JPS58164164A - Electrolyte impregnating method of fuel cell - Google Patents

Electrolyte impregnating method of fuel cell

Info

Publication number
JPS58164164A
JPS58164164A JP57047998A JP4799882A JPS58164164A JP S58164164 A JPS58164164 A JP S58164164A JP 57047998 A JP57047998 A JP 57047998A JP 4799882 A JP4799882 A JP 4799882A JP S58164164 A JPS58164164 A JP S58164164A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode reaction
reaction layer
matrix
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57047998A
Other languages
Japanese (ja)
Inventor
Nobuo Miyoshi
三好 信雄
Hiroyuki Tajima
田島 博之
Masahiro Sakurai
正博 桜井
Atsuo Watanabe
敦夫 渡辺
Tomoyoshi Kamoshita
友義 鴨下
Yoshinori Nishihara
啓徳 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP57047998A priority Critical patent/JPS58164164A/en
Publication of JPS58164164A publication Critical patent/JPS58164164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To familiarize the electrolyte with an electrode reaction layer by performing a preliminary discharge at a low load after impregnating the electrolyte so as to transfer the electrolyte from a matrix layer to the electrode reaction layer in a matrix type fuel cell. CONSTITUTION:After a block cell is heated, a preliminary discharge is performed at a low load, thus the electrolyte being held in a matrix is expanded by heat and transferred to an electrode reaction layer, in addition, water is generated in fine holes of the electrode reaction layer due to the electrochemical reaction in the cell, creating a condition that the electrolyte is apt to move to part of the electrode reaction layer, thereby part of the electrolyte is transferred to the electrode reaction layer so that the electrode reaction layer is familiarized with the electrolyte. By starting a regular operation after feeding the electrolyte which is lacking in the matrix, stable electrical characteristics can be maintained for a long time with the electrolyte not being transferred to the electrode reaction layer.

Description

【発明の詳細な説明】 本発明は電極間に電鱗質保持用マ) IJラックス挾持
してなる単位電池を有するマトリックス型燃料電池の電
解質含浸方法に関する〇 一般一こ、マトリックス型燃料電池は多孔性のアノード
電極とカソード電極との間に電解質を含浸保持するマト
リックスが配置されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolyte impregnation method for a matrix fuel cell having a unit cell formed by sandwiching an IJ lux between electrodes. A matrix impregnated with an electrolyte is disposed between the anode electrode and the cathode electrode.

マトリックス層は、一般暑ζは黴細な細孔を有する多孔
性材料で構成され、その細孔に電解液を保持させる構造
となっている。そこでマトリックス層には電極での電気
化学反応を起こすために必要充分な量の電解液が含浸さ
れている必要がある。
The matrix layer is generally made of a porous material having fine pores, and has a structure in which the electrolyte is held in the pores. Therefore, the matrix layer must be impregnated with a sufficient amount of electrolyte to cause an electrochemical reaction at the electrode.

もしマトリックス層への電解液の含浸量が不充分な場合
には、燃料ガス(例えば水素)あるいは酸化剤(例えば
空気)がマ) +3ックス層を貫通して対極に到達し、
燃料電池の電気的特性の低下をひき起こすのみならず、
燃料ガスと酸化剤が直接混合して爆鳴気を形成し、爆発
する危険性も含んでいる。そこで、燃料電池を電気的特
性の低下なく長時間運転するためζこは、マトリックス
層及び電極反応層ともに円滑な電気化学反応を起こさせ
るための充分な量の電解液を含浸させることが望まれる
If the amount of electrolyte impregnated into the matrix layer is insufficient, fuel gas (e.g. hydrogen) or oxidizer (e.g. air) will penetrate the matrix layer and reach the counter electrode.
This not only causes a decrease in the electrical characteristics of the fuel cell, but also
Direct mixing of fuel gas and oxidizer creates explosive atmosphere, which also includes the risk of explosion. Therefore, in order to operate the fuel cell for a long time without deteriorating its electrical characteristics, it is desirable to impregnate both the matrix layer and the electrode reaction layer with a sufficient amount of electrolyte to cause a smooth electrochemical reaction. .

従来の電解液含浸法としては、マトリックス層及び多孔
性の電極反応層に直接的に電解液を含浸させる方法や、
あらかじめ電解液を金談せた材料でマトリックス層を構
成する方法などが知られているが、これらの方法には次
のような欠点がある。
Conventional electrolyte impregnation methods include methods of directly impregnating a matrix layer and a porous electrode reaction layer with an electrolyte;
There are known methods in which the matrix layer is made of a material that has been coated with an electrolytic solution in advance, but these methods have the following drawbacks.

