JP2806233B2 - Electrolytic manganese dioxide and method for producing the same - Google Patents

Electrolytic manganese dioxide and method for producing the same

Info

Publication number
JP2806233B2
JP2806233B2 JP5302655A JP30265593A JP2806233B2 JP 2806233 B2 JP2806233 B2 JP 2806233B2 JP 5302655 A JP5302655 A JP 5302655A JP 30265593 A JP30265593 A JP 30265593A JP 2806233 B2 JP2806233 B2 JP 2806233B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
electrolytic manganese
electrolytic
surface potential
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5302655A
Other languages
Japanese (ja)
Other versions
JPH07183032A (en
Inventor
元昭 佐藤
清一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17634829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2806233(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JPH07183032A publication Critical patent/JPH07183032A/en
Application granted granted Critical
Publication of JP2806233B2 publication Critical patent/JP2806233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マンガン乾電池または
アルカリマンガン乾電池の正極活物質として使用される
電解二酸化マンガン及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic manganese dioxide used as a positive electrode active material of a manganese dry battery or an alkaline manganese dry battery and a method for producing the same.

【0002】[0002]

【従来の技術】近年、乾電池の水銀ゼロ使用に伴う電池
内部抵抗の増加のため、各電池構成材料に品質改善に求
められている。
2. Description of the Related Art In recent years, in order to increase the internal resistance of batteries due to the use of zero mercury in dry batteries, there is a demand for improving the quality of each battery constituent material.

【0003】特に、正極合剤として使用されている二酸
化マンガン、又は、導電性カーボン(アセチレンブラッ
ク、または、グラファイト)の品質改善が強く要望され
ている。
In particular, there is a strong demand for improving the quality of manganese dioxide or conductive carbon (acetylene black or graphite) used as a positive electrode mixture.

【0004】導電剤として使用されているアセチレンブ
ラックは正極合剤の抵抗低減のため、従来よりもさらに
微粉化(約4000オングストローム→約400オング
ストローム)したものが使用されるようになった。
Acetylene black, which is used as a conductive agent, has been used in the form of finer powder (about 4,000 angstroms → about 400 angstroms) in order to reduce the resistance of the positive electrode mixture.

【0005】しかしながら、これに伴い、電池の保存性
能の低下(放電性能低下、液漏れ)が問題になってき
た。
[0005] However, the storage performance of the battery (reduction in discharge performance, liquid leakage) has become a problem.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、マン
ガン乾電池、または、アルカリマンガン乾電池の保存性
能を改善する、例えば、放電性能低下及び液漏れを改善
する電解二酸化マンガン及びその製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrolytic manganese dioxide for improving the storage performance of a manganese dry battery or an alkaline manganese dry battery, for example, for reducing the discharge performance and improving the liquid leakage, and a method for producing the same. Is to do.

【0007】[0007]

【課題を解決するための手段】本発明者らは、電池の保
存性能の低下防止について鋭意検討した結果、電池の正
極に用いる電解二酸化マンガンの表面電位を150〜2
40mV(vs.Hg/HgO(40wt%KOH))
とすることにより、電池の保存性能が改善できることを
見出だし、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on preventing the storage performance of a battery from deteriorating, and as a result, have found that the surface potential of electrolytic manganese dioxide used for the positive electrode of the battery is 150 to 2 times.
40 mV (vs. Hg / HgO (40 wt% KOH))
As a result, it has been found that the storage performance of the battery can be improved, and the present invention has been completed.

【0008】本発明について、以下にさらに詳細に説明
する。
The present invention will be described in more detail below.

【0009】[0009]

【作用】マンガン乾電池、または、アルカリマンガン乾
電池の保存劣化(放電性能低下、液漏れ)の原因は、正
極合剤中の電解二酸化マンガンと導電性カーボン(アセ
チレンブラック、または、グラファイト)が酸化還元反
応することによる。
[Function] The cause of storage deterioration (decrease in discharge performance, liquid leakage) of manganese dry batteries or alkaline manganese dry batteries is due to the oxidation-reduction reaction between electrolytic manganese dioxide in the positive electrode mixture and conductive carbon (acetylene black or graphite). By doing.

