JPS61225775A - Operation of fuel cell - Google Patents

Operation of fuel cell

Info

Publication number
JPS61225775A
JPS61225775A JP60063969A JP6396985A JPS61225775A JP S61225775 A JPS61225775 A JP S61225775A JP 60063969 A JP60063969 A JP 60063969A JP 6396985 A JP6396985 A JP 6396985A JP S61225775 A JPS61225775 A JP S61225775A
Authority
JP
Japan
Prior art keywords
electrode
current density
fuel cell
rated
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60063969A
Other languages
Japanese (ja)
Inventor
Takuro Ihara
井原 卓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60063969A priority Critical patent/JPS61225775A/en
Publication of JPS61225775A publication Critical patent/JPS61225775A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain high output voltage in the early stage of operation as high hydrophobic nature is maintained by discharging a cell at high current density exceeding a rated load for a specified period before transferring to rated operation after starting. CONSTITUTION:Before transferring to rated operation after starting, a fuel cell is preminarily dischaeged at high current density exceeding a rated load, preferably at current density two times high than the rated current density, for a specified period. By increasing current density, temperature rise within electrode is quickened and electrolyte concentration is varied, and electrode reaction becomes active. High initial voltage is rapidily obtained as high hydrophobic nature is maintained without sacrifice of the life of electrode.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野] この発明は、電解液層を挟んで対向する燃料極と酸化剤極を有し、各電極へ外部から燃料、酸化剤を連続的に供給することにより、燃料のもつ化学的エネルギーを直接電気的エネルギーに変換して発電を行う燃料電池の運転方法に関する。 【従来技術とその問題点】[Technical field to which the invention pertains] This invention has a fuel electrode and an oxidizer electrode facing each other with an electrolyte layer in between, and by continuously supplying fuel and oxidizer to each electrode from the outside, the chemical energy of the fuel can be directly converted into electricity. This invention relates to a method of operating a fuel cell that converts energy to generate electricity. [Prior art and its problems]

