) when the same highly hydrophobic electrode was used but the preliminary operation was not performed as described above. This shows the output voltage change over time (dotted line) obtained from experimental results when operating at the rated temperature.
As can be seen from the illustrated characteristic diagram, by performing the preliminary operation under high temperature conditions, the time required for the voltage to reach the peak value Vo is significantly shortened. In addition, Figure 4 shows the case where the operation was performed with the above-mentioned preliminary operation, and the case where the electrode was configured to have low hydrophobicity by adjusting the amount of lJi water agent added to the oxidizer electrode in advance, and the case where the preliminary operation described above was performed. This is a fuel cell output characteristic diagram that shows the voltage change over time due to long-term continuous operation, determined from the results of experiments conducted by the inventor, in the case of the conventional operation method in which operation is started at the rated temperature from the beginning without performing a discharge operation. The solid line 8 in the figure shows the characteristic line according to the embodiment of this invention, and the dotted line 2 shows the characteristic line according to the conventional operating method.As is clear from this characteristic diagram, the characteristic line due to the operating method of this invention No decrease in the life of the battery was observed, and good results were obtained with a longer life when the high-temperature preliminary operation described above was performed using a highly hydrophobic electrode.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、燃料電池の運転開
始に際し、定格運転への移行に先立って少なくとも定格
運転温度を超える高温条件で所定期間放電する予備運転
操作を行うようにしたことにより、あらかじめ電極に与
えた高疎水性を維持しつつ、電極寿命を損なうことなし
に運転開始から出力電圧がピーク値に到達するまでの時
間を従来の運転方法と比べて大幅に短縮し得る実用的効
果の高い運転方法を提供することができる。
As described above, according to the present invention, when starting the operation of the fuel cell, a preliminary operation is performed in which discharge is performed for a predetermined period at a high temperature condition that exceeds the rated operating temperature at least before shifting to rated operation. A practical effect that can significantly shorten the time from the start of operation until the output voltage reaches its peak value compared to conventional operation methods, while maintaining the high hydrophobicity imparted to the electrode in advance and without impairing the electrode life. It is possible to provide a highly efficient driving method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の連続運転における電池電圧の一般的
な経時変化を示す出力特性図、第2図は運転温度との関
係を表した特性図、第3図この発明の運転方法による高
温の予備運転操作を行った場合と予備運転操作を行わな
い場合とを対比して表した出力電圧の経時変化特性図、
第4図はこの発明の運転方法と従来の運転方法とを対比
して表した連続運転による電圧の経時変化特性図である
。 図において、 イ、ハ:この発明の実施例により得られた電池の出力特
性。 工業技術院長  等々力 達
Fig. 1 is an output characteristic diagram showing general changes in cell voltage over time during continuous operation of a fuel cell, Fig. 2 is a characteristic diagram showing the relationship with operating temperature, and Fig. 3 is a characteristic diagram showing the relationship with operating temperature. A temporal change characteristic diagram of the output voltage comparing the case where the preliminary operation operation is performed and the case where the preliminary operation operation is not performed,
FIG. 4 is a characteristic diagram of voltage change over time during continuous operation, comparing the operating method of the present invention and the conventional operating method. In the figure, A and C: Output characteristics of the battery obtained by the example of this invention. Tatsu Todoroki, Director of the Institute of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims] 1)電解液層を挟んで対向する燃料極と酸化剤極を有し
、各電極に燃料、酸化剤の反応ガスを供給して発電を行
う燃料電池の運転方法であって、燃料電池の運転開始に
際し、定格運転への移行に先立って少なくとも定格運転
温度を超える高温条件で所定期間放電する予備運転操作
を行うことを特徴とする燃料電池の運転方法。
1) A method of operating a fuel cell, which has a fuel electrode and an oxidizer electrode facing each other with an electrolyte layer in between, and generates electricity by supplying fuel and oxidizer reaction gas to each electrode, the method of operating a fuel cell. 1. A method of operating a fuel cell, which comprises performing a preliminary operation of discharging for a predetermined period at a high temperature condition exceeding at least a rated operating temperature before transitioning to rated operation.
JP60063970A 1985-03-29 1985-03-29 Operation of fuel cell Pending JPS61225776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063970A JPS61225776A (en) 1985-03-29 1985-03-29 Operation of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063970A JPS61225776A (en) 1985-03-29 1985-03-29 Operation of fuel cell

Publications (1)

Publication Number Publication Date
JPS61225776A true JPS61225776A (en) 1986-10-07

Family

ID=13244656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063970A Pending JPS61225776A (en) 1985-03-29 1985-03-29 Operation of fuel cell

Country Status (1)

Country Link
JP (1) JPS61225776A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836294A (en) * 1971-09-09 1973-05-28
JPS58164164A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Electrolyte impregnating method of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836294A (en) * 1971-09-09 1973-05-28
JPS58164164A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Electrolyte impregnating method of fuel cell

Similar Documents

Publication Publication Date Title
CN110534767B (en) Method for starting proton exchange membrane fuel cell at low temperature
JPS61225776A (en) Operation of fuel cell
JPS61225775A (en) Operation of fuel cell
CN111740132B (en) Low-temperature starting method of fuel cell stack
JPS62278765A (en) Operating method for fuel cell
JPH0325903B2 (en)
KR101709168B1 (en) High power thin film cathode for thermal batteries and a manufacturing method therefor
US3382104A (en) Method of heating a fuel cell
JP2003338284A (en) Control valve lead-acid storage battery
JPS6164082A (en) Nonaqueous electrolyte battery
JPS61118971A (en) Fuel cell operation method
JPH03147268A (en) Solid electrolyte fuel cell
JPS58164164A (en) Electrolyte impregnating method of fuel cell
JP2912031B2 (en) Method for manufacturing solid electrolyte fuel cell
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2505449B2 (en) Method for manufacturing sulfuric acid fuel cell electrode
JPH04162353A (en) Seal alkaline secondary battery
JPS63221559A (en) Nonaqueous secondary battery
JPS6182674A (en) Nonaqueous solvent battery
JPS5887766A (en) Manufacture of organic electrolyte battery
JPS63105478A (en) Secondary battery
JPS61118972A (en) Fuel cell starting method
FR2493606A1 (en) Stabilising non-aq. electrochemical cells - by inhibiting active cathode surface by using a metal salt
JPH0374062A (en) Manufacture of nonaqueous electrolyte secondary battery
JPS6226552B2 (en)