【0010】即ち、酸化還元反応により、電解二酸化マ
ンガンが還元され酸化度が低下して、放電性能が低下す
ると同時に、導電性カーボンが酸化されてCO2ガスの
発生が起こり、このガス発生による電池の膨脹により液
漏れが起こる。
That is, by the oxidation-reduction reaction, electrolytic manganese dioxide is reduced, the degree of oxidation is reduced, and the discharge performance is reduced. At the same time, the conductive carbon is oxidized to generate CO 2 gas, and the gas generated by the gas generation Leakage occurs due to the expansion of.

【0011】この様な現象に着目し、CO2ガス発生量
と電解二酸化マンガンの表面電位との関係について検討
を行った結果、電解二酸化マンガンの表面電位が高いほ
どCO2ガス発生量が多く、表面電位が低いほどCO2
ス発生量が少ないという相関性があり、電解二酸化マン
ガンの表面電位が240mV(vs.Hg/HgO(4
0wt%KOH))以下の場合、実質的に、CO2ガス
の発生量が無視しうることを見出だした。
Focusing on such a phenomenon, the relationship between the amount of generated CO 2 gas and the surface potential of electrolytic manganese dioxide was examined. As a result, the higher the surface potential of electrolytic manganese dioxide, the larger the amount of CO 2 gas generated. There is a correlation that the lower the surface potential, the smaller the amount of CO 2 gas generated, and the surface potential of electrolytic manganese dioxide is 240 mV (vs. Hg / HgO (4
0 wt% KOH)), it was found that the amount of generated CO 2 gas was substantially negligible.

【0012】一方、電解二酸化マンガンの表面電位は、
放電容量の尺度の一つである酸化度と関係があり、電位
が低すぎると放電性能も低下する傾向にある。実質的
に、放電性能を低下させない電解二酸化マンガンの表面
電位の下限は、150mV(vs.Hg/HgO(40
wt%KOH))である。
On the other hand, the surface potential of electrolytic manganese dioxide is
It is related to the degree of oxidation, which is one of the measures of the discharge capacity. If the potential is too low, the discharge performance tends to decrease. The lower limit of the surface potential of electrolytic manganese dioxide that does not substantially lower the discharge performance is 150 mV (vs. Hg / HgO (40
wt% KOH)).

【0013】このような理由から、放電性能の低下を伴
わずに保存劣化を防止する電解二酸化マンガンの表面電
位の範囲は、150〜240mV(vs.Hg/HgO
(40wt%KOH))の範囲であり、さらに180〜
230mV(vs.Hg/HgO(40wt%KO
H))の範囲が特に好ましい。
For these reasons, the range of surface potential of electrolytic manganese dioxide for preventing storage deterioration without deterioration of discharge performance is 150 to 240 mV (vs. Hg / HgO).
(40 wt% KOH)), and more
230 mV (vs. Hg / HgO (40 wt% KO)
The range H)) is particularly preferred.

【0014】ところが、通常の電解二酸化マンガンの表
面電位の範囲は、240〜270mV(vs.Hg/H
gO(40wt%KOH))であるため、表面電位を低
下させる必要がある。
However, the surface potential of ordinary electrolytic manganese dioxide ranges from 240 to 270 mV (vs. Hg / H
gO (40 wt% KOH)), it is necessary to lower the surface potential.