一般に燃料電池を定格運転条件で連続運転する場合の電
池電圧の経時変化を示すと第1図のごとくであり、運転
開始直後には出力電圧が低く、時間の経過ととも徐々に
電圧が上昇してピーク電圧に達し、一定期間安定に推移
した後に徐々に出力電圧が低下を始めるような傾向を示
す、このような出力電圧の経時変化のパターンは、電極
の電解液に対する親和力、換言すれば電極の疎水性の強
さ、特に燃料電池の特性を左右する酸化剤極の疎水性の
強さが大きく影響する。すなわち酸化剤極の疎水性が強
いと電解液との親和性が弱く、このために電極の寿命が
長くなる反面、運転初期の電極反応が不充分で出力電圧
が低く、ピーク電圧に到達するまでに長時間を要する。 一方、逆に酸化剤極の疎水性が弱いと、運転初期から電
極反応が活発に行われるので出力電圧がピーク電圧に到
達するまでの時間が短くなるが、反面電池の寿命が縮ま
り、ピーク電圧に到達した後の出力電圧の低下も早まる
と言った出力特性面で相反する傾向を示す。 このために、従来では燃料電池を構成する電極の疎水性
に関して、触媒、fa水°剖等の電極材料の種類および
混合比を変えたり、電極を構成する製造方法を変えて疎
水性の調節を行っていた。とりわけ前記のうち、従来で
はポリテトラフルオロエチレン等の撥水剤の量およびそ
の添加方法により疎水性の調節を行う例が多い、このよ
うに方法で電極を構成するに際し、従来では電極寿命の
点からは強い疎水性を持たせることが望ましいにもがか
わらず、運転開始後早期のうちに所定の出力電圧が得ら
れるようにするために、多少の電極寿命を犠牲にして電
極の疎水性を若干下げるようにして製作しており、この
結果として燃料電池の寿命が縮まることになる問題があ
つた。
In general, Figure 1 shows the change in battery voltage over time when a fuel cell is operated continuously under rated operating conditions.The output voltage is low immediately after the start of operation, and the voltage gradually increases as time passes. This pattern of output voltage changes over time shows a tendency for the output voltage to reach a peak voltage, remain stable for a certain period of time, and then gradually start to decrease. The strength of the hydrophobicity of the oxidizer electrode, especially the strength of the hydrophobicity of the oxidizer electrode, which influences the characteristics of the fuel cell, has a great influence. In other words, if the oxidizer electrode is highly hydrophobic, it has a weak affinity with the electrolyte, and this results in a longer electrode life, but on the other hand, the electrode reaction at the beginning of operation is insufficient, resulting in a low output voltage, and the output voltage is low until the peak voltage is reached. It takes a long time. On the other hand, if the hydrophobicity of the oxidizer electrode is weak, the electrode reaction will be active from the beginning of operation, which will shorten the time it takes for the output voltage to reach the peak voltage, but on the other hand, the life of the battery will be shortened, and the peak voltage They show contradictory trends in terms of output characteristics, with the output voltage decreasing more quickly after reaching . To this end, conventional efforts have been made to adjust the hydrophobicity of the electrodes that make up the fuel cell by changing the types and mixing ratios of electrode materials such as catalysts and FA hydrocarbons, and by changing the manufacturing method used to make the electrodes. I was going. In particular, in the past, hydrophobicity was often adjusted by adjusting the amount of water repellent such as polytetrafluoroethylene and the method of adding it. Despite the fact that it is desirable to have strong hydrophobicity, in order to obtain the specified output voltage early after the start of operation, it is necessary to sacrifice some electrode life to increase the hydrophobicity of the electrode. The fuel cell was manufactured to be slightly lowered, which resulted in a problem that shortened the life of the fuel cell.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、電
極に高い疎水性を与えた電極を採用しつつ、一方では電
池の寿命を堝なうことなしに運転開始後早期の内に高い
