JPH07183032A - Electrolytic manganese dioxide, and its manufacture and application - Google Patents

Electrolytic manganese dioxide, and its manufacture and application

Info

Publication number
JPH07183032A
JPH07183032A JP5302655A JP30265593A JPH07183032A JP H07183032 A JPH07183032 A JP H07183032A JP 5302655 A JP5302655 A JP 5302655A JP 30265593 A JP30265593 A JP 30265593A JP H07183032 A JPH07183032 A JP H07183032A
Authority
JP
Japan
Prior art keywords
manganese dioxide
electrolytic manganese
surface potential
electrolytic
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5302655A
Other languages
Japanese (ja)
Other versions
JP2806233B2 (en
Inventor
Motoaki Sato
元昭 佐藤
Seiichi Yokoyama
清一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17634829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07183032(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JPH07183032A publication Critical patent/JPH07183032A/en
Application granted granted Critical
Publication of JP2806233B2 publication Critical patent/JP2806233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent an oxidation reduction reaction from occurring between electrolytic manganese dioxide and conductive carbon in a positive mix for the prevention of gassing so as to provide improved preservation of battery performance and an extended discharge duration time by setting low surface potential. CONSTITUTION:Electrolytic manganese dioxide is manufactured which is characterized in that its surface potential is 150 to 240mV (vs. Hg/HgO (40wt.% KOH)). In a process subsequent to electrolysis, the surface potential is adjusted using a wet method employing a reducing agent, to manufacture the electrolytic manganese dioxide. In another method for manufacturing the electrolytic manganese dioxide, the surface potential is adjusted by manufacture through electrolysis using an electrolyte in which the molar ratio of manganese to sulfuric acid is 1.5 to 100. Further, the electrolytic manganese dioxide is used as positive active material to manufacture a manganese dry battery or alkaline manganese dry battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マンガン乾電池または
アルカリマンガン乾電池の正極活物質として使用される
電解二酸化マンガン及びその製造方法並びにその用途に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electrolytic manganese dioxide used as a positive electrode active material of a manganese dry battery or an alkali manganese dry battery, a method for producing the same, and its use.

【0002】[0002]

【従来の技術】近年、乾電池の水銀ゼロ使用に伴う電池
内部抵抗の増加のため、各電池構成材料に品質改善に求
められている。
2. Description of the Related Art In recent years, due to an increase in the internal resistance of batteries due to the use of zero mercury in dry batteries, it has been required to improve the quality of each battery constituent material.

【0003】特に、正極合剤として使用されている二酸
化マンガン、又は、導電性カーボン(アセチレンブラッ
ク、または、グラファイト)の品質改善が強く要望され
ている。
In particular, there is a strong demand for quality improvement of manganese dioxide or conductive carbon (acetylene black or graphite) used as a positive electrode mixture.

【0004】導電剤として使用されているアセチレンブ
ラックは正極合剤の抵抗低減のため、従来よりもさらに
微粉化(約4000オングストローム→約400オング
ストローム)したものが使用されるようになった。
Acetylene black, which is used as a conductive agent, has become finer than before (about 4000 angstroms → about 400 angstroms) in order to reduce the resistance of the positive electrode mixture.

【0005】しかしながら、これに伴い、電池の保存性
能の低下(放電性能低下、液漏れ)が問題になってき
た。
However, along with this, deterioration of the storage performance of the battery (reduction of discharge performance, liquid leakage) has become a problem.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、マン
ガン乾電池、または、アルカリマンガン乾電池の保存性
能を改善する、例えば、放電性能低下及び液漏れを改善
する電解二酸化マンガン及びその製造方法を提供するこ
とにあり、又、その電解二酸化マンガンを正極活物質と
して使用するマンガン乾電池またはアルカリマンガン乾
電池をも提供する。
SUMMARY OF THE INVENTION An object of the present invention is to provide electrolytic manganese dioxide which improves the storage performance of a manganese dry battery or an alkaline manganese dry battery, for example, reduces discharge performance and liquid leakage, and a method for producing the same. In addition, a manganese dry battery or an alkaline manganese dry battery using the electrolytic manganese dioxide as a positive electrode active material is also provided.

【0007】[0007]

【課題を解決するための手段】本発明者らは、電池の保
存性能の低下防止について鋭意検討した結果、電池の正
極に用いる電解二酸化マンガンの表面電位を150〜2
40mV(vs.Hg/HgO(40wt%KOH))
とすることにより、電池の保存性能が改善できることを
見出だし、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive investigations by the present inventors to prevent the deterioration of storage performance of a battery, the surface potential of electrolytic manganese dioxide used for the positive electrode of the battery is 150 to 2
40 mV (vs. Hg / HgO (40 wt% KOH))
It was found that the storage performance of the battery can be improved by the above, and the present invention has been completed.

【0008】本発明について、以下にさらに詳細に説明
する。
The present invention will be described in more detail below.

【0009】[0009]

【作用】マンガン乾電池、または、アルカリマンガン乾
電池の保存劣化(放電性能低下、液漏れ)の原因は、正
極合剤中の電解二酸化マンガンと導電性カーボン(アセ
チレンブラック、または、グラファイト)が酸化還元反
応することによる。
[Function] The cause of storage deterioration (discharging performance deterioration, liquid leakage) of manganese dry batteries or alkaline manganese dry batteries is the redox reaction between electrolytic manganese dioxide and conductive carbon (acetylene black or graphite) in the positive electrode mixture. By doing.

【0010】即ち、酸化還元反応により、電解二酸化マ
ンガンが還元され酸化度が低下して、放電性能が低下す
ると同時に、導電性カーボンが酸化されてCO2ガスの
発生が起こり、このガス発生による電池の膨脹により液
漏れが起こる。
That is, due to the redox reaction, electrolytic manganese dioxide is reduced and the degree of oxidation is lowered, so that the discharge performance is lowered, and at the same time, the conductive carbon is oxidized to generate CO 2 gas. Expansion causes liquid leakage.

【0011】この様な現象に着目し、CO2ガス発生量
と電解二酸化マンガンの表面電位との関係について検討
を行った結果、電解二酸化マンガンの表面電位が高いほ
どCO2ガス発生量が多く、表面電位が低いほどCO2
ス発生量が少ないという相関性があり、電解二酸化マン
ガンの表面電位が240mV(vs.Hg/HgO(4
0wt%KOH))以下の場合、実質的に、CO2ガス
の発生量が無視しうることを見出だした。
Focusing on such a phenomenon, the relationship between the amount of CO 2 gas generated and the surface potential of electrolytic manganese dioxide was examined. As a result, the higher the surface potential of electrolytic manganese dioxide, the greater the amount of CO 2 gas generated. There is a correlation that the lower the surface potential, the smaller the amount of CO 2 gas generated, and the surface potential of electrolytic manganese dioxide is 240 mV (vs. Hg / HgO (4
It has been found that the amount of CO 2 gas generated is substantially negligible in the case of 0 wt% KOH)) or less.

【0012】一方、電解二酸化マンガンの表面電位は、
放電容量の尺度の一つである酸化度と関係があり、電位
が低すぎると放電性能も低下する傾向にある。実質的
に、放電性能を低下させない電解二酸化マンガンの表面
電位の下限は、150mV(vs.Hg/HgO(40
wt%KOH))である。
On the other hand, the surface potential of electrolytic manganese dioxide is
It is related to the degree of oxidation, which is one of the measures of discharge capacity, and if the potential is too low, the discharge performance tends to decrease. The lower limit of the surface potential of electrolytic manganese dioxide that does not substantially reduce the discharge performance is 150 mV (vs. Hg / HgO (40
wt% KOH)).

【0013】このような理由から、放電性能の低下を伴
わずに保存劣化を防止する電解二酸化マンガンの表面電
位の範囲は、150〜240mV(vs.Hg/HgO
(40wt%KOH))の範囲であり、さらに180〜
230mV(vs.Hg/HgO(40wt%KO
H))の範囲が特に好ましい。
For these reasons, the range of the surface potential of electrolytic manganese dioxide for preventing storage deterioration without deterioration of discharge performance is 150 to 240 mV (vs. Hg / HgO).
(40 wt% KOH)), and 180 to
230 mV (vs. Hg / HgO (40 wt% KO
The range H)) is particularly preferred.