【0015】本発明者らは、この様な事情に鑑み、電解
二酸化マンガンの表面電位を低下させる方法についてさ
らに詳細に検討を行った結果、電解により電解二酸化マ
ンガンを得た後の工程で、マンガン塩水溶液、亜硫酸
水、OH基を有する有機化合物、CHO基を有する有機
化合物、COOH基を有する有機化合物のうち1種類、
または、複数の物質で湿式処理することにより、上記課
題を解決できることを見出だした。
In view of such circumstances, the present inventors have studied in more detail a method for lowering the surface potential of electrolytic manganese dioxide. As a result, in the process after obtaining electrolytic manganese dioxide by electrolysis, One of a salt aqueous solution, a sulfite solution, an organic compound having an OH group, an organic compound having a CHO group, and an organic compound having a COOH group,
Alternatively, it has been found that the above problem can be solved by wet treatment with a plurality of substances.

【0016】OH基を有する有機化合物としては、エチ
ルアルコールなどのアルコール類、CHO基を有する有
機化合物としては、アセトアルデヒドなどのアルデヒド
類、COOH基を有する有機化合物としてはシュウ酸な
どの有機酸類などがあげられ、また、多糖類のようにこ
れらの官能基を複数有しているものであっても良い。
Organic compounds having an OH group include alcohols such as ethyl alcohol, organic compounds having a CHO group include aldehydes such as acetaldehyde, and organic compounds having a COOH group include organic acids such as oxalic acid. And those having a plurality of these functional groups, such as polysaccharides.

【0017】これら以外の還元剤、例えばホウ化水素ナ
トリウムの様な強い還元剤を使用すると、表面電位のみ
ならず電解二酸化マンガンのバルクの酸化度も低下し
て、放電性能が劣化するため好ましくない。
If a reducing agent other than these, for example, a strong reducing agent such as sodium borohydride is used, not only the surface potential but also the degree of oxidation of the electrolytic manganese dioxide bulk is reduced, and the discharge performance is deteriorated. .

【0018】また、一般に、二酸化マンガンは加熱処理
により酸化度の低下を伴わずに電位が低下することが知
られているが、この場合、放電性能に重要な電解二酸化
マンガンの結晶水、吸着水が失われるため十分な放電特
性を示さない。
It is generally known that manganese dioxide decreases its potential by heat treatment without lowering the degree of oxidation. In this case, water of crystallization and adsorption of electrolytic manganese dioxide, which is important for discharge performance, are known. , And does not exhibit sufficient discharge characteristics.

【0019】同様な理由で、乾式処理(還元性ガスによ
る方法)でも十分な特性が得られていない。
For the same reason, dry treatment (a method using a reducing gas) does not provide sufficient characteristics.

【0020】更に、本発明者らは、別の電解二酸化マン
ガンの表面電位を低下させる方法として、電解二酸化マ
ンガンの電解製造工程において電解液の(マンガン/硫
酸)のモル比を1.5〜100に調製すれば電解二酸化
マンガンの表面電位を低下させることが可能であること
を見出だした。
Furthermore, the present inventors have proposed another method for lowering the surface potential of electrolytic manganese dioxide, in which the molar ratio of (manganese / sulfuric acid) in the electrolytic solution is 1.5 to 100 in the electrolytic production process of electrolytic manganese dioxide. It has been found that it is possible to lower the surface potential of electrolytic manganese dioxide if prepared.

【0021】一般の電解二酸化マンガンの製造条件は、
次の表1のとうりである。
The production conditions of general electrolytic manganese dioxide are as follows:
This is shown in Table 1 below.

【0022】[0022]

【表1】 [Table 1]

【0023】本発明者等は、この電解液の(マンガン/
硫酸)のモル比に注目し、電解液の(マンガン/硫酸)
モル比を高くする(1.5〜100)ことにより、表面
電位の低い二酸化マンガンを製造できることを見出だし
た。(通常の電解二酸化マンガン製造における電解液の
(マンガン/硫酸)のモル比は、一般に0.5〜1.5
程度である。)この電解時における電流密度は50〜1
00A/ 2の範囲が好ましく、電解温度は90〜10
0℃の範囲が好ましい。
The inventors of the present invention have proposed that the electrolytic solution (manganese /
Paying attention to the molar ratio of (sulfuric acid), (manganese / sulfuric acid)
It has been found that by increasing the molar ratio (1.5 to 100), manganese dioxide having a low surface potential can be produced. (The molar ratio of (manganese / sulfuric acid) of the electrolytic solution in the usual electrolytic manganese dioxide production is generally 0.5 to 1.5.
It is about. ) The current density during this electrolysis is 50-1.
The electrolysis temperature is preferably 90 to 10 A / m 2.
A range of 0 ° C. is preferred.