出力電圧特性が得られるようにした燃料電池の運転方法
を提供することを目的とする。
This invention was made in consideration of the above points, and while adopting an electrode with high hydrophobicity, it also allows for a high output voltage within an early period after the start of operation without shortening the life of the battery. It is an object of the present invention to provide a method of operating a fuel cell in which characteristics can be obtained.

【発明の要点】[Key points of the invention]

上記目的はこの発明により、燃料電池の運転開始に際し
、定格運転への移行に先立って少なくとも定格負荷を超
える高電流密度、望ましくは定格電流密度の2倍以上の
電流密度で所定期間放電する予備放電操作を行うことに
より達成される。 すなわち一般に燃料電池の電極は、放電電流密度を高め
たまま連続運転を行うと寿命が短くなる傾向を示すこと
は良く知られているが、一方では電池の出力電圧が運転
開始後ピーク値に到達するまでの時間も放電電流密度を
増すと短縮されることが発明者の行った実験結果から!
!認されている。 第2図はこの様子を表したもので、縦軸は図示の各放電
条件から定格負荷に戻した場合の電池の出力電圧の経時
変化を示しており、図示特性から明らかなように放電条
件としての電流密度が高い程、電圧の立ち上がりが早く
なる傾向を示す、この理由は、電流密度を増すと電極内
部の温度上昇が早まり、これに伴って電解液濃度の変化
(例えばアルカリ型燃料電池では酸化剤極内部の電解液
濃度が高くなる)が生じ5.この結果電解液の毛細管圧
力が増す現象が生じて電極に対する電解液の濡れが促進
され、これにより電極反応が活発化するためと推測され
る。 したがって上述のように燃料電池の運転開始当初にのみ
、定格負荷を超える電流密度で予備放電操作を行い、出
力電圧がピーク電圧に到達した後は負荷を定格負荷に戻
して連続運転を行うようにすれば、電極の高い疎水性を
維持し、かつ電極寿命を損なうことなく、一方では速や
かに良好な初期電圧を得ることができろことになる。
The above object is achieved by the present invention, when starting the operation of a fuel cell, a preliminary discharge is carried out for a predetermined period at a high current density that exceeds at least the rated load, preferably at least twice the rated current density, before transition to rated operation. This is accomplished by performing an operation. In other words, it is generally well known that the life of fuel cell electrodes tends to be shortened when continuous operation is performed with a high discharge current density; According to the results of experiments conducted by the inventor, the time required for this to occur can be shortened by increasing the discharge current density!
! It has been certified. Figure 2 shows this situation, and the vertical axis shows the change over time in the battery's output voltage when the load is returned to the rated load from each discharge condition shown.As is clear from the characteristics shown, the discharge conditions The higher the current density, the faster the voltage rises. The reason for this is that as the current density increases, the temperature inside the electrode increases faster, and this causes changes in the electrolyte concentration (for example, in alkaline fuel cells, 5. The electrolyte concentration inside the oxidizer electrode becomes high. It is presumed that this results in a phenomenon in which the capillary pressure of the electrolytic solution increases, promoting wetting of the electrolytic solution to the electrodes, thereby invigorating the electrode reaction. Therefore, as mentioned above, only at the beginning of fuel cell operation, a preliminary discharge operation is performed at a current density that exceeds the rated load, and after the output voltage reaches the peak voltage, the load is returned to the rated load and continuous operation is performed. This makes it possible to maintain high hydrophobicity of the electrode and quickly obtain a good initial voltage without impairing the electrode life.

