JP2658082B2 - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JP2658082B2
JP2658082B2 JP62269428A JP26942887A JP2658082B2 JP 2658082 B2 JP2658082 B2 JP 2658082B2 JP 62269428 A JP62269428 A JP 62269428A JP 26942887 A JP26942887 A JP 26942887A JP 2658082 B2 JP2658082 B2 JP 2658082B2
Authority
JP
Japan
Prior art keywords
electrode
cell
cathode
electrode material
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62269428A
Other languages
Japanese (ja)
Other versions
JPH01112669A (en
Inventor
実 保坂
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP62269428A priority Critical patent/JP2658082B2/en
Publication of JPH01112669A publication Critical patent/JPH01112669A/en
Application granted granted Critical
Publication of JP2658082B2 publication Critical patent/JP2658082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料の有する化学エネルギーを直接電気エネ
ルギーに変換させるエネルギー部門で用いる燃料電池の
うち、特に、溶融炭酸塩型燃料電池に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention particularly relates to a molten carbonate type fuel cell among fuel cells used in an energy sector in which chemical energy of fuel is directly converted into electric energy. .

[従来の技術] 従来の溶融炭酸塩型燃料電池としては、第3図に示す
如く、電解質として溶融炭酸塩を多孔質物質にしみ込ま
せた電解質板(タイル)1を、カソード2とアノード3
の両電極で両面から挟み、カソード2側へ酸化ガスを供
給すると共にアノード3側へ燃料ガスを供給することに
よりカソード2とアノード3との間で発生する電位差に
より発電が行われるようにしたものを1セルCとし、各
セルCをセパレータ4を介して多層に積層させるように
したものがある。
[Prior Art] As shown in FIG. 3, a conventional molten carbonate fuel cell includes an electrolyte plate (tile) 1 in which molten carbonate is impregnated with a porous material as an electrolyte, a cathode 2 and an anode 3.
Power generation is performed by a potential difference generated between the cathode 2 and the anode 3 by supplying an oxidizing gas to the cathode 2 and supplying a fuel gas to the anode 3 by sandwiching the two electrodes between the two surfaces. Is a single cell C, and each cell C is laminated in multiple layers with a separator 4 interposed therebetween.

従来の燃料電池では、通常、第3図に示すようにカソ
ード2、アノード3の各電極は平板状のものが使用され
ているため、電極の表面積が小さく出力密度が一般的に
小さい。
In a conventional fuel cell, since the electrodes of the cathode 2 and the anode 3 are usually plate-shaped as shown in FIG. 3, the surface area of the electrodes is small and the output density is generally small.

そのため、電極の表面積を大きくして電極によりセル
を高性能化することが試みられ、従来では、第4図に示
す如く電極のセパレータと接する側の面に、ガスの通路
を形成するための凹凸を設けて多数の突部6を有する突
起付電極5を構成し、該突起付電極5を電解質板1に接
するように配置し、平板状のセパレータ7で仕切って積
層させることが考えられている。
For this reason, it has been attempted to increase the surface area of the electrode to improve the performance of the cell by the electrode. Conventionally, as shown in FIG. 4, the surface of the electrode in contact with the separator has irregularities for forming a gas passage. To form a protruding electrode 5 having a large number of protruding portions 6, disposing the protruding electrode 5 in contact with the electrolyte plate 1, separating the protruding electrodes 5 with a flat separator 7, and laminating the protruding electrodes 5. .

[発明が解決しようとする問題点] ところが、上記従来の突起付電極5をカソード側に使
用する場合に、該電極5の突部6をカレントコレクタと
すると、該突部6の厚さが厚いために電気抵抗が大きい
という問題がある。
[Problems to be Solved by the Invention] However, if the projection 6 of the conventional electrode 5 is used on the cathode side and the projection 6 of the electrode 5 is a current collector, the thickness of the projection 6 is large. Therefore, there is a problem that the electric resistance is large.

そこで、本発明は、電極の表面積を増大させると同時
に電気抵抗を小さくできるようにすることを目的とする
ものである。
Therefore, an object of the present invention is to make it possible to increase the surface area of the electrode and at the same time reduce the electric resistance.