【0024】以下の実施例により本発明を具体的に示す
が、この実施例により本発明は何等限定されるものでは
ない。
The present invention is specifically illustrated by the following examples, but the present invention is not limited by these examples.

【0025】[0025]

【実施例】【Example】

実施例1 常法の電解で得られた電解二酸化マンガンのブロック1
00kgを200リットルの水に浸漬し、MnO2重量
に対しMn重量が1wt%(1kg)になるように硫酸
マンガンを添加した。更に、95℃、24時間、加熱処
理を施した後、電解二酸化マンガンに常法の製品処理を
施して表面電位の低い(220mVvs.Hg/HgO
(40wt%KOH))電解二酸化マンガンを得た。ま
た、この二酸化マンガンを正極活物質として図1に示す
マンガン乾電池を試作した。この乾電池を45℃で1ケ
月間放置し、放置後の放電持続時間を測定した結果は、
表1に示すとおりであり、後で示す比較例の電解二酸化
マンガンよりも放電持続時間が12%程度長くなった。
Example 1 Block 1 of electrolytic manganese dioxide obtained by conventional electrolysis
00 kg was immersed in 200 liters of water, and manganese sulfate was added so that the Mn weight was 1 wt% (1 kg) with respect to the MnO 2 weight. Further, after subjecting to a heat treatment at 95 ° C. for 24 hours, electrolytic manganese dioxide is subjected to a usual product treatment to have a low surface potential (220 mV vs. Hg / HgO).
(40 wt% KOH)) Electrolytic manganese dioxide was obtained. Further, a manganese dry battery shown in FIG. 1 was experimentally manufactured using this manganese dioxide as a positive electrode active material. This battery was left at 45 ° C. for one month, and the result of measuring the discharge duration after leaving the battery was as follows.
As shown in Table 1, the discharge duration was about 12% longer than that of the electrolytic manganese dioxide of the comparative example described later.

【0026】[0026]

【表2】 [Table 2]

【0027】なお、正極活物質に用いた二酸化マンガン
とアセチレンブラックの配合重量比は6:1とし、電池
内の正極活物質の重量を一定とした。
The mixing ratio of manganese dioxide and acetylene black used for the positive electrode active material was 6: 1, and the weight of the positive electrode active material in the battery was kept constant.

【0028】実施例2 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しMn重量が0.5w
t%(500g)になるように硫酸マンガンを添加し
た。更に、60℃、1時間、加熱処理を施した後、電解
二酸化マンガンに常法の製品処理を施して表面電位の低
い(200mV vs.Hg/HgO(40wt%KO
H))電解二酸化マンガンを得た。
Example 2 A block of electrolytic manganese dioxide obtained by conventional electrolysis was ground to about 20 μm to obtain 100 kg of powdery electrolytic manganese dioxide. To this was added 200 liters of water to form a slurry, further, Mn weight relative to MnO 2 weight 0.5w
Manganese sulphate was added to give a t% (500 g). Further, after a heat treatment at 60 ° C. for 1 hour, electrolytic manganese dioxide is subjected to a usual product treatment to have a low surface potential (200 mV vs. Hg / HgO (40 wt% KO).
H)) Electrolytic manganese dioxide was obtained.

【0029】また、実施例1と同様な方法により電池試
験を行った。
A battery test was performed in the same manner as in Example 1.

【0030】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が9%程度長
くなった。
As shown in Table 2, the discharge duration was about 9% longer than the electrolytic manganese dioxide of the comparative example described later.