【発明の実施例】[Embodiments of the invention]

次にこの発明の詳細な説明する。まず燃料電池を構成す
る燃料極としては、パラジウム添加活性炭触媒にポリテ
トラフルオロエチレンを添加混合したものを電橋基剤上
に薄膜成型し、一方の酸化剤極は白金添加カーボンブラ
ック触媒に高疎水性を与゛えるように十分な量のポリテ
トラフルオロエチレンを添加混合してyI膜成型したも
のを用い、かかる燃料電池を7規定水酸化カリウム水溶
液の電解擁中で予備放電電流密度を300s^/cd 
(定格放電電流密度は100mA/aりとして96時間
の予備放電操作を行い、その後に定格負荷運転を行った
。 第3図は上記の予備放電操作を行った場合の出力電圧の
経時変化(実線イ)と、同じ高疎水性の電極を用いて予
備放電操作を行わずに運転開始当初から定格運転を行っ
た場合の電圧経時変化(点線口)を実験結果から求めて
表したものであり、図示特性図から判るように、予備放
電操作を行うことにより、電圧がピーク値Voに到達す
るまでの時間が大幅に短縮される。また第4図は上記の
予備放電操作を行って運転した場合と、あらかじめ酸化
剤極への撥水剤の添加量を減量調節して低疎水性に構成
した電極を用い、かつ前記の予備放電操作を行わずに当
初から定格負荷で運転開始した、1 :よる電圧経時変化の出力特性図であり、図中実線、−
1゜ ハがこの発明の実施例による特性線、点線二が従来の運
転方法による特性線を示している。この特性図からも明
らかなように、こ”の発明による運転方法に起因する電
池の寿命低下は認められず、高疎水性の電極を用いて前
記の予備放電操作を行った場合の方が長寿命となる良好
な結果が得られた。
Next, this invention will be explained in detail. First, the fuel electrode that makes up the fuel cell is made of a palladium-doped activated carbon catalyst mixed with polytetrafluoroethylene, which is formed into a thin film on a bridge base, and the oxidizer electrode is made of a highly hydrophobic platinum-doped carbon black catalyst. A sufficient amount of polytetrafluoroethylene was added and mixed so as to give properties, and a yI film was formed.The fuel cell was heated at a pre-discharge current density of 300 s in an electrolytic solution of 7N potassium hydroxide aqueous solution. /cd
(The rated discharge current density was 100 mA/a, and a pre-discharge operation was performed for 96 hours, followed by rated load operation. Figure 3 shows the change in output voltage over time (solid line) when the above pre-discharge operation was performed. A) and the voltage change over time (dotted line) obtained from the experimental results when the same highly hydrophobic electrode was used and rated operation was performed from the beginning of operation without performing a pre-discharge operation, As can be seen from the illustrated characteristic diagram, by performing the pre-discharge operation, the time until the voltage reaches the peak value Vo is significantly shortened.Furthermore, Fig. 4 shows the case of operation with the above-mentioned pre-discharge operation. Then, using an electrode configured to have low hydrophobicity by adjusting the amount of water repellent added to the oxidizer electrode in advance, and without performing the pre-discharge operation described above, operation was started at the rated load from the beginning.1: It is an output characteristic diagram of the voltage change over time due to the solid line, −
1° C shows the characteristic line according to the embodiment of the present invention, and dotted line 2 shows the characteristic line according to the conventional operating method. As is clear from this characteristic diagram, no reduction in battery life was observed due to the operating method according to this invention, and the battery life was longer when the pre-discharge operation was performed using a highly hydrophobic electrode. Good results were obtained with regard to longevity.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、燃料電池の運転開
始に際し、定格運転への移行に先立って少なくとも定格
負荷を超える高電流密度で所定期間放電する予備放電操
作を行うようにしたことにより、あらかじめ電極に与え
た高疎水性を維持しつつ、電極寿命を損なうことなしに
運転開始から出力電圧がピーク値に到達するまでの時間
を従来の運転方法と比べて大幅に短縮し得る実用的効果
の高い運転方法を提供することができる。
As described above, according to the present invention, when starting the operation of the fuel cell, a preliminary discharge operation is performed in which discharge is performed for a predetermined period at a high current density that exceeds at least the rated load before shifting to rated operation. A practical effect that can significantly shorten the time from the start of operation until the output voltage reaches its peak value compared to conventional operation methods, while maintaining the high hydrophobicity imparted to the electrode in advance and without impairing the electrode life. It is possible to provide a highly efficient driving method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の連続運転における電池電圧の一般的
な経時変化を示す出力特性図、第2図は放電電流密度と
電池電圧がピーク値に到達するまでの経時変化との関係
を表した特性図、第3図はこの発明の運転方法による予
備放電操作を行った場合と予備放電操作を行わない場合
とを対比して表した出力電圧の経時変化特性図、第4図
はこの発明の運転方法と従来の運転方法とを対比して表
した連続運転による電圧の経時変化特性図である。 図において、 イ、ハ:この発明の実施例により得られた電池の出力特
性。 工業技術院長  等々力 達
Figure 1 is an output characteristic diagram showing the general change in cell voltage over time during continuous operation of a fuel cell, and Figure 2 shows the relationship between the discharge current density and the change over time until the cell voltage reaches its peak value. A characteristic diagram, FIG. 3 is a characteristic diagram of output voltage change over time comparing the case where a pre-discharge operation is performed according to the operating method of the present invention and the case where a pre-discharge operation is not performed, and FIG. FIG. 3 is a diagram showing voltage change characteristics over time due to continuous operation, comparing the operating method and the conventional operating method. In the figure, A and C: Output characteristics of the battery obtained by the example of this invention. Tatsu Todoroki, Director of the Institute of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims] 1)電解液層を挟んで対向する燃料極と酸化剤極を有し
、各電極に燃料、酸化剤の反応ガスを供給して発電を行
う燃料電池の運転方法であって、燃料電池の運転開始に
際し、定格運転への移行に先立って少なくとも定格負荷
を超える高電流密度で所定期間放電する予備放電操作を
行うことを特徴とする燃料電池の運転方法。
1) A method of operating a fuel cell, which has a fuel electrode and an oxidizer electrode facing each other with an electrolyte layer in between, and generates electricity by supplying fuel and oxidizer reaction gas to each electrode, the method of operating a fuel cell. 1. A method of operating a fuel cell, which comprises performing a pre-discharge operation for a predetermined period of time at a high current density that exceeds at least a rated load before transitioning to rated operation.
JP60063969A 1985-03-29 1985-03-29 Operation of fuel cell Pending JPS61225775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063969A JPS61225775A (en) 1985-03-29 1985-03-29 Operation of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063969A JPS61225775A (en) 1985-03-29 1985-03-29 Operation of fuel cell

Publications (1)

Publication Number Publication Date
JPS61225775A true JPS61225775A (en) 1986-10-07

Family

ID=13244627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063969A Pending JPS61225775A (en) 1985-03-29 1985-03-29 Operation of fuel cell

Country Status (1)

Country Link
JP (1) JPS61225775A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549802A (en) * 1993-05-17 1996-08-27 Applied Materials, Inc. Cleaning of a PVD chamber containing a collimator
FR2880992A1 (en) * 2005-01-20 2006-07-21 Renault Sas METHOD AND APPARATUS FOR OPERATING MANAGEMENT OF FUEL CELL MODULES
JP2008123930A (en) * 2006-11-15 2008-05-29 Honda Motor Co Ltd Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836294A (en) * 1971-09-09 1973-05-28
JPS58164164A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Electrolyte impregnating method of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836294A (en) * 1971-09-09 1973-05-28
JPS58164164A (en) * 1982-03-25 1983-09-29 Kansai Electric Power Co Inc:The Electrolyte impregnating method of fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549802A (en) * 1993-05-17 1996-08-27 Applied Materials, Inc. Cleaning of a PVD chamber containing a collimator
US5630917A (en) * 1993-05-17 1997-05-20 Applied Materials, Inc. Cleaning of a PVD chamber containing a collimator
FR2880992A1 (en) * 2005-01-20 2006-07-21 Renault Sas METHOD AND APPARATUS FOR OPERATING MANAGEMENT OF FUEL CELL MODULES
WO2006077348A1 (en) * 2005-01-20 2006-07-27 Renault S.A.S Method and device for operational control of fuel cell modules
JP2008529210A (en) * 2005-01-20 2008-07-31 ルノー・エス・アー・エス Method and apparatus for managing operation of fuel cell module
JP2008123930A (en) * 2006-11-15 2008-05-29 Honda Motor Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
US4904548A (en) Method for controlling a fuel cell
US6635369B2 (en) Method for improving fuel cell performance
EP1583106A4 (en) Solid polymeric electrolyte material, process for producing the same and membrane/electrode assembly for solid polymer fuel cell
CN1237804A (en) Activation method for fuel battery
CN112557920A (en) Method for rapidly evaluating stability of high-voltage lithium ion battery system
US3436271A (en) Method of improving the performance of fuel cells
JPS61225775A (en) Operation of fuel cell
US6675573B2 (en) Vehicles containing and methods for using a pre-heater to reduce emissions, and for warming fuel cells at low ambient temperatures
CN1636295A (en) Warm-up of fuel cell power plant
EP3281243B1 (en) Method of treating carbon electrode
KR101068200B1 (en) Fuel cell system, control method therefor, and movable object
JP2007066666A (en) Aging device and its method of solid polymer fuel cell
JP2621435B2 (en) How to stop operation of fuel cell
JPS61225776A (en) Operation of fuel cell
JPS62278765A (en) Operating method for fuel cell
JPH0325903B2 (en)
CN111740132B (en) Low-temperature starting method of fuel cell stack
EP0557259B1 (en) Gas diffusion electrode for electrochemical cell and process of preparing same
JPH11204119A (en) Solid polyelectrolyte fuel cell and manufacture thereof
US3382104A (en) Method of heating a fuel cell
JPS61118971A (en) Fuel cell operation method
JPH02273467A (en) Starting method for fuel cell
JPH05335030A (en) Method for enhancing performance of fuel cell
JP2021128868A (en) Fuel cell aging method
KR0123743B1 (en) Pre-treatment method for electrode of fuel cell