[問題点を解決するための手段] 本発明は、上記目的を達成するために、電解質板をカ
ソードとアノードの両電極で挟み、カソード側に酸化ガ
スを、又、アノード側に燃料ガスをそれぞれ供給するよ
うにしたセルをセパレータを介して多層に積層させる溶
融炭酸塩型燃料電池において、上記セパレータを平板状
にすると共にセルを構成する電解質板両面の各電極を平
板にして、該セパレータと上記セルとの間に、金属板を
波板状にしてなるカレントコレクタのセル側の面にのみ
該セルのカレントコレクタ側の電極と同じ電極材をコー
ティングして電極材層を設けてなるものを介在させ、且
つ上記電極材層をセルのカレントコレクタ側の平板の電
極に部分的に接触させてなる構成とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention has an electrolyte plate sandwiched between a cathode and an anode, and an oxidizing gas on the cathode side and a fuel gas on the anode side. In a molten carbonate fuel cell in which cells to be supplied are stacked in multiple layers with a separator interposed therebetween, the separator is formed into a flat plate, and each electrode on both sides of the electrolyte plate constituting the cell is formed into a flat plate. An electrode material layer is formed by coating the same electrode material as the electrode on the current collector side of the current collector only on the cell side surface of the current collector having a corrugated metal plate between the cell and the cell. And the electrode material layer is partially brought into contact with a flat plate electrode on the current collector side of the cell.

[作用] 燃料電池セルの電極に、波板状のカレントコレクタの
片面に上記電極と同じ電極材を塗布して設けた電極材層
が部分的に接触しているので、電極の反応時に電解質板
中の電解質が電極にしみ込み、更に電極から該電極との
接触部を通して電極材層にしみ込んで、該電極材層も電
解質で濡れて来て電極として使用できる状態になる。こ
れにより電極の表面積を実質的に増大させることができ
る。
[Operation] Since the electrode material layer provided by applying the same electrode material as the above electrode to one side of the corrugated current collector is partially in contact with the electrode of the fuel cell, the electrolyte plate is reacted when the electrode reacts. The electrolyte infiltrates into the electrode, and then from the electrode into the electrode material layer through the contact portion with the electrode, so that the electrode material layer is wetted by the electrolyte and becomes ready for use as an electrode. Thereby, the surface area of the electrode can be substantially increased.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図及び第2図は本発明の実施例を示すもので、電
解質板1をカソード2とアノード3の両電極により両面
から挟み、カソード2側へ酸化ガスを供給すると共にア
ノード3側へ燃料ガスを供給するようにしてある燃料電
池セルCをセパレータを介して多層に積層させるように
する溶融炭酸塩型燃料電池において、上記各セルCを仕
切るためのセパレータ7を、第4図の場合と同様に平板
状にすると共にカソード2を平板状にし、両者間にガス
通路を形成する金属(SUS)の波板状のカレントコレク
タ8を介在させ、該カレントコレクタ8のカソード2側
の面に、カソード材をコーティングして多孔質性の電極
材層9を設け、且つ上記電極材層9を片面に有するカレ
ントコレクタ8を平板のカソード2上に置き、波型の突
部をカソード2に接触させることにより部分的に電極材
層9をカソード2に接触させ、各接触部をAとする。
1 and 2 show an embodiment of the present invention, in which an electrolyte plate 1 is sandwiched between both electrodes of a cathode 2 and an anode 3 to supply an oxidizing gas to the cathode 2 and a fuel to the anode 3 side. In a molten carbonate fuel cell in which fuel cells C to be supplied with gas are stacked in multiple layers via a separator, a separator 7 for partitioning each cell C is provided as shown in FIG. Similarly, the cathode 2 is formed into a flat plate shape, and a current collector 8 in the form of a corrugated sheet of metal (SUS) which forms a gas passage is interposed therebetween. A cathode material is coated to provide a porous electrode material layer 9, and a current collector 8 having the electrode material layer 9 on one side is placed on the flat cathode 2, and the corrugated protrusion contacts the cathode 2. Partially in contact with the electrode material layer 9 to the cathode 2 by causing the respective contact portions and A.