つオリマトリックス層のみに電解液が含浸され、僧水処
理の施されである電極反応層に充分な電解液が含浸され
ていない状態で運転をした場合、運転中に電解液保持層
であるマドI】ツクス届書こ保持させである電解液が電
極反応層に徐々番こ移動し、その結果マトリックス要務
こ保持させである電解液が不足し、燃料ガスあるいは酸
化剤がマド1)′ツク1層を貫通して対極に到達し、燃
料電池の電気的特性が低下する。そこで燃料電池を本格
運転させる前に、電解液をマトリックス層から多孔性電
極反応層に移動させ、多孔性電極反応順番〔電解液をな
じませておく必要がある。
If only the electrolyte matrix layer is impregnated with electrolyte and the electrode reaction layer, which has been treated with electrolyte, is not sufficiently impregnated with electrolyte, during operation, the electrolyte retaining layer I) The electrolytic solution that holds the matrix gradually moves to the electrode reaction layer, and as a result, the electrolytic solution that holds the matrix becomes insufficient, and the fuel gas or oxidizer flows into the electrode reaction layer. and reaches the counter electrode, deteriorating the electrical characteristics of the fuel cell. Therefore, before full-scale operation of the fuel cell, it is necessary to move the electrolytic solution from the matrix layer to the porous electrode reaction layer and to adjust the porous electrode reaction order [the electrolytic solution].

この発明は、マトリックス量燃料電池にお(i%で、電
解液をマトリックス層から電極反応層−こ移動させ、電
極反応層に電解液をなじませるための方法を提供するこ
とを目的とするもので、電解液を含浸させたのちに低負
荷で予備放電を行な(1、そののちマトリックス層中の
不足した電解液を補給し、燃料電池の電気的特性を長時
間にわたり維持する仁とをIIII黴とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for moving an electrolyte from a matrix layer to an electrode reaction layer in a matrix amount (i%) to blend the electrolyte into the electrode reaction layer. After the electrolyte is impregnated, a preliminary discharge is performed at a low load (1. After that, the insufficient electrolyte in the matrix layer is replenished to maintain the electrical characteristics of the fuel cell for a long time. III mold.

第1図−は、1Gセル積層のブロック電池暑こつ&)で
の実験結果であり、実線は低負荷で予備放電を行なった
後ζこ電解液を含浸し、本格運転を行なった場合の特性
例であり、一点鎖線ははじめから本格運転を行なった場
合の特性例である。低負荷で゛ 予備放電の後に電解液
を含浸し本格運転を行なったブロック電池の方が、長時
間にわたり電気的特性を維持することが出来ることが判
る。
Figure 1 shows the experimental results for a 1G cell stacked block battery.The solid line shows the characteristics when full-scale operation is performed after preliminary discharge at low load and then impregnated with electrolyte. This is an example, and the dashed-dotted line shows an example of the characteristics when full-scale operation is performed from the beginning. It can be seen that block batteries that are impregnated with electrolyte and operated in full operation after preliminary discharge are able to maintain their electrical characteristics for a longer period of time at low loads.

この発明番こよれば、ブロック電池を昇温後、低負荷で
予備放電を行なうことにより、輸トリックス中に保持さ
れである電解液が熱膨張して電解液が電極反応層に移動
し、また電池内での電気化学反応により電極反応層内の
細孔に水が生成され、電極反応層の一部に電解液が移動
しやすい状態になるため、マトリックス届書こ保持させ
である電解液の一部が電極反応層に移動し、電極反応層
が電解液になじむようになる。そこでマトリックス中の
不足した電解液を補給した後に本格運転をすることによ
り、もはや多重の電解液が電極反応層に移動することな
く長時間にわたり安定した電気的   X特性を維持す
ることが可能となる。
According to this invention, by predischarging the block battery at a low load after raising the temperature of the block battery, the electrolyte retained in the transport matrix expands thermally, and the electrolyte moves to the electrode reaction layer. Due to the electrochemical reaction within the battery, water is generated in the pores in the electrode reaction layer, making it easy for the electrolyte to move to a part of the electrode reaction layer. portion moves to the electrode reaction layer, and the electrode reaction layer becomes compatible with the electrolyte. Therefore, by replenishing the insufficient electrolyte in the matrix and then starting full-scale operation, it becomes possible to maintain stable electrical X characteristics for a long time without multiple electrolytes moving to the electrode reaction layer. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した場合と実施しない場合の燃料
電池の出力特性を示す線図である。
FIG. 1 is a diagram showing the output characteristics of a fuel cell with and without implementing the present invention.