【0014】ところが、通常の電解二酸化マンガンの表
面電位の範囲は、240〜270mV(vs.Hg/H
gO(40wt%KOH))であるため、表面電位を低
下させる必要がある。
However, the range of the surface potential of the usual electrolytic manganese dioxide is 240 to 270 mV (vs.Hg / H).
Since it is gO (40 wt% KOH), it is necessary to lower the surface potential.

【0015】本発明者らは、この様な事情に鑑み、電解
二酸化マンガンの表面電位を低下させる方法についてさ
らに詳細に検討を行った結果、電解により電解二酸化マ
ンガンを得た後の工程で、マンガン塩水溶液、亜硫酸
水、OH基を有する有機化合物、CHO基を有する有機
化合物、COOH基を有する有機化合物のうち1種類、
または、複数の物質で湿式処理することにより、上記課
題を解決できることを見出だした。
In view of such circumstances, the present inventors have conducted a more detailed study on a method of lowering the surface potential of electrolytic manganese dioxide, and as a result, have found that manganese dioxide is obtained in the step after obtaining electrolytic manganese dioxide by electrolysis. One of a salt solution, a sulfite water, an organic compound having an OH group, an organic compound having a CHO group, and an organic compound having a COOH group,
Alternatively, they have found that the above problems can be solved by performing wet treatment with a plurality of substances.

【0016】OH基を有する有機化合物としては、エチ
ルアルコールなどのアルコール類、CHO基を有する有
機化合物としては、アセトアルデヒドなどのアルデヒド
類、COOH基を有する有機化合物としてはシュウ酸な
どの有機酸類などがあげられ、また、多糖類のようにこ
れらの官能基を複数有しているものであっても良い。
The organic compound having an OH group includes alcohols such as ethyl alcohol, the organic compound having a CHO group includes aldehydes such as acetaldehyde, and the organic compound having a COOH group includes organic acids such as oxalic acid. Further, it may be one having a plurality of these functional groups such as polysaccharides.

【0017】これら以外の還元剤、例えばホウ化水素ナ
トリウムの様な強い還元剤を使用すると、表面電位のみ
ならず電解二酸化マンガンのバルクの酸化度も低下し
て、放電性能が劣化するため好ましくない。
The use of a reducing agent other than these, for example, a strong reducing agent such as sodium borohydride, is not preferable because not only the surface potential but also the degree of oxidation of the bulk of electrolytic manganese dioxide is lowered and the discharge performance is deteriorated. .

【0018】また、一般に、二酸化マンガンは加熱処理
により酸化度の低下を伴わずに電位が低下することが知
られているが、この場合、放電性能に重要な電解二酸化
マンガンの結晶水、吸着水が失われるため十分な放電特
性を示さない。
Further, it is generally known that manganese dioxide lowers the potential by heat treatment without lowering the degree of oxidation. In this case, crystal water of electrolytic manganese dioxide, which is important for discharge performance, and adsorbed water are important. Therefore, it does not show sufficient discharge characteristics.

【0019】同様な理由で、乾式処理(還元性ガスによ
る方法)でも十分な特性が得られていない。
For the same reason, sufficient characteristics have not been obtained even by the dry process (method using a reducing gas).

【0020】更に、本発明者らは、別の電解二酸化マン
ガンの表面電位を低下させる方法として、電解二酸化マ
ンガンの電解製造工程において電解液の(マンガン/硫
酸)のモル比を1.5〜100に調製すれば電解二酸化
マンガンの表面電位を低下させることが可能であること
を見出だした。
Further, as another method for lowering the surface potential of electrolytic manganese dioxide, the present inventors set the molar ratio (manganese / sulfuric acid) of the electrolytic solution to 1.5 to 100 in the electrolytic production process of electrolytic manganese dioxide. It was found that it is possible to lower the surface potential of electrolytic manganese dioxide if prepared.

【0021】一般の電解二酸化マンガンの製造条件は、
次の表1のとうりである。
General electrolytic manganese dioxide production conditions are as follows:
This is the case in Table 1 below.