各セルのカソード2では、 の反応が行われ、この溶融炭酸塩が電解質板1中の電解
質としての溶融炭酸塩を引いて流出させるので、カソー
ド2は溶融炭酸塩で濡れ易い状態にある。したがって、
上記カソード2に各接触部Aで接触している多孔質性の
電極材層9も、カソード2にしみ込んだ溶融炭酸塩が上
記カソード2との接触部Aを通じてしみ込んで来ること
により該溶融炭酸塩で濡れて来て、該電極材層9も電極
として使用できる状態になり、三相界面を持つことにな
って、第2図に示す各接触部Aが有効反応部となる。
In the cathode 2 of each cell, Is carried out, and this molten carbonate pulls out the molten carbonate as the electrolyte in the electrolyte plate 1 and flows out, so that the cathode 2 is in a state of being easily wetted by the molten carbonate. Therefore,
The porous electrode material layer 9 that is in contact with the cathode 2 at each contact portion A also has the molten carbonate impregnated into the cathode 2 through the contact portion A with the cathode 2. The electrode material layer 9 is also ready for use as an electrode, and has a three-phase interface, and each contact portion A shown in FIG. 2 becomes an effective reaction portion.

上記において、電極、電解質板1への電解質としての
溶融炭酸塩のしみ込み状態は、材料の濡れ性と多孔質の
ミクロ構造によって変わるので、カレントコレクタ8に
電極材をコーティングして設けた多孔質性の電極材層9
のミクロ構造を制御することにより溶融炭酸塩の充填率
を変えることができる。因に、多孔質性の電極材層9の
孔の平均の大きさを5〜8ミクロンとすれば、30%〜20
%の充填率が得られ、電極材層9は電極として機能する
ことができる。
In the above, the state of penetration of the molten carbonate as an electrolyte into the electrode and the electrolyte plate 1 depends on the wettability of the material and the porous microstructure. Electrode material layer 9
By controlling the microstructure of the molten carbonate, the filling rate of the molten carbonate can be changed. By the way, if the average size of the pores of the porous electrode material layer 9 is 5 to 8 microns, 30% to 20%
%, And the electrode material layer 9 can function as an electrode.

カレントコレクタ8のカソード2側の面に該カソード
2と同じ電極材をコーティングして設けた電極材層9
は、カソード電極として機能することにより、該電極材
層9のカソード2への各接触部Aでは、前記したカソー
ド2での反応と同じ反応が行われ、この部分がカソード
電極として使用されることになり、結果としてカソード
2の表面積を飛躍的に増大させることができる。この
際、カソード電極は厚くならないので、電気抵抗を小さ
くすることができる。このように、カレントコレクタ8
に電極材をコーティングして電極に部分的に電極材層9
を接触させた構成とすると、界面での接触抵抗を小さく
でき、電池に組み込んだとき、全体として電気抵抗が3
%程度と小さな値ではあったが改善がなされ、従来の電
池の性能と比べて、内部抵抗ロスが大幅に改善された。
すなわち、電極寸法直径40mmの電池において、電流Iを
1.88アンペア、開路電圧Vocvを1060ミリボルト、過電圧
Vovを184ミリボルトで同じとし、電圧Vを従来の電池で
は820ミリボルト、本発明では824ミリボルトとして比較
したところ、内部抵抗ロスVir(=Vocv−V−Vov)が、
従来の電池で56ミリボルトであるのに対し、本発明では
52ミリボルトで、約8%と大幅に改善された。これは、
電極表面積が増大していることで電極の見かけ電流密度
Iaが、従来の電池で150A/cm2に対し本発明で143A/cm2
約5%低減でき、電池の内部抵抗ロスを約8%小さくし
たものである。
An electrode material layer 9 provided by coating the same electrode material as the cathode 2 on the surface of the current collector 8 on the cathode 2 side.
In the contact portion A of the electrode material layer 9 to the cathode 2, the same reaction as the above-described reaction at the cathode 2 is performed by functioning as a cathode electrode, and this portion is used as a cathode electrode. As a result, the surface area of the cathode 2 can be dramatically increased. At this time, since the cathode electrode does not become thick, the electric resistance can be reduced. Thus, the current collector 8
And an electrode material layer 9 on the electrode.
The contact resistance at the interface can be reduced, and when incorporated in a battery, the electric resistance as a whole is 3
%, But the value was improved, but the internal resistance loss was significantly improved as compared with the performance of the conventional battery.
That is, in a battery having an electrode size of 40 mm in diameter, the current I is
1.88 amps, open circuit voltage Vocv 1060 mV, overvoltage
When Vov is the same at 184 millivolts and the voltage V is 820 millivolts for the conventional battery and 824 millivolts for the present invention, the internal resistance loss Vir (= Vocv-V-Vov) is:
In contrast to 56 millivolts for a conventional battery,
At 52 millivolts, it was greatly improved to about 8%. this is,
The apparent current density of the electrode due to the increased electrode surface area
In the present invention, Ia can be reduced by about 5% to 143 A / cm 2 from 150 A / cm 2 in the conventional battery, and the internal resistance loss of the battery is reduced by about 8%.

なお、上記実施例ではカレントコレクタ8のカソード
2側の面にカソード2と同じ電極材をコーティングして
電極材層9を設けてなるものについて説明したが、セパ
レータ7とセルCのアノード3側との間では、カレント
コレクタ8のアノード3側の面にアノード3と同じ電極
材をコーティングして電極材層を設けることは勿論であ
る。又、カレントコレクタ8の波の形状は図示以外のも
のでもよい。
In the above-described embodiment, the current collector 8 has been described in which the same electrode material as the cathode 2 is coated on the surface of the cathode 2 and the electrode material layer 9 is provided. Of course, the same electrode material as that of the anode 3 is coated on the surface of the current collector 8 on the anode 3 side to form an electrode material layer. Further, the shape of the wave of the current collector 8 may be other than that shown in the figure.

[発明の効果] 以上述べた如く、本発明の溶融炭酸塩型燃料電池によ
れば、セパレータを平板状にすると共にセルを構成する
電解質板両面の各電極を平板にして、該セパレータと上
記セルとの間に、金属板を波板状にしてなるカレントコ
レクタのセル側の面にのみ該セルのカレントコレクタ側
の電極と同じ電極材をコーティングして電極材層を設け
てなるものを介在させ、且つ上記電極材層をセルのカレ
ントコレクタ側の平板の電極に部分的に接触させ電極材
層も電解質板の溶融炭酸塩で濡れるようにしてあるの
で、カレントコレクタに電極材をコーティングして設け
た電極材層が電極に部分的に接触していて電極より溶融
炭酸塩がしみ込んで濡れる部分を電極の有効反応部とし
て使用でき、実質的に電極の表面積を増大できると同時
に電気抵抗の小さいものを容易に実現できる、という優
れた効果を奏し得る。
[Effects of the Invention] As described above, according to the molten carbonate fuel cell of the present invention, the separator is formed into a flat plate, and the electrodes on both sides of the electrolyte plate constituting the cell are formed into a flat plate. The current collector having a corrugated metal plate is coated with the same electrode material as the current collector-side electrode only on the cell-side surface of the current collector, and an electrode material layer is provided therebetween. Also, since the electrode material layer is partially contacted with the flat plate electrode on the current collector side of the cell so that the electrode material layer is also wetted by the molten carbonate of the electrolyte plate, the current collector is coated with the electrode material and provided. The part of the electrode material layer that is partially in contact with the electrode and the part where the molten carbonate permeates and wets the electrode can be used as an effective reaction part of the electrode, which can substantially increase the electrode surface area and simultaneously An excellent effect that a material having a small resistance can be easily realized can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す断面図、第2図は本発明
におけるカレントコレクタと電極との接触の状態を示す
拡大図、第3図は従来の溶融炭酸塩型燃料電池の一例を
示す断面図、第4図は突起付電極を用いた例を示す断面
図である。 1……電解質板、2……カソード、3……アノード、7
……セパレータ、8……カレントコレクタ、9……電極
材層、C……セル。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is an enlarged view showing a state of contact between a current collector and an electrode in the present invention, and FIG. 3 is an example of a conventional molten carbonate fuel cell. FIG. 4 is a cross-sectional view showing an example using a protruding electrode. 1 ... electrolyte plate, 2 ... cathode, 3 ... anode, 7
… Separator, 8… current collector, 9… electrode material layer, C… cell.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質板をカソードとアノードの両電極で
挟み、カソード側に酸化ガスを、又、アノード側に燃料
ガスをそれぞれ供給するようにしたセルをセパレータを
介して多層に積層させる溶融炭酸塩型燃料電池におい
て、上記セパレータを平板状にすると共にセルを構成す
る電解質板両面の各電極を平板にして、該セパレータと
上記セルとの間に、金属板を波板状にしてなるカレント
コレクタのセル側の面にのみ該セルのカレントコレクタ
側の電極と同じ電極材をコーティングして電極材層を設
けてなるものを介在させ、且つ上記電極材層をセルのカ
レントコレクタ側の平板の電極に部分的に接触させてな
ることを特徴とする溶融炭酸塩型燃料電池。
1. A molten carbon dioxide layer comprising an electrolyte plate sandwiched between a cathode and an anode, and a cell in which an oxidizing gas is supplied to the cathode and a fuel gas is supplied to the anode through a separator. In a salt fuel cell, a current collector is formed by flattening the above-mentioned separator and flattening each electrode on both sides of the electrolyte plate constituting the cell, and forming a metal plate between the separator and the above-mentioned cell by corrugating a metal plate. The same electrode material as the current collector side electrode of the cell is coated only on the cell side surface of the cell, an electrode material layer is provided, and the electrode material layer is provided as a flat electrode on the current collector side of the cell. A molten carbonate fuel cell characterized by being partially contacted with a molten carbonate fuel cell.
JP62269428A 1987-10-27 1987-10-27 Molten carbonate fuel cell Expired - Lifetime JP2658082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269428A JP2658082B2 (en) 1987-10-27 1987-10-27 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269428A JP2658082B2 (en) 1987-10-27 1987-10-27 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH01112669A JPH01112669A (en) 1989-05-01
JP2658082B2 true JP2658082B2 (en) 1997-09-30