Claims (1)

【特許請求の範囲】[Claims] 電極間−こ電解質保持用マ) IJラックス挾持してな
る単電池を有する燃料電池において、マ) IJラック
ス電解質を含浸させたのち、低負荷で電池の予備放電を
行い、マトリックス番こ含浸させた電解質を電極反応層
になじ鵞せたのち番こ、マトリックスに電解質不足分を
補給することを特徴とする燃料電池の電解質含浸方法。
In a fuel cell having a single cell formed by sandwiching IJ Lux between the electrodes, the cell is impregnated with IJ Lux electrolyte, and then pre-discharged at a low load to impregnate the matrix plate. A method for impregnating an electrolyte in a fuel cell, which comprises applying the electrolyte to an electrode reaction layer and then replenishing the electrolyte deficiency in the matrix.
JP57047998A 1982-03-25 1982-03-25 Electrolyte impregnating method of fuel cell Pending JPS58164164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047998A JPS58164164A (en) 1982-03-25 1982-03-25 Electrolyte impregnating method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047998A JPS58164164A (en) 1982-03-25 1982-03-25 Electrolyte impregnating method of fuel cell

Publications (1)

Publication Number Publication Date
JPS58164164A true JPS58164164A (en) 1983-09-29

Family

ID=12790982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047998A Pending JPS58164164A (en) 1982-03-25 1982-03-25 Electrolyte impregnating method of fuel cell

Country Status (1)

Country Link
JP (1) JPS58164164A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225776A (en) * 1985-03-29 1986-10-07 Agency Of Ind Science & Technol Operation of fuel cell
JPS61225775A (en) * 1985-03-29 1986-10-07 Agency Of Ind Science & Technol Operation of fuel cell
JPS62216172A (en) * 1986-03-17 1987-09-22 Toshiba Corp Manufacture of fuel cell
WO2002101860A1 (en) * 2001-06-11 2002-12-19 Honda Giken Kogyo Kabushiki Kaisha Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830739A (en) * 1971-08-19 1973-04-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830739A (en) * 1971-08-19 1973-04-23

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225776A (en) * 1985-03-29 1986-10-07 Agency Of Ind Science & Technol Operation of fuel cell
JPS61225775A (en) * 1985-03-29 1986-10-07 Agency Of Ind Science & Technol Operation of fuel cell
JPS62216172A (en) * 1986-03-17 1987-09-22 Toshiba Corp Manufacture of fuel cell
WO2002101860A1 (en) * 2001-06-11 2002-12-19 Honda Giken Kogyo Kabushiki Kaisha Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
US7494733B2 (en) 2001-06-11 2009-02-24 Honda Giken Kogyo Kabushiki Kaisha Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
KR101484042B1 (en) Manufacturing method for thin metal foam impregnated with lithium as an anode for thermally activated reserve batteries
US3006980A (en) Printed battery
US3635765A (en) Method of making e m f cell
CN105489880B (en) A kind of secondary sode cell of solid-state compound storage sodium anode and preparation method thereof
Elmore et al. Intermediate temperature fuel cells
JPS58164164A (en) Electrolyte impregnating method of fuel cell
US3594236A (en) Method for preparing an air breathing electrode
JPS61277169A (en) Cell structure of molten carbonate type fuel cell
US3573986A (en) Heat activated cell
CN107799854A (en) A kind of high-temperature solid sodium ion air oxygen compound energy-storage battery
EP0063804A3 (en) Liquid fuel cell
US3532546A (en) Nonaqueous liquid ammonia current producing cells using insoluble acid and neutral electrolyte
US3589945A (en) Stacked metal gas-cells
JPS628904B2 (en)
US3650836A (en) Electrochemical cell with at least one gas diffusion electrode
US3376167A (en) Electrical primary cells having indium coating on anode
JPH04296456A (en) Molten carbonate fuel cell and operating method of molten carbonate fuel cell
US3496023A (en) High power density electrochemical method and cell for producing electrical energy
Hamann et al. Simulating Electrochemical Performance of Solid-State Electrolyte Bilayers Characterized by FIB Tomography
JPH061700B2 (en) Composite electrode for fuel cell
JP2658082B2 (en) Molten carbonate fuel cell
JPS58164154A (en) Electrolyte impregnating method of fuel cell
RU1695788C (en) Method of manufacture of nickel-oxide electrode for alkaline cell
JPS58131666A (en) Fused salt type fuel cell
JPS62180966A (en) Impregnation method for liquefied electrolyte in fuel cell