【0031】実施例3 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しSO2重量が0.5w
t%(500g)になるように亜硫酸水を添加した。更
に、60℃、1時間、加熱処理を施した後、電解二酸化
マンガンに常法の製品処理を施して表面電位の低い(2
00mVvs.Hg/HgO(40wt%KOH))電
解二酸化マンガンを得た。
Example 3 A block of electrolytic manganese dioxide obtained by conventional electrolysis was ground to about 20 μm to obtain 100 kg of powdery electrolytic manganese dioxide. To this was added 200 liters of water to form a slurry, further, with respect to MnO 2 wt SO 2 weight 0.5w
Sulfuric acid aqueous solution was added so that t% (500 g) was obtained. Furthermore, after performing a heat treatment at 60 ° C. for one hour, electrolytic manganese dioxide is subjected to a normal product treatment to obtain a low surface potential (2
00mVvs. Hg / HgO (40 wt% KOH)) electrolytic manganese dioxide was obtained.

【0032】また、実施例1と同様な方法により電池試
験を行った。
A battery test was performed in the same manner as in Example 1.

【0033】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が10%程度
長くなった。
As shown in Table 2, the discharge duration was about 10% longer than that of the electrolytic manganese dioxide of the comparative example described later.

【0034】実施例4 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しエチルアルコール重
量が2.0wt%(2kg)になるようにエチルアルコ
ールを添加した。
Example 4 A block of electrolytic manganese dioxide obtained by conventional electrolysis was ground to about 20 μm to obtain 100 kg of powdery electrolytic manganese dioxide. 200 liters of water was added thereto to form a slurry, and ethyl alcohol was further added so that the weight of ethyl alcohol was 2.0 wt% (2 kg) based on the weight of MnO 2 .

【0035】更に、40℃、1時間、加熱処理を施した
後、電解二酸化マンガンに常法の製品処理を施して表面
電位の低い(200mV vs.Hg/HgO(40w
t%KOH))電解二酸化マンガンを得た。
Further, after subjecting to a heat treatment at 40 ° C. for one hour, electrolytic manganese dioxide is subjected to a usual product treatment to have a low surface potential (200 mV vs. Hg / HgO (40 watts).
t% KOH)) An electrolytic manganese dioxide was obtained.

【0036】また、実施例1と同様な方法により電池試
験を行った。
A battery test was performed in the same manner as in Example 1.

【0037】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が8%程度長
くなった。
As shown in Table 2, the discharge duration was about 8% longer than the electrolytic manganese dioxide of the comparative example described later.

【0038】実施例5 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しアセトアルデヒド重
量が0.2wt%(200g)になるようにアセトアル
デヒドを添加した。
Example 5 A block of electrolytic manganese dioxide obtained by conventional electrolysis was ground to about 20 μm to obtain 100 kg of powdery electrolytic manganese dioxide. 200 liters of water was added thereto to form a slurry, and acetaldehyde was further added so that the weight of acetaldehyde was 0.2 wt% (200 g) based on the weight of MnO 2 .

【0039】更に、40℃、1時間、加熱処理を施した
後、電解二酸化マンガンに常法の製品処理を施して表面
電位の低い(200mV vs.Hg/HgO(40w
t%KOH))電解二酸化マンガンを得た。
Further, after subjecting to a heat treatment at 40 ° C. for 1 hour, electrolytic manganese dioxide is subjected to a usual product treatment to have a low surface potential (200 mV vs. Hg / HgO (40 W
t% KOH)) An electrolytic manganese dioxide was obtained.

【0040】また、実施例1と同様な方法により電池試
験を行った。
A battery test was performed in the same manner as in Example 1.

【0041】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が11%程度
長くなった。
As shown in Table 2, the discharge duration was about 11% longer than the electrolytic manganese dioxide of the comparative example described later.

【0042】実施例6 常法の電解で得られた電解二酸化マンガンのブロックを
約20μm迄粉砕し、100kgの粉状電解二酸化マン
ガンを得た。これに200リットルの水を加えてスラリ
ーとし、更に、MnO2重量に対しシュウ酸重量が0.
5wt%(500g)になるようにシュウ酸を添加し
た。
Example 6 A block of electrolytic manganese dioxide obtained by conventional electrolysis was ground to about 20 μm to obtain 100 kg of powdery electrolytic manganese dioxide. 200 liters of water was added thereto to form a slurry, and the weight of oxalic acid was 0.1 to the weight of MnO 2 .
Oxalic acid was added so as to be 5 wt% (500 g).

【0043】更に、40℃、1時間、加熱処理を施した
後、電解二酸化マンガンに常法の製品処理を施して表面
電位の低い(200mV vs.Hg/HgO(40w
t%KOH))電解二酸化マンガンを得た。
Further, after subjecting to a heat treatment at 40 ° C. for 1 hour, electrolytic manganese dioxide is subjected to a usual product treatment to have a low surface potential (200 mV vs. Hg / HgO (40 watts).
t% KOH)) An electrolytic manganese dioxide was obtained.

【0044】また、実施例1と同様な方法により電池試
験を行った。
A battery test was performed in the same manner as in Example 1.

【0045】表2に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が7%程度長
くなった。
As shown in Table 2, the discharge duration was about 7% longer than the electrolytic manganese dioxide of the comparative example described later.

【0046】比較例1 常法の電解で得られた電解二酸化マンガンのブロック1
00kgを200リットルの水に浸漬し、常法の製品処
理を施して表面電位の高い(250mV vs.Hg/
HgO(40wt%KOH))電解二酸化マンガンを得
た。
Comparative Example 1 Block 1 of electrolytic manganese dioxide obtained by conventional electrolysis
00 kg is immersed in 200 liters of water, subjected to a usual product treatment, and has a high surface potential (250 mV vs. Hg /
HgO (40 wt% KOH)) electrolytic manganese dioxide was obtained.

【0047】また、実施例1と同様な方法により電池試
験を行った。
A battery test was performed in the same manner as in Example 1.

【0048】実施例7 (Mn/硫酸)のモル比が5になるように、マンガン濃
度が1.0mol/リットル、硫酸濃度が0.2mol
/リットルである電解液を調製し、この電解液を加温可
能な内容積20リットルの電解槽に張り込んだ。陽極に
チタン板、陰極にカーボン板を使用して、電流密度=6
0A/m2、温度=95±1℃で電解を実施した。
Example 7 The manganese concentration was 1.0 mol / liter and the sulfuric acid concentration was 0.2 mol so that the molar ratio of (Mn / sulfuric acid) was 5.
Per liter of an electrolytic solution was prepared, and this electrolytic solution was placed in a 20-liter electrolytic bath capable of heating. Using a titanium plate for the anode and a carbon plate for the cathode, current density = 6
Electrolysis was performed at 0 A / m 2 and at a temperature of 95 ± 1 ° C.

【0049】10日間電解した後、剥離し常法の後処理
を行い、得られた二酸化マンガンの表面電位を測定し
た。又、この二酸化マンガンを正極活物質として図1に
示すマンガン乾電池を試作した。この試作したマンガン
乾電池を45℃で1ケ月間放置し、放置後の放電持続時
間を測定した。表面電位および放電持続時間の測定結果
を表3に示す。
After electrolysis for 10 days, the resultant was peeled off and post-treated by a conventional method, and the surface potential of the obtained manganese dioxide was measured. Further, a manganese dry battery shown in FIG. 1 was experimentally manufactured using this manganese dioxide as a positive electrode active material. The prototype manganese dry battery was allowed to stand at 45 ° C. for one month, and the duration of discharge after the standing was measured. Table 3 shows the measurement results of the surface potential and the discharge duration.

【0050】[0050]

【表3】 [Table 3]

【0051】表3に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が9%程度長
くなった。
As shown in Table 3, the discharge duration was about 9% longer than the electrolytic manganese dioxide of the comparative example described later.

【0052】実施例8 (Mn/硫酸)のモル比が2.5になるように、マンガ
ン濃度が0.5mol/リットル、硫酸濃度が0.2m
ol/リットルである電解液を調製し、実施例1と同じ
電解条件で電解を実施した。
Example 8 The manganese concentration was 0.5 mol / liter and the sulfuric acid concentration was 0.2 m so that the molar ratio of (Mn / sulfuric acid) was 2.5.
ol / liter of an electrolytic solution was prepared, and electrolysis was performed under the same electrolysis conditions as in Example 1.

【0053】実施例1と同じ方法で表面電位及び放電持
続時間を測定し、その測定結果を表3に示す。
The surface potential and the discharge duration were measured in the same manner as in Example 1, and the measurement results are shown in Table 3.

【0054】表3に示されている様に、後で示す比較例
の電解二酸化マンガンよりも放電持続時間が10%程度
長くなった。
As shown in Table 3, the discharge duration was about 10% longer than that of the electrolytic manganese dioxide of the comparative example described later.

【0055】比較例2 (Mn/硫酸)のモル比が1.0になるように、マンガ
ン濃度が0.5mol/リットル、硫酸濃度が0.5m
ol/リットルである電解液を調製し、実施例1と同じ
電解条件で電解を実施した。
Comparative Example 2 The manganese concentration was 0.5 mol / liter and the sulfuric acid concentration was 0.5 m so that the molar ratio of (Mn / sulfuric acid) was 1.0.
ol / liter of an electrolytic solution was prepared, and electrolysis was performed under the same electrolysis conditions as in Example 1.

【0056】実施例1と同じ方法で表面電位及び放電持
続時間を測定し、その測定結果を表3に示す。
The surface potential and the discharge duration were measured in the same manner as in Example 1, and the measurement results are shown in Table 3.

【0057】[0057]

【発明の効果】本発明の電解二酸化マンガンをマンガン
乾電池の正極活物質に使用すると、表面電位が低い為、
正極合剤中の電解二酸化マンガンと導電性カーボンとの
間で酸化還元反応がおこらず、ガス発生がおこらない。
このことにより電池性能の保存性が良くなる、即ち放電
持続時間が長くなる。
When the electrolytic manganese dioxide of the present invention is used as a positive electrode active material of a manganese dry battery, the surface potential is low.
No oxidation-reduction reaction occurs between the electrolytic manganese dioxide in the positive electrode mixture and the conductive carbon, and no gas is generated.
This improves the preservability of battery performance, that is, prolongs the discharge duration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜8及び比較例1〜2の電池性能評価
用乾電池の断面図
FIG. 1 is a cross-sectional view of dry batteries for evaluating battery performance in Examples 1 to 8 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 亜鉛缶(負極) 2 セパレーター 3 底紙 4 正極 5 上紙 6 炭素棒 7 上蓋 8 封口剤 9 正極キャップ DESCRIPTION OF SYMBOLS 1 Zinc can (negative electrode) 2 Separator 3 Bottom paper 4 Positive electrode 5 Top paper 6 Carbon rod 7 Top lid 8 Sealing agent 9 Positive electrode cap

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面電位が150〜240mV(vs.H
g/HgO(40wt%KOH))である事を特徴とす
る電解二酸化マンガン。
A surface potential of 150 to 240 mV (vs. H
g / HgO (40 wt% KOH)).
【請求項2】請求項1に記載の電解二酸化マンガンを製
造する方法において、電解後の工程で、下記A群に記載
の物質から選ばれる1つ、または複数の物質を用いて、
湿式法で表面電位を調整することを特徴とする請求項1
に記載の電解二酸化マンガンの製造方法。 A群 マンガン塩水溶液、亜硫酸水、次の群の官能基(OH
基、CHO基及びCOOH基)の内少なくとも1つの官
能基を有する有機化合物
2. The method for producing electrolytic manganese dioxide according to claim 1, wherein in the step after electrolysis, one or more substances selected from the following substances in Group A are used:
2. The method according to claim 1, wherein the surface potential is adjusted by a wet method.
3. The method for producing electrolytic manganese dioxide according to item 1. Group A Manganese salt aqueous solution, sulfite water, the following group of functional groups (OH
Organic compound having at least one functional group of the following groups:
【請求項3】請求項1に記載の電解二酸化マンガンを製
造する方法において、電解液の(マンガン/硫酸)のモ
ル比が1.5〜100の電解液を用いて電解製造するこ
とを特徴とする請求項1に記載の電解二酸化マンガンの
製造方法。
3. The method for producing electrolytic manganese dioxide according to claim 1, wherein the electrolytic production is carried out using an electrolytic solution having a (manganese / sulfuric acid) molar ratio of 1.5 to 100. The method for producing electrolytic manganese dioxide according to claim 1.
JP5302655A 1993-11-10 1993-12-02 Electrolytic manganese dioxide and method for producing the same Expired - Fee Related JP2806233B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5-281133 1993-11-10
JP28113393 1993-11-10

Publications (2)

Publication Number Publication Date
JPH07183032A JPH07183032A (en) 1995-07-21
JP2806233B2 true JP2806233B2 (en) 1998-09-30

Family

ID=17634829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5302655A Expired - Fee Related JP2806233B2 (en) 1993-11-10 1993-12-02 Electrolytic manganese dioxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP2806233B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873760B2 (en) * 2002-02-07 2007-01-24 松下電器産業株式会社 Alkaline battery
AU2003213400A1 (en) * 2002-10-11 2004-05-04 Mitsui Mining And Smelting Co., Ltd. Positive plate active material for cell, method for producing electrolytic manganese dioxide, and cell
JP5352173B2 (en) 2008-10-01 2013-11-27 パナソニック株式会社 Alkaline battery
US7820326B2 (en) 2008-10-17 2010-10-26 Panasonic Corporation Alkaline battery

Also Published As

Publication number Publication date
JPH07183032A (en) 1995-07-21

Similar Documents

Publication Publication Date Title
CA1227158A (en) Electrochemical reduction of carbon oxides to carboxylic acid
JPH0369145B2 (en)
US20220085387A1 (en) Oxygen catalyst and electrode using said oxygen catalyst
US7407521B2 (en) Process for producing nickel oxyhydroxide by electrolytic oxidation
JP2806233B2 (en) Electrolytic manganese dioxide and method for producing the same
JP3590178B2 (en) Electrolytic manganese dioxide, method for producing the same, and manganese dry battery
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
JPH0418676B2 (en)
JP3712259B2 (en) Cathode active material for alkaline manganese battery and battery
US4091175A (en) Air electrode for electrochemical cells
Jiang et al. Reactive Deposition of Cobalt Electrodes: I. Experimental
US4470894A (en) Nickel electrodes for water electrolyzers
US4048027A (en) Process for producing electrolytic MnO2 from molten manganese nitrate hexahydrate
EP0013415B1 (en) Fabrication of nickel electrodes for alkaline batteries
JP2000058045A (en) Manganese dry battery
US5071722A (en) Process for preparing cadmium hydroxide, and alkaline secondary battery and method for charging the same
AU609636B2 (en) Process for producing improved electrolytic manganese dioxide
JPH07105225B2 (en) Manganese battery
JP2004119167A (en) Positive electrode active material for battery and manufacturing method of electrolyte manganese dioxide as well as battery
Kowal et al. Study by potential-modulated reflectance spectroscopy of the reactivity of ethanol with the passivating layer on Ni and Fe
JPH06150914A (en) Manganese dioxide for lithium battery and manufacture thereof
JP2737233B2 (en) Zinc alkaline battery
JP2707340B2 (en) Manufacturing method of electrolytic manganese dioxide
JP4079583B2 (en) Batteries using aluminum as negative electrode
JPH09245785A (en) Battery and manufacture of manganese oxide for battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070724

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees