JPH0325903B2 - - Google Patents

Info

Publication number
JPH0325903B2
JPH0325903B2 JP60201659A JP20165985A JPH0325903B2 JP H0325903 B2 JPH0325903 B2 JP H0325903B2 JP 60201659 A JP60201659 A JP 60201659A JP 20165985 A JP20165985 A JP 20165985A JP H0325903 B2 JPH0325903 B2 JP H0325903B2
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
gas pressure
operating
rated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60201659A
Other languages
Japanese (ja)
Other versions
JPS6264069A (en
Inventor
Takuro Ihara
Kazuo Koseki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60201659A priority Critical patent/JPS6264069A/en
Publication of JPS6264069A publication Critical patent/JPS6264069A/en
Publication of JPH0325903B2 publication Critical patent/JPH0325903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、電解液層を挟んで対向する燃料極
と酸化剤極とを有し、各電極へ外部から燃料、酸
化剤を連続的に供給することにより、燃料の持つ
化学的エネルギーを直接電気的エネルギーに変換
して発電を行う燃料電池の運転方法に関する。
This invention has a fuel electrode and an oxidizer electrode facing each other with an electrolyte layer in between, and by continuously supplying fuel and oxidizer to each electrode from the outside, the chemical energy of the fuel can be directly converted into electricity. This invention relates to a method of operating a fuel cell that converts energy into electric power and generates electricity.

【従来技術とその問題点】[Prior art and its problems]

一般に燃料電池を定格運転条件で連続運転する
場合の電池電圧の経時変化を示すと第1図のごと
くである。すなわち運転開始直後の出力電圧は低
く、時間の経過とともに徐々に電圧が上昇してピ
ーク電圧に達し、このピーク電圧が或る期間安定
に推移した後に徐々に出力電圧が低下し始めるよ
うな傾向を示す。このような出力電圧の経時変化
のパターンは電極の電解液に対する親和力、換言
すれば電極の疏水性の強さ、特に燃料電池の特性
を左右する酸化剤極の疏水性の強さが大きく影響
を与えることが知られている。すなわち酸化剤極
の疏水性が強いと電解液との親和力が弱く、この
ために電極の寿命が長くなる反面、運転初期の電
極反応が不充分で出力電圧が低くピーク電圧に到
達するまでに長時間を要する。一方、逆に酸化剤
極の疏水性が弱いと電解液との親和力が強くな
り、運転初期から電極反応が活発に行われるので
出力電圧がピーク電圧に到達するまでの時間が短
くなるが、反面電池の寿命が縮まりピーク電圧に
到達した後の出力電圧の低下も早まると言つた出
力特性面で相反する傾向を示す。 このために従来では燃料電池を構成する電極の
疏水性に関して、触媒、撥水剤等の電極材料の種
類および混合比を変えたり、電極材料から電極を
構成する方法をかえて疏水性の調節を行つてい
る。この場合にとりわけポリテトラフルオロエチ
レン等の撥水剤の量およびその添加方法により疏
水性の調節を行う例が多い。しかしながらこれら
方法で電極自身の疏水性の調節を行う場合には、
電極寿命の点からは強い疏水性を持たせることが
望ましいにもかかわらず運転開始から早期のうち
に所定のピーク出力電圧に到達ことが要求される
ことから、従来では多少の電極寿命の低下を犠牲
にして電極の疏水性を若干下げるようにして製作
しているが、この結果として燃料電池の寿命が縮
まる問題が派生する。
In general, Fig. 1 shows the change in cell voltage over time when a fuel cell is continuously operated under rated operating conditions. In other words, the output voltage is low immediately after the start of operation, and as time passes, the voltage gradually increases until it reaches the peak voltage, and after this peak voltage remains stable for a certain period of time, the output voltage tends to gradually start to decrease. show. This pattern of change in output voltage over time is greatly influenced by the affinity of the electrode for the electrolyte, in other words, the strength of the hydrophobicity of the electrode, especially the strength of the hydrophobicity of the oxidizer electrode, which influences the characteristics of fuel cells. known to give. In other words, if the oxidizer electrode has strong hydrophobicity, its affinity with the electrolyte will be weak, and this will lengthen the life of the electrode, but on the other hand, the electrode reaction at the beginning of operation will be insufficient, resulting in a low output voltage and a long time to reach the peak voltage. It takes time. On the other hand, if the hydrophobicity of the oxidizer electrode is weak, its affinity with the electrolyte will be strong, and the electrode reaction will be active from the beginning of operation, resulting in a shorter time for the output voltage to reach the peak voltage. They show contradictory trends in terms of output characteristics, such as shortening the life of the battery and accelerating the drop in output voltage after reaching the peak voltage. To this end, conventional efforts have been made to adjust the hydrophobicity of the electrodes that make up the fuel cell by changing the type and mixing ratio of electrode materials such as catalysts and water repellents, or by changing the method of constructing the electrodes from the electrode materials. I'm going. In this case, there are many examples in which the hydrophobicity is adjusted particularly by adjusting the amount of water repellent such as polytetrafluoroethylene and the method of adding it. However, when adjusting the hydrophobicity of the electrode itself using these methods,
Although it is desirable to have strong hydrophobicity from the viewpoint of electrode life, it is necessary to reach the specified peak output voltage soon after the start of operation, so conventional methods have been designed to reduce the electrode life to some extent. Although the hydrophobicity of the electrode is slightly lowered at the cost of production, this results in the problem of shortening the life of the fuel cell.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたもので
あり、長寿命化のために必要な電極の高い疏水性
を維持しつつ、一方では電池の寿命を縮めること
なしに運転開始後から早期のうちに定格出力電圧
が得られるようにした燃料電池の運転方法を提供
することを目的とする。
This invention was made in consideration of the above points, and while maintaining the high hydrophobicity of the electrode necessary for extending the life of the battery, on the other hand, it can be used quickly after the start of operation without shortening the life of the battery. The object of the present invention is to provide a method of operating a fuel cell that allows a rated output voltage to be obtained.

【発明の要点】[Key points of the invention]

上記目的はこの発明により、燃料電池の初期運
転開始に際してまず定格運転ガス圧以下(望まし
くは大気圧以下)の低圧で所定期間放電する予備
放電操作を行うことにより達成される。 一般に燃料電池電極は低い運転ガス圧で連続運
転すると寿命が低下することはよく知られている
が、一方発明者が実験を通じて得た知見によれ
ば、電池の出力電圧がピーク値に到達するまでの
時間は運転ガス圧が低いほど短縮できることが確
認されている。第2図はこの実験結果を示したも
のであり、図中の横軸は放電時間、縦軸は各ガス
圧条件で放電した後に定格ガス圧に戻した際の電
池電圧である。第2図から明らかなように当初の
運転ガス圧が低いほど初期電圧の立ち上がりが早
くなる傾向を示す。この理由は次記によるものと
推定される。すなわち通常の運転状態では反応ガ
ス圧を高めることによつて電極の電解液による漏
れの進行を遅らせているが、運転ガス圧を低める
ことによつて電極反応を行うに必要な電解液の濡
れの進行速度が増すようになるものと考えられ
る。 したがつて前記のように燃料電池の運転開始の
初期期間のみ定格運転ガス圧以下の低ガス圧で予
備放電操作を行い、出力電圧がピーク値に到達し
た後は定格運転ガス圧に戻して運転することよ
り、電極の疏水性、したがつて電極の寿命を損な
うことなく運転開始後速やかに所定の出力電圧が
得られる定格運転に移行することができることに
なる。
According to the present invention, the above object is achieved by first performing a preliminary discharge operation for a predetermined period of time at a low pressure below the rated operating gas pressure (preferably below atmospheric pressure) when starting the initial operation of the fuel cell. Generally, it is well known that the life of fuel cell electrodes decreases if they are continuously operated at low operating gas pressure, but according to the knowledge obtained by the inventor through experiments, the lifespan of fuel cell electrodes decreases when the battery's output voltage reaches its peak value. It has been confirmed that the lower the operating gas pressure, the shorter the time. FIG. 2 shows the results of this experiment, in which the horizontal axis represents the discharge time, and the vertical axis represents the battery voltage when returning to the rated gas pressure after discharging under each gas pressure condition. As is clear from FIG. 2, the lower the initial operating gas pressure, the faster the initial voltage rises. The reason for this is presumed to be as follows. In other words, under normal operating conditions, increasing the reaction gas pressure slows down the progress of leakage due to the electrolyte at the electrode, but lowering the operating gas pressure slows down the wetting of the electrolyte necessary for the electrode reaction. It is thought that the progress speed will increase. Therefore, as mentioned above, the preliminary discharge operation is performed at a low gas pressure below the rated operating gas pressure only during the initial period of the start of operation of the fuel cell, and after the output voltage reaches the peak value, the operation is returned to the rated operating gas pressure. By doing so, it is possible to quickly shift to rated operation in which a predetermined output voltage can be obtained after the start of operation without impairing the hydrophobicity of the electrodes and, therefore, the life of the electrodes.

【発明の実施例】[Embodiments of the invention]

次にこの発明の実施例を説明する。まずテスト
用燃料電池の構成を次に示す。 燃料電極:白金添加のフアーネスブラツク触媒
に疏水剤としてポリテトラフルオロエチレンを20
重量%添加混合したものを電極基材上に薄膜成形
して燃料電極を構成した。 酸化剤電極:白金添加のアセチレンブラツク触
媒にポリエトラフルオロエチレンを30重量%添加
混合したものを電極基材上に薄膜成形して酸化剤
電極を構成した。 電解液:7規定水酸化カリウム水溶液を使用し
た。 次にかかる燃料電池について次記のような条件
で運転を行つた。まず運転ガス圧を大気圧に対し
−500mmH2Oの条件で250時間だけ予備放電操作
を行い、ここで電池の出力電圧がピーク値に達し
たことを確認した上で次に運転ガス圧を定格ガス
圧(500mmH2O・G)に戻して定格運転を行つ
た。 第3図は上記の予備放電操作を行つた場合の出
力電圧の経時変化(実線イ)と、同じ燃料電池を
使用して上記の予備放電操作を行わずに運転開始
当初から定格運転ガス圧を加えて運転した場合の
電圧経時変化(点線ロ)を運転テストの結果から
求めて表したものである。この運転特性図から判
るように、低圧のガス圧で予備放電操作を行うこ
とにより出力電圧がピーク値に到達する時間は予
備放電を行わない場合に比べて大幅に短縮される
ようになる。 一方、燃料電池の寿命に及ぼす影響を付いて確
認するために、発明者は前記実施例の運転方法に
よる燃料電池と次記の燃料電池とを長時間連続運
転して両者の寿命を対比するテストを行つたので
この結果を第4図に示す。すなわち第4図におい
て特性線ハは第3図における特性線イに対応する
もので、前記のように高疏水性電極で構成した燃
料電池をに付いて低ガス圧による予備放電操作を
行つた場合の燃料電池の電圧経時変化特性を示
す。これに対し特性線ニは、あらかじめ酸化剤電
極への撥水剤添加量を減量調節した低疏水性電極
で燃料電池を構成し、当初から定格ガス圧で運転
する従来の運転条件で運転開始後約250時間で出
力電圧がピーク値に達するようにした燃料電池の
電圧経時変化特性を示す。この図からも明らかな
ように、この発明の運転方法では電池の寿命低下
に及ぼす影響は認められず、あらかじめ低疏水性
に調節した電極を使用して初期電圧の立ち上がり
を早めるようにした方式よりも、むしろ高疏水性
の電極を使用して低ガス圧の予備放電操作を行う
方式の方が長寿命となる良好な結果が得られた。
Next, embodiments of this invention will be described. First, the configuration of the test fuel cell is shown below. Fuel electrode: Platinum-added furnace black catalyst with polytetrafluoroethylene as a hydrophobic agent.
A fuel electrode was constructed by forming a thin film on an electrode base material by adding and mixing the mixture in a weight percent. Oxidizer electrode: An oxidizer electrode was constructed by forming a thin film of a mixture of platinum-added acetylene black catalyst and polyetrafluoroethylene in an amount of 30% by weight on an electrode base material. Electrolyte: 7N potassium hydroxide aqueous solution was used. Next, the fuel cell was operated under the following conditions. First, perform a preliminary discharge operation for 250 hours with the operating gas pressure at -500 mmH 2 O relative to atmospheric pressure. After confirming that the battery output voltage has reached its peak value, the operating gas pressure is then rated. The gas pressure was returned to (500mmH 2 O・G) and rated operation was performed. Figure 3 shows the change in output voltage over time (solid line A) when the above pre-discharge operation is performed, and the rated operating gas pressure from the beginning of operation using the same fuel cell without performing the above-mentioned pre-discharge operation. In addition, the change in voltage over time during operation (dotted line B) is calculated from the results of the operation test and is shown. As can be seen from this operating characteristic diagram, by performing the pre-discharge operation at a low gas pressure, the time for the output voltage to reach its peak value is significantly shortened compared to the case where no pre-discharge is performed. On the other hand, in order to confirm the influence on the lifespan of the fuel cell, the inventor conducted a test to compare the lifespan of the fuel cell by operating the fuel cell according to the above embodiment and the following fuel cell continuously for a long time. The results are shown in Figure 4. In other words, the characteristic line C in Fig. 4 corresponds to the characteristic line A in Fig. 3, and when a pre-discharge operation using a low gas pressure is performed on a fuel cell constructed with highly hydrophobic electrodes as described above. Figure 2 shows the voltage change characteristics of a fuel cell over time. On the other hand, characteristic line 2 shows that after the fuel cell is configured with a low hydrophobic electrode in which the amount of water repellent added to the oxidizer electrode has been adjusted to a reduced amount, and operation is started under the conventional operating conditions of operating at the rated gas pressure from the beginning. This figure shows the voltage change characteristics over time of a fuel cell whose output voltage reaches its peak value in about 250 hours. As is clear from this figure, the operating method of this invention has no effect on shortening battery life, and is superior to the method that uses electrodes that have been adjusted to have low hydrophobicity in advance to accelerate the initial voltage rise. However, a method in which a highly hydrophobic electrode was used and a pre-discharge operation was performed at a low gas pressure yielded better results with a longer life.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、燃料電池
の運転開始に際し、定格運転への移行に先立ち少
なくとも定格運転ガス圧を下回る圧力で所定期間
放電する予備放電操作を行うようにしたことによ
り、あらかじめ電極に与えた高疏水性を維持しつ
つ、電極寿命を損なうことなしに運転開始から出
力電圧がピーク値に到達するまでの時間を従来の
運転方法に比べて大幅のち短縮でき、その実用的
効果は極めて大である。
As described above, according to the present invention, when starting the operation of the fuel cell, a preliminary discharge operation is performed in which discharge is performed for a predetermined period at least at a pressure lower than the rated operating gas pressure before shifting to rated operation. While maintaining the high hydrophobicity imparted to the electrode, the time from the start of operation until the output voltage reaches its peak value can be significantly shortened compared to conventional operation methods without impairing the electrode life, and its practical effects is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の連続運転による出力電圧の
一般的な経時変化を表す特性図、第2図は電池電
圧がピーク値に到達するまでの時間と運転ガス圧
との関係を表した特性図、第3図はこの発明の実
施例による電池電圧の経時変化と予備放電操作を
行わない場合とを対比して表した電池電圧の経時
変化特性図、第4図はこの発明の実施例による運
転方法と低疏水性電極で構成した燃料電池の従来
運転方法による電池寿命を対比して表した連続運
転による電圧の経時変化特性図である。図におい
て、 イ,ハ:この発明の実施例により得られた電池
の出力特性、ロ,ニ:従来の運転方法による電池
の出力特性。
Figure 1 is a characteristic diagram showing the general change in output voltage over time due to continuous operation of a fuel cell, and Figure 2 is a characteristic diagram showing the relationship between the time it takes for the cell voltage to reach its peak value and the operating gas pressure. , FIG. 3 is a characteristic diagram of battery voltage change over time comparing the battery voltage change over time according to the embodiment of the present invention and the case where no pre-discharge operation is performed, and FIG. 4 is a graph showing the operation according to the embodiment of the present invention. FIG. 3 is a characteristic diagram of voltage change over time due to continuous operation, comparing the battery life according to the method and the conventional operation method of a fuel cell configured with a low hydrophobic electrode. In the figure, A and C: Output characteristics of the battery obtained by the embodiment of the present invention, B and D: Output characteristics of the battery obtained by the conventional operating method.

Claims (1)

【特許請求の範囲】[Claims] 1 電解液層を挟んで対向する燃料極と酸化剤極
とを有し、各電極に燃料、酸化剤の反応ガスを供
給して発電を行う燃料電池の運転方法であつて、
燃料電池の運転開始に際し、定格運転への移行に
先立ち少なくとも定格運転ガス圧を下回る圧力で
所定期間放電する予備放電操作を行うことを特徴
とする燃料電池の運転方法。
1. A method of operating a fuel cell, which has a fuel electrode and an oxidizer electrode facing each other with an electrolyte layer in between, and generates power by supplying fuel and oxidizer reaction gas to each electrode,
1. A method of operating a fuel cell, which comprises performing a preliminary discharge operation for a predetermined period of time at least at a pressure lower than the rated operating gas pressure before transitioning to rated operation when starting the operation of the fuel cell.
JP60201659A 1985-09-13 1985-09-13 Method for operating fuel battery Granted JPS6264069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201659A JPS6264069A (en) 1985-09-13 1985-09-13 Method for operating fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201659A JPS6264069A (en) 1985-09-13 1985-09-13 Method for operating fuel battery

Publications (2)

Publication Number Publication Date
JPS6264069A JPS6264069A (en) 1987-03-20
JPH0325903B2 true JPH0325903B2 (en) 1991-04-09

Family

ID=16444762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201659A Granted JPS6264069A (en) 1985-09-13 1985-09-13 Method for operating fuel battery

Country Status (1)

Country Link
JP (1) JPS6264069A (en)

Also Published As

Publication number Publication date
JPS6264069A (en) 1987-03-20

Similar Documents

Publication Publication Date Title
CN112557920A (en) Method for rapidly evaluating stability of high-voltage lithium ion battery system
WO2006077461A2 (en) Fuel cell systems and control methods
JPH0325903B2 (en)
JPS61225775A (en) Operation of fuel cell
JPH0622144B2 (en) Fuel cell
JPS62278765A (en) Operating method for fuel cell
JPS61225776A (en) Operation of fuel cell
JPH01264172A (en) Manufacture of organic electrolyte battery
JPS61156636A (en) Fuel cell hydrogen electrode and its manufacture
JPS61118971A (en) Fuel cell operation method
US3382104A (en) Method of heating a fuel cell
JPH07183032A (en) Electrolytic manganese dioxide, and its manufacture and application
JPH05335030A (en) Method for enhancing performance of fuel cell
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JPH04162353A (en) Seal alkaline secondary battery
JPH1186890A (en) Operating method for fused carbonate fuel cell
JP5256630B2 (en) Operation method of fuel cell
JP2861057B2 (en) Alkaline secondary battery
JPS6182674A (en) Nonaqueous solvent battery
JPH028419B2 (en)
JPS59154775A (en) Control method of fuel cell power generating device
JP2021128868A (en) Fuel cell aging method
JPH0471168A (en) Fuel cell power generation plant
JPH09293517A (en) Manufacture of electrode catalyst layer for phosphoric acid type fuel cell
JPS61118972A (en) Fuel cell starting method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term