Family

ID=17472289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269428A Expired - Lifetime JP2658082B2 (en) 1987-10-27 1987-10-27 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2658082B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230263A (en) * 1983-06-13 1984-12-24 Matsushita Electric Ind Co Ltd Current collector for molten carbonate fuel cell
JPS6012670A (en) * 1983-06-30 1985-01-23 Matsushita Electric Ind Co Ltd Molten carbonate fuel cell
JPS61267269A (en) * 1985-05-21 1986-11-26 Mitsubishi Electric Corp Fuel passage plate for molten carbonate type fuel cell

Also Published As

Publication number Publication date
JPH01112669A (en) 1989-05-01

Similar Documents

Publication Publication Date Title
JPS6130385B2 (en)
JPS6047702B2 (en) Fuel cell assembly and its manufacturing method
JPH10513600A (en) Single cell assembly forming diaphragm electrode unit and method of using same
CN107305960B (en) Battery, battery manufacturing method, and battery manufacturing apparatus
JP3502508B2 (en) Direct methanol fuel cell
KR0141967B1 (en) Improved electrode plate structure
JPS625569A (en) Molten carbonate type fuel cell stack
JP2658082B2 (en) Molten carbonate fuel cell
JPH07176307A (en) Fuel cell
JP4240285B2 (en) Method for producing gas diffusion layer of polymer electrolyte fuel cell
JPH06150944A (en) Fuel cell electrode
JP2633522B2 (en) Fuel cell
JPH04233163A (en) Electrode structure
JP2822457B2 (en) Fuel cell separator and method of manufacturing the same
JPH0732025B2 (en) Thin lead acid battery manufacturing method
JPH0636784A (en) Current collector for fuel cell and fuel cell using it
JPH07245107A (en) Solid electrolyte fuel cell
JPH07335234A (en) Fuel cell
JPH0414854Y2 (en)
JPH061700B2 (en) Composite electrode for fuel cell
JP2616061B2 (en) Phosphoric acid fuel cell
JPH0782863B2 (en) Method for producing molten carbonate fuel cell laminate
JPH07123046B2 (en) Molten carbonate fuel cell
JPH01231273A (en) Manufacture of fused carbonate fuel cell
JPS5943649Y2 (en) gas diffusion electrode