【0022】[0022]

【表1】 [Table 1]

【0023】本発明者等は、この電解液の(マンガン/
硫酸)のモル比に注目し、電解液の(マンガン/硫酸)
モル比を高くする(1.5〜100)ことにより、表面
電位の低い二酸化マンガンを製造できることを見出だし
た。(通常の電解二酸化マンガン製造における電解液の
(マンガン/硫酸)のモル比は、一般に0.5〜1.5
程度である。)この電解時における電流密度は50〜1
00A/dm2の範囲が好ましく、電解温度は90〜1
00℃の範囲が好ましい。
The inventors of the present invention have found that the electrolyte solution (manganese /
Paying attention to the molar ratio of (sulfuric acid), (manganese / sulfuric acid)
It has been found that manganese dioxide having a low surface potential can be produced by increasing the molar ratio (1.5 to 100). (The molar ratio of (manganese / sulfuric acid) of the electrolytic solution in the usual electrolytic manganese dioxide production is generally 0.5 to 1.5.
It is a degree. ) The current density during this electrolysis is 50 to 1
The range of 00A / dm 2 is preferable, and the electrolysis temperature is 90 to 1
The range of 00 ° C is preferred.

【0024】以下の実施例により本発明を具体的に示す
が、この実施例により本発明は何等限定されるものでは
ない。
The present invention is specifically illustrated by the following examples, but the present invention is not limited to these examples.

【0025】[0025]

【実施例】【Example】

実施例1 常法の電解で得られた電解二酸化マンガンのブロック1
00kgを200リットルの水に浸漬し、MnO2重量
に対しMn重量が1wt%(1kg)になるように硫酸
マンガンを添加した。更に、95℃、24時間、加熱処
理を施した後、電解二酸化マンガンに常法の製品処理を
施して表面電位の低い(220mVvs.Hg/HgO
(40wt%KOH))電解二酸化マンガンを得た。ま
た、この二酸化マンガンを正極活物質として図1に示す
マンガン乾電池を試作した。この乾電池を45℃で1ケ
月間放置し、放置後の放電持続時間を測定した結果は、
表1に示すとおりであり、後で示す比較例の電解二酸化
マンガンよりも放電持続時間が12%程度長くなった。
Example 1 Block 1 of electrolytic manganese dioxide obtained by conventional electrolysis
00 kg was immersed in 200 liters of water, and manganese sulfate was added so that the weight of Mn was 1 wt% (1 kg) with respect to the weight of MnO 2 . Further, after heat treatment at 95 ° C. for 24 hours, electrolytic manganese dioxide is subjected to a conventional product treatment to obtain a low surface potential (220 mV vs. Hg / HgO).
(40 wt% KOH) Electrolytic manganese dioxide was obtained. Further, a manganese dry battery shown in FIG. 1 was experimentally manufactured using this manganese dioxide as a positive electrode active material. The dry battery was left at 45 ° C for 1 month, and the discharge duration after the measurement was measured.
As shown in Table 1, the discharge duration was about 12% longer than that of the electrolytic manganese dioxide of Comparative Example described later.

【0026】[0026]

【表2】 [Table 2]

【0027】なお、正極活物質に用いた二酸化マンガン
とアセチレンブラックの配合重量比は6:1とし、電池
内の正極活物質の重量を一定とした。
The compounding weight ratio of manganese dioxide and acetylene black used for the positive electrode active material was 6: 1 and the weight of the positive electrode active material in the battery was constant.

【0028】実施例2 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しMn重量が0.5w
t%(500g)になるように硫酸マンガンを添加し
た。更に、60℃、1時間、加熱処理を施した後、電解
二酸化マンガンに常法の製品処理を施して表面電位の低
い(200mV vs.Hg/HgO(40wt%KO
H))電解二酸化マンガンを得た。
Example 2 A block of electrolytic manganese dioxide obtained by conventional electrolysis was pulverized to about 20 μm to obtain 100 kg of powdered electrolytic manganese dioxide. To this, 200 liters of water was added to make a slurry, and the weight of Mn was 0.5 w with respect to the weight of MnO 2.
Manganese sulfate was added so that t% (500 g) was obtained. Further, after heat treatment at 60 ° C. for 1 hour, electrolytic manganese dioxide is subjected to a conventional product treatment to obtain a low surface potential (200 mV vs. Hg / HgO (40 wt% KO
H)) Electrolytic manganese dioxide was obtained.

【0029】また、実施例1と同様な方法により電池試
験を行った。
A battery test was conducted in the same manner as in Example 1.

【0030】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が9%程度長
くなった。
As shown in Table 2, the discharge duration was about 9% longer than that of the electrolytic manganese dioxide of the comparative example shown later.

【0031】実施例3 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しSO2重量が0.5w
t%(500g)になるように亜硫酸水を添加した。更
に、60℃、1時間、加熱処理を施した後、電解二酸化
マンガンに常法の製品処理を施して表面電位の低い(2
00mVvs.Hg/HgO(40wt%KOH))電
解二酸化マンガンを得た。
Example 3 A block of electrolytic manganese dioxide obtained by conventional electrolysis was ground to about 20 μm to obtain 100 kg of powdered electrolytic manganese dioxide. To this, 200 liters of water was added to make a slurry, and the weight of SO 2 was 0.5 w with respect to the weight of MnO 2.
Sulfurous acid water was added so that t% (500 g) was obtained. Further, after heat treatment at 60 ° C. for 1 hour, electrolytic manganese dioxide is subjected to a conventional product treatment to reduce the surface potential (2
00 mV vs. Hg / HgO (40 wt% KOH)) electrolytic manganese dioxide was obtained.

【0032】また、実施例1と同様な方法により電池試
験を行った。
A battery test was conducted in the same manner as in Example 1.

【0033】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が10%程度
長くなった。
As shown in Table 2, the discharge duration was about 10% longer than that of the electrolytic manganese dioxide of the comparative example shown later.

【0034】実施例4 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しエチルアルコール重
量が2.0wt%(2kg)になるようにエチルアルコ
ールを添加した。
Example 4 A block of electrolytic manganese dioxide obtained by conventional electrolysis was pulverized to about 20 μm to obtain 100 kg of powdered electrolytic manganese dioxide. To this, 200 liters of water was added to form a slurry, and ethyl alcohol was further added so that the weight of ethyl alcohol was 2.0 wt% (2 kg) with respect to the weight of MnO 2 .

【0035】更に、40℃、1時間、加熱処理を施した
後、電解二酸化マンガンに常法の製品処理を施して表面
電位の低い(200mV vs.Hg/HgO(40w
t%KOH))電解二酸化マンガンを得た。
Further, after heat treatment at 40 ° C. for 1 hour, electrolytic manganese dioxide is subjected to a conventional product treatment to obtain a low surface potential (200 mV vs. Hg / HgO (40 w
t% KOH)) electrolytic manganese dioxide was obtained.

【0036】また、実施例1と同様な方法により電池試
験を行った。
A battery test was conducted in the same manner as in Example 1.

【0037】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が8%程度長
くなった。
As shown in Table 2, the discharge duration was about 8% longer than that of the electrolytic manganese dioxide of the comparative example shown later.

【0038】実施例5 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しアセトアルデヒド重
量が0.2wt%(200g)になるようにアセトアル
デヒドを添加した。
Example 5 A block of electrolytic manganese dioxide obtained by a conventional electrolysis was pulverized to about 20 μm to obtain 100 kg of powdery electrolytic manganese dioxide. To this, 200 liters of water was added to form a slurry, and further acetaldehyde was added so that the weight of acetaldehyde was 0.2 wt% (200 g) with respect to the weight of MnO 2 .

【0039】更に、40℃、1時間、加熱処理を施した
後、電解二酸化マンガンに常法の製品処理を施して表面
電位の低い(200mV vs.Hg/HgO(40w
t%KOH))電解二酸化マンガンを得た。
Further, after heat treatment at 40 ° C. for 1 hour, electrolytic manganese dioxide is subjected to a conventional product treatment to obtain a low surface potential (200 mV vs. Hg / HgO (40 w
t% KOH)) electrolytic manganese dioxide was obtained.

【0040】また、実施例1と同様な方法により電池試
験を行った。
A battery test was conducted in the same manner as in Example 1.

【0041】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が11%程度
長くなった。
As shown in Table 2, the discharge duration was about 11% longer than that of the electrolytic manganese dioxide of the comparative example shown later.

【0042】実施例6 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しシュウ酸重量が0.
5wt%(500g)になるようにシュウ酸を添加し
た。
Example 6 A block of electrolytic manganese dioxide obtained by conventional electrolysis was pulverized to about 20 μm to obtain 100 kg of powdered electrolytic manganese dioxide. To this, 200 liters of water was added to form a slurry, and the weight of MnO 2 was 0.1.
Oxalic acid was added to 5 wt% (500 g).

【0043】更に、40℃、1時間、加熱処理を施した
後、電解二酸化マンガンに常法の製品処理を施して表面
電位の低い(200mV vs.Hg/HgO(40w
t%KOH))電解二酸化マンガンを得た。
Further, after heat treatment at 40 ° C. for 1 hour, electrolytic manganese dioxide is subjected to a conventional product treatment to obtain a low surface potential (200 mV vs. Hg / HgO (40 w
t% KOH)) electrolytic manganese dioxide was obtained.

【0044】また、実施例1と同様な方法により電池試
験を行った。
A battery test was conducted in the same manner as in Example 1.

【0045】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が7%程度長
くなった。
As shown in Table 2, the discharge duration was about 7% longer than that of the electrolytic manganese dioxide of the comparative example shown later.

【0046】比較例1 常法の電解で得られた電解二酸化マンガンのブロック1
00kgを200リットルの水に浸漬し、常法の製品処
理を施して表面電位の高い(250mV vs.Hg/
HgO(40wt%KOH))電解二酸化マンガンを得
た。
Comparative Example 1 Block 1 of electrolytic manganese dioxide obtained by conventional electrolysis
00 kg is immersed in 200 liters of water, and the product is processed by a conventional method to obtain a high surface potential (250 mV vs. Hg /
HgO (40 wt% KOH)) electrolytic manganese dioxide was obtained.

【0047】また、実施例1と同様な方法により電池試
験を行った。
A battery test was conducted in the same manner as in Example 1.

【0048】実施例7 (Mn/硫酸)のモル比が5になるように、マンガン濃
度が1.0mol/リットル、硫酸濃度が0.2mol
/リットルである電解液を調製し、この電解液を加温可
能な内容積20リットルの電解槽に張り込んだ。陽極に
チタン板、陰極にカーボン板を使用して、電流密度=6
0A/m2、温度=95±1℃で電解を実施した。
Example 7 Manganese concentration was 1.0 mol / liter and sulfuric acid concentration was 0.2 mol so that the molar ratio (Mn / sulfuric acid) was 5.
An electrolytic solution having a volume of 1 / liter was prepared, and the electrolytic solution was poured into a warmable electrolytic cell having an internal volume of 20 liters. Current density = 6 using titanium plate for anode and carbon plate for cathode
Electrolysis was carried out at 0 A / m 2 and temperature = 95 ± 1 ° C.

【0049】10日間電解した後、剥離し常法の後処理
を行い、得られた二酸化マンガンの表面電位を測定し
た。又、この二酸化マンガンを正極活物質として図1に
示すマンガン乾電池を試作した。この試作したマンガン
乾電池を45℃で1ケ月間放置し、放置後の放電持続時
間を測定した。表面電位および放電持続時間の測定結果
を表3に示す。
After electrolysis for 10 days, it was peeled off and post-treatment was carried out by a conventional method, and the surface potential of the obtained manganese dioxide was measured. Further, a manganese dry battery shown in FIG. 1 was experimentally manufactured using this manganese dioxide as a positive electrode active material. This prototype manganese dry battery was allowed to stand at 45 ° C. for one month, and the discharge duration after standing was measured. Table 3 shows the measurement results of the surface potential and the discharge duration.

【0050】[0050]

【表3】 [Table 3]

【0051】表3に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が9%程度長
くなった。
As shown in Table 3, the discharge duration was about 9% longer than that of the electrolytic manganese dioxide of the comparative example shown later.

【0052】実施例8 (Mn/硫酸)のモル比が2.5になるように、マンガ
ン濃度が0.5mol/リットル、硫酸濃度が0.2m
ol/リットルである電解液を調製し、実施例1と同じ
電解条件で電解を実施した。
Example 8 The manganese concentration was 0.5 mol / liter and the sulfuric acid concentration was 0.2 m so that the molar ratio (Mn / sulfuric acid) was 2.5.
An electrolytic solution of ol / liter was prepared, and electrolysis was performed under the same electrolysis conditions as in Example 1.

【0053】実施例1と同じ方法で表面電位及び放電持
続時間を測定し、その測定結果を表3に示す。
The surface potential and discharge duration were measured by the same method as in Example 1, and the measurement results are shown in Table 3.

【0054】表3に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が10%程度
長くなった。
As shown in Table 3, the discharge duration was about 10% longer than that of the electrolytic manganese dioxide of the comparative example shown later.

【0055】比較例2 (Mn/硫酸)のモル比が1.0になるように、マンガ
ン濃度が0.5mol/リットル、硫酸濃度が0.5m
ol/リットルである電解液を調製し、実施例1と同じ
電解条件で電解を実施した。
Comparative Example 2 The manganese concentration was 0.5 mol / liter and the sulfuric acid concentration was 0.5 m so that the molar ratio (Mn / sulfuric acid) was 1.0.
An electrolytic solution of ol / liter was prepared, and electrolysis was performed under the same electrolysis conditions as in Example 1.

【0056】実施例1と同じ方法で表面電位及び放電持
続時間を測定し、その測定結果を表3に示す。
The surface potential and the discharge duration were measured in the same manner as in Example 1, and the measurement results are shown in Table 3.

【0057】[0057]

【発明の効果】本発明の電解二酸化マンガンをマンガン
乾電池の正極活物質に使用すると、表面電位が低い為、
正極合剤中の電解二酸化マンガンと導電性カーボンとの
間で酸化還元反応がおこらず、ガス発生がおこらない。
このことにより電池性能の保存性が良くなる、即ち放電
持続時間が長くなる。
When the electrolytic manganese dioxide of the present invention is used as the positive electrode active material of a manganese dry battery, the surface potential is low,
No redox reaction occurs between the electrolytic manganese dioxide and the conductive carbon in the positive electrode mixture, and no gas is generated.
This improves the storage stability of the battery performance, that is, increases the discharge duration.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜8及び比較例1〜2の電池性能評価
用乾電池の断面図
FIG. 1 is a cross-sectional view of dry batteries for battery performance evaluation of Examples 1 to 8 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 亜鉛缶(負極) 2 セパレーター 3 底紙 4 正極 5 上紙 6 炭素棒 7 上蓋 8 封口剤 9 正極キャップ 1 Zinc Can (Negative Electrode) 2 Separator 3 Bottom Paper 4 Positive Electrode 5 Upper Paper 6 Carbon Rod 7 Upper Lid 8 Sealant 9 Positive Electrode Cap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】表面電位が150〜240mV(vs.H
g/HgO(40wt%KOH))である事を特徴とす
る電解二酸化マンガン。
1. A surface potential of 150 to 240 mV (vs.H)
Electrolytic manganese dioxide characterized by being g / HgO (40 wt% KOH).
【請求項2】請求項1に記載の電解二酸化マンガンを製
造する方法において、電解後の工程で、下記A群に記載
の物質から選ばれる1つ、または複数の物質を用いて、
湿式法で表面電位を調整することを特徴とする請求項1
に記載の電解二酸化マンガンの製造方法。 A群 マンガン塩水溶液、亜硫酸水、次の群の官能基(OH
基、CHO基及びCOOH基)の内少なくとも1つの官
能基を有する有する有機化合物
2. The method for producing electrolytic manganese dioxide according to claim 1, wherein in the step after electrolysis, one or more substances selected from the substances listed in the following group A are used:
The surface potential is adjusted by a wet method.
The method for producing electrolytic manganese dioxide according to 1. Group A Manganese salt aqueous solution, sulfite water, functional group (OH
Group, CHO group and COOH group) having at least one functional group
【請求項3】請求項1に記載の電解二酸化マンガンを製
造する方法において、電解液の(マンガン/硫酸)のモ
ル比が1.5〜100の電解液を用いて電解製造するこ
とを特徴とする請求項1に記載の電解二酸化マンガンの
製造方法。
3. The method for producing electrolytic manganese dioxide according to claim 1, wherein the electrolytic production is performed using an electrolytic solution having a (manganese / sulfuric acid) molar ratio of 1.5 to 100. The method for producing electrolytic manganese dioxide according to claim 1.
【請求項4】請求項1に記載の電解二酸化マンガンを正
極活物質として使用するマンガン乾電池またはアルカリ
マンガン乾電池。
4. A manganese dry battery or an alkaline manganese dry battery using the electrolytic manganese dioxide according to claim 1 as a positive electrode active material.
JP5302655A 1993-11-10 1993-12-02 Electrolytic manganese dioxide and method for producing the same Expired - Fee Related JP2806233B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5-281133 1993-11-10
JP28113393 1993-11-10

Publications (2)

Publication Number Publication Date
JPH07183032A true JPH07183032A (en) 1995-07-21
JP2806233B2 JP2806233B2 (en) 1998-09-30

Family

ID=17634829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5302655A Expired - Fee Related JP2806233B2 (en) 1993-11-10 1993-12-02 Electrolytic manganese dioxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP2806233B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067689A1 (en) * 2002-02-07 2003-08-14 Matsushita Electric Industrial Co., Ltd. Alkali cell
WO2004034490A1 (en) * 2002-10-11 2004-04-22 Mitsui Mining & Smelting Co., Ltd. Positive plate active material for cell, method for producing electrolytic manganese dioxide, and cell
WO2010038263A1 (en) 2008-10-01 2010-04-08 パナソニック株式会社 Alkaline battery
WO2010044176A1 (en) 2008-10-17 2010-04-22 パナソニック株式会社 Alkali battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067689A1 (en) * 2002-02-07 2003-08-14 Matsushita Electric Industrial Co., Ltd. Alkali cell
EP1473788A1 (en) * 2002-02-07 2004-11-03 Matsushita Electric Industrial Co., Ltd. Alkali cell
AU2003244343B2 (en) * 2002-02-07 2007-07-26 Matsushita Electric Industrial Co., Ltd. Alkali cell
EP1473788A4 (en) * 2002-02-07 2008-02-06 Matsushita Electric Ind Co Ltd Alkali cell
WO2004034490A1 (en) * 2002-10-11 2004-04-22 Mitsui Mining & Smelting Co., Ltd. Positive plate active material for cell, method for producing electrolytic manganese dioxide, and cell
WO2010038263A1 (en) 2008-10-01 2010-04-08 パナソニック株式会社 Alkaline battery
US8241780B2 (en) 2008-10-01 2012-08-14 Panasonic Corporation Alkaline battery
WO2010044176A1 (en) 2008-10-17 2010-04-22 パナソニック株式会社 Alkali battery
US7820326B2 (en) 2008-10-17 2010-10-26 Panasonic Corporation Alkaline battery

Also Published As

Publication number Publication date
JP2806233B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JPH11250913A (en) Lead-acid battery
JP2000503467A (en) Zinc anode for electrochemical cells
US20040009400A1 (en) Battery cathode active material, method for producing electrolytic manganese dioxide, and battery
JP3712259B2 (en) Cathode active material for alkaline manganese battery and battery
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
JP3590178B2 (en) Electrolytic manganese dioxide, method for producing the same, and manganese dry battery
US2528891A (en) Primary battery depolarizer and method of making the same
JPH07183032A (en) Electrolytic manganese dioxide, and its manufacture and application
JP2003017077A (en) Sealed alkaline zinc primary battery
JPH1126016A (en) Electrolyte for lithium secondary battery
JP5352173B2 (en) Alkaline battery
CA1069078A (en) Process for producing electrolytic mno2 from molten manganese nitrate hexahydrate
US5071722A (en) Process for preparing cadmium hydroxide, and alkaline secondary battery and method for charging the same
JP3353588B2 (en) Method for producing manganese oxide for battery and battery
JPWO2006040907A1 (en) Alkaline battery
JPH0562683A (en) Alkaline battery
JPH0515034B2 (en)
JP3079577B2 (en) Lithium-containing manganese dioxide, method for producing the same, and use thereof
JPH03503333A (en) Method for producing improved electrolytic manganese dioxide
US2547909A (en) Primary cell
JP3065630B2 (en) Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2737233B2 (en) Zinc alkaline battery
JP2007287672A (en) Alkaline battery
JP4079583B2 (en) Batteries using aluminum as negative electrode
US20070287066A1 (en) Alkaline primary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070724

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees