JPH07245107A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH07245107A
JPH07245107A JP6058189A JP5818994A JPH07245107A JP H07245107 A JPH07245107 A JP H07245107A JP 6058189 A JP6058189 A JP 6058189A JP 5818994 A JP5818994 A JP 5818994A JP H07245107 A JPH07245107 A JP H07245107A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
metal
ceramics
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6058189A
Other languages
Japanese (ja)
Inventor
Takenori Nakajima
武憲 中島
Masakatsu Nagata
雅克 永田
Tsutomu Iwazawa
力 岩澤
Satoru Yamaoka
悟 山岡
Mikiyuki Ono
幹幸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP6058189A priority Critical patent/JPH07245107A/en
Publication of JPH07245107A publication Critical patent/JPH07245107A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enhance electric conductivity and high temperature peel strength of an electrode in a solid electrolyte fuel cell. CONSTITUTION:In a solid electrolyte fuel cell, an air electrode 4 of a ceramics porous film is formed in one of solid electrolyte 2 composed of stabilizing zirconia, and a fuel electrode 10 of a porous film composed of metal and ceramics is formed in the other one of the solid electrolyte 2, and a cell 1 is composed of a three-layer integrated film. The fuel cell is formed by sandwiching an electrode 10 whose inclined parts 12a and 12b by blending metal 11 and ceramics in an inclined condition are formed on both sides sandwiching an intermediate layer composed of the metal 11 between layers 2 and 6 composed of the ceramics. Since the metal 11 is contained, electric conductivity is improved, and since the so-called same kind joining is applied to the ceramic layers 2 and 6, peel strength at high temperature time is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体電解質燃料電池
(SOFC)に関し、特に燃料電極あるいは空気電極の
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell (SOFC), and more particularly to the structure of a fuel electrode or an air electrode.

【0002】[0002]

【従来の技術】固体電解質型の燃料電池は、セラミック
ス技術の進展に伴い、近年実用化に向けて研究開発され
ている。その基本構造は、固体イオン導電体としてのセ
ラミックスのジルコニアにイットリアを固溶した安定化
ジルコニア(YSZ)が電解質に使用されている。この
安定化ジルコニアは、1000℃の高温になると酸素イ
オンの透過性が高くなり、電子導電性がほとんど無く、
酸素や水素のガスを透過しない等の特性を有することか
ら、この特性を電解質に利用している。この場合に、イ
オン透過性が高いとは言え他の方式と比較すると低いた
め、固体電解質が極めて薄い膜状に生成される。こうし
て構成要素の全てが固体になるため、電池構造が簡素化
し、高温で作動するため電極反応が非常に活発で効率が
良くなり、触媒等も不要になる等の利点を有する。
2. Description of the Related Art Solid electrolyte fuel cells have been researched and developed for practical use in recent years with the progress of ceramics technology. The basic structure is that stabilized zirconia (YSZ), which is a solid solution of yttria in zirconia, which is a ceramic as a solid ionic conductor, is used as an electrolyte. This stabilized zirconia has high oxygen ion permeability at a high temperature of 1000 ° C., and has almost no electronic conductivity.
Since it has a property of not permeating oxygen or hydrogen gas, this property is used for the electrolyte. In this case, although the ion permeability is high compared with other methods, the solid electrolyte is formed in an extremely thin film. In this way, all of the constituent elements are solid, so that the battery structure is simplified, the electrode reaction is very active and the efficiency is improved because it operates at high temperature, and there is an advantage that a catalyst or the like is unnecessary.

【0003】一方、固体電解質が1000℃の高温で作
動するため、空気電極と燃料電極も必然的にその高温雰
囲気となり、高温加熱、強い酸化や還元反応、熱膨張等
の影響を受ける。そこで空気電極は、酸素の高温雰囲気
で化学的に安定であり、さらに電子導電性が高く、酸素
ガスの透過性が良く、電解質との熱膨張の整合が良いこ
とが要求され、このような条件を満たす材料として例え
ばペロブスカイト形ランタン系複合酸化物を使用して薄
い多孔質膜に形成されている。燃料電極は、電子導電性
や電解質との熱膨張の整合が良く、水素との燃焼反応や
反応物の除去等が良いことが要求され、このため例えば
金属のニッケルとジルコニアとのサーメットを使用して
薄い多孔質膜に形成されている。また複数個のセルを接
続するインターコネクターも、高温雰囲気で安定で導電
性の良いセラミックスが使用されている。
On the other hand, since the solid electrolyte operates at a high temperature of 1000 ° C., the air electrode and the fuel electrode inevitably become the high temperature atmosphere, and are affected by high temperature heating, strong oxidation and reduction reaction, thermal expansion and the like. Therefore, the air electrode is required to be chemically stable in a high temperature atmosphere of oxygen, have high electron conductivity, have good oxygen gas permeability, and have good thermal expansion matching with the electrolyte. For example, a perovskite-type lanthanum-based composite oxide is used as a material satisfying the above conditions to form a thin porous film. The fuel electrode is required to have good electron conductivity and thermal expansion matching with the electrolyte, and to have good combustion reaction with hydrogen and removal of reactants.For this reason, for example, a cermet of nickel metal and zirconia is used. Formed into a thin porous film. Also, as the interconnector for connecting a plurality of cells, ceramics that are stable and have good conductivity in a high temperature atmosphere are used.

【0004】そこで従来、上記固体電解質燃料電池のセ
ルは、例えば図3のように構成されている。すなわち、
符号1はセルであり、安定化ジルコニアのセラミックス
の薄膜に形成される固体電解質2を有し、この固体電解
質2の一方にニッケルとジルコニアのサーメットの多孔
質膜の燃料電極3が形成されている。また固体電解質2
の他方にはペロブスカイト形ランタン系複合酸化物の多
孔質膜の空気電極4が形成され、三層一体化膜に構成さ
れている。そして空気電極4と燃料電極3に外部回路5
が接続されている。
Therefore, conventionally, the cell of the above-mentioned solid oxide fuel cell is constructed, for example, as shown in FIG. That is,
Reference numeral 1 denotes a cell, which has a solid electrolyte 2 formed on a thin film of stabilized zirconia ceramics, and a fuel electrode 3 of a cermet porous film of nickel and zirconia is formed on one of the solid electrolytes 2. . Solid electrolyte 2
On the other hand, the air electrode 4 of a porous film of a perovskite-type lanthanum-based complex oxide is formed, and is configured as a three-layer integrated film. An external circuit 5 is connected to the air electrode 4 and the fuel electrode 3.
Are connected.

【0005】一方、機械的に支持する支持体を使用する
場合は、図示のようにアルミナやジルコニアを使用した
多孔絶縁性の管や板状の支持体6を有する。この支持体
6の上に溶射法等により上述の各種膜の燃料電極3、固
体電解質2および空気電極4が順次積層して形成されて
いる。
On the other hand, when a mechanically supporting support is used, it has a porous insulating tube or plate-like support 6 using alumina or zirconia as shown in the figure. The fuel electrode 3, the solid electrolyte 2, and the air electrode 4 of the above-described various films are sequentially laminated on the support 6 by a thermal spraying method or the like.

【0006】そして燃料電池作動時には、セル1を10
00℃の高温雰囲気にして燃料電極3の側に燃料の水素
等を、空気電極4の側に空気中の酸素を連続的に供給す
る。すると空気電極4では酸素が外部回路5を流れる電
子を得てイオン化され、この酸素イオンが固体電解質2
を通って燃料電極3に達する。そして燃料電極3ではそ
の酸化物イオンが水素と結合して電子と水を生じるので
あり、このような電気化学反応により電気を発生する。
When the fuel cell is operating, the cell 1
A high temperature atmosphere of 00 ° C. is used to continuously supply hydrogen or the like as a fuel to the fuel electrode 3 side and oxygen in the air to the air electrode 4 side. Then, at the air electrode 4, oxygen obtains an electron flowing through the external circuit 5 and is ionized, and this oxygen ion is converted into the solid electrolyte 2
To reach the fuel electrode 3. Then, at the fuel electrode 3, the oxide ions combine with hydrogen to generate electrons and water, and electricity is generated by such an electrochemical reaction.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記従来技
術のものにあっては、燃料電極3が導電性を考慮した金
属のニッケルと、固体電解質2との熱的整合性を考慮し
たジルコニアとを一定割合で混合したサーメットである
ため、電気抵抗が増大する。
By the way, in the above-mentioned prior art, the fuel electrode 3 comprises nickel, which is a metal in consideration of conductivity, and zirconia, which is in consideration of thermal compatibility with the solid electrolyte 2. Since it is a cermet mixed at a constant ratio, the electric resistance increases.

【0008】ここで燃料電極3のサーメットを溶射法等
により製造する際にその配合割合を、固体電解質側では
ジルコニアが多く、その反対側ではニッケルが多くなる
ように傾斜化することが可能である。このように傾斜機
能を付与することで、ニッケルとジルコニアとの成分が
分離して、導電性および固体電解質2との熱的整合性を
一層向上できる。
Here, when the cermet of the fuel electrode 3 is manufactured by the thermal spraying method or the like, the mixing ratio can be graded so that the solid electrolyte side has a large amount of zirconia and the opposite side has a large amount of nickel. . By imparting the gradient function in this way, the components of nickel and zirconia are separated, and the electrical conductivity and the thermal compatibility with the solid electrolyte 2 can be further improved.

【0009】しかしこの傾斜機能を有する燃料電極3を
支持体6の上に形成して構成される場合は、ジルコニア
等の支持体6に燃料電極3のニッケルの多い部分が接合
する。このため上述の高温雰囲気では、支持体6と燃料
電極3とが両者の熱膨張の相違により熱的不整合になっ
て剥離等を生じ、大きい接着強度を保つことができない
等の問題がある。
However, when the fuel electrode 3 having the tilting function is formed on the support 6, the support 6 made of zirconia or the like is bonded to the nickel-rich portion of the fuel electrode 3. Therefore, in the above-mentioned high-temperature atmosphere, the support 6 and the fuel electrode 3 are thermally mismatched due to the difference in thermal expansion between the support 6 and the fuel electrode 3, causing peeling and the like, and there is a problem that a large adhesive strength cannot be maintained.

【0010】この発明は、このような点に鑑み、燃料電
極が単独または支持体に形成される場合のいずれも、導
電性および固体電解質や支持体との熱的整合性等を向上
することを目的とするものである。
In view of the above, the present invention aims to improve the conductivity and the thermal compatibility with the solid electrolyte and the support, whether the fuel electrode is formed alone or on the support. It is intended.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
この発明は、安定化ジルコニアからなる固体電解質の一
方に、セラミックスの多孔質膜の空気電極を形成し、固
体電解質の他方に、金属とセラミックスとからなる多孔
質膜の燃料電極を形成して、セルを三層一体化膜で構成
した固体電解質燃料電池において、金属からなる中間層
を挟んだ両側に、その金属とセラミックとを傾斜配合し
た傾斜部を形成した電極が、前記セラミックからなる層
に挟まれて形成されていることを特徴とするものであ
る。
In order to achieve this object, the present invention is to form an air electrode of a ceramic porous film on one of the solid electrolytes made of stabilized zirconia, and to make the metal electrode on the other side of the solid electrolyte. In a solid electrolyte fuel cell in which a fuel electrode having a porous film made of ceramics is formed and the cell is made of a three-layer integrated film, the metal and the ceramic are graded and mixed on both sides with an intermediate layer made of metal sandwiched therebetween. The electrode having the inclined portion is formed so as to be sandwiched between the layers made of the ceramic.

【0012】[0012]

【作用】上記構成によるこの発明では、燃料電極あるい
は空気電極が、固体電解質や支持体などのセラミックか
らなる層に挟まれて形成され、固体電解質を挟んだ電気
化学的な反応で生じた電流を流す。そしてこの電極は、
金属と傾斜部との三層構造であるから、その金属の比抵
抗が小さいことにより、電極としての導電性が良好とな
る。また傾斜部は、外側ほど、すなわちセラミック層に
接する側ほど、セラミックの配合割合が高くなっている
ので、電極とこれを挟んでいるセラミック層との高温雰
囲気での熱的整合性が良好になり、剥離などの問題は生
じない。
In the present invention having the above structure, the fuel electrode or the air electrode is formed by being sandwiched between the layers made of ceramic such as the solid electrolyte or the support, and the electric current generated by the electrochemical reaction sandwiching the solid electrolyte is generated. Shed. And this electrode is
Since it has a three-layer structure of the metal and the inclined portion, the conductivity of the electrode becomes good because the specific resistance of the metal is small. Further, the sloped portion has a higher ceramic mixing ratio toward the outside, that is, toward the side in contact with the ceramic layer, so that the thermal compatibility between the electrode and the ceramic layer sandwiching the electrode in a high temperature atmosphere is improved. There is no problem such as peeling.

【0013】[0013]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1において、固体電解質燃料電池の支持体を
使用したセルの構成について説明する。符号1はセルで
あり、燃料電極10が中間から膜厚方向の両側に傾斜機
能を付与して形成されている。すなわち、燃料電極10
は、中間に導電性の良い多孔性のニッケル等の金属11
が配置され、この金属11の両側に金属とセラミックス
を混合して傾斜化した傾斜部12a,12bが形成され
ている。この傾斜部12a,12bは、溶射法等により
製造する際に、金属とセラミックスの混合の配合割合を
制御して傾斜化されたものであり、内側では金属の配合
が多くて金属11と同種接合し、外側ではセラミックス
の配合が多くてセラミックス層すなわち固体電解質2や
支持体6と同種接合するように傾斜化され、三層間で熱
的に整合することが可能になっている。こうして燃料電
極10は、中間に導電性の良い金属11を、両外側に固
体電解質2や支持体6との熱的整合性の良い傾斜部12
a,12bを有し、かつ膜厚方向の両側にも電極自体の
熱的整合性を得るように傾斜化して構成されている。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the structure of a cell using a solid electrolyte fuel cell support will be described. Reference numeral 1 is a cell, and the fuel electrode 10 is formed by giving a tilt function from the middle to both sides in the film thickness direction. That is, the fuel electrode 10
Is a porous metal 11 such as nickel having good conductivity.
Is arranged, and inclined portions 12a and 12b are formed on both sides of the metal 11 by inclining the metal and ceramics. These inclined portions 12a and 12b are inclined by controlling the mixing ratio of the mixture of metal and ceramics when they are manufactured by the thermal spraying method, etc. On the outside, however, the ceramics are mixed in a large amount, and the ceramics layers, that is, the solid electrolyte 2 and the support 6, are graded so as to be bonded in the same kind, and the three layers can be thermally matched. In this way, the fuel electrode 10 has the metal 11 having good conductivity in the middle and the inclined portions 12 having good thermal compatibility with the solid electrolyte 2 and the support 6 on both outer sides.
The electrodes a and 12b are provided, and both sides in the film thickness direction are inclined so as to obtain thermal matching of the electrodes themselves.

【0014】そしてセル1として、安定化ジルコニアの
セラミックスの薄膜に形成される固体電解質2の一方
に、上記三層構造の燃料電極10が、一方の傾斜部12
aを接合して形成されている。また固体電解質2の他方
にはペロブスカイト形ランタン系複合酸化物の多孔質膜
の空気電極4が形成され、三層一体化膜に構成されてい
る。そして空気電極4と燃料電極10の金属に外部回路
5が接続されている。
As the cell 1, the fuel electrode 10 having the above three-layer structure is provided on one side of the solid electrolyte 2 formed on the thin film of ceramics of stabilized zirconia, and the inclined portion 12 on one side.
It is formed by joining a. On the other hand of the solid electrolyte 2, a perovskite-type lanthanum-based composite oxide porous air electrode 4 is formed to form a three-layer integrated film. An external circuit 5 is connected to the metals of the air electrode 4 and the fuel electrode 10.

【0015】一方、機械的に支持する支持体を使用する
場合は、図示のようにアルミナやジルコニアを使用した
多孔絶縁性の管や板状の支持体6を有する。この支持体
6の上に上記三層構造の燃料電極10が、他方の傾斜部
12bを同種接合して形成され、この燃料電極10の一
方の傾斜部12aの側に上述と同様に、固体電解質2お
よび空気電極4を順次積層して形成されている。
On the other hand, when a mechanically supporting support is used, it has a porous insulating tube or plate-like support 6 using alumina or zirconia as shown in the figure. The fuel electrode 10 having the three-layer structure is formed on the support 6 by joining the other inclined portion 12b in the same manner. The solid electrolyte is formed on the one inclined portion 12a side of the fuel electrode 10 in the same manner as described above. 2 and the air electrode 4 are sequentially laminated.

【0016】次に、この実施例の作用について説明す
る。先ず、燃料電池作動時にセル1を1000℃の高温
雰囲気すると、固体電解質2と空気電極4と共に、三層
構造の燃料電極10の金属11および傾斜部12a,1
2bが高温に加熱される。そこで燃料電極10では、中
間に配置される金属11と、両外側に配置される傾斜部
12a,12bの一部とは同種接合されているため、上
記高温雰囲気でも剥離等を生じることなく大きい接着強
度が確保される。
Next, the operation of this embodiment will be described. First, when the cell 1 is in a high temperature atmosphere of 1000 ° C. during the operation of the fuel cell, the solid electrolyte 2 and the air electrode 4, the metal 11 of the fuel electrode 10 having the three-layer structure and the inclined portions 12a, 1 are formed.
2b is heated to a high temperature. Therefore, in the fuel electrode 10, since the metal 11 arranged in the middle and a part of the inclined portions 12a, 12b arranged on both outer sides are bonded to each other in the same kind, a large adhesion without causing peeling or the like even in the high temperature atmosphere. The strength is secured.

【0017】また燃料電極10の一方の傾斜部12a
が、安定化ジルコニアのセラミックスの固体電解質2に
同種接合することで、上記高温雰囲気でこれら燃料電極
10と固体電解質2も熱的に整合して、大きい接着強度
が確保される。さらに、固体電解質2と空気電極4はセ
ラミックス同士であるから、当然、熱的に整合する。こ
うして燃料電極10が内部に金属11を有する構造であ
っても、高温雰囲気中でそれ自体が機械的に強く結合
し、燃料電極10、固体電解質2および空気電極4の三
者もセラミックス同士の接合で機械的に強く結合して保
持される。
Further, one inclined portion 12a of the fuel electrode 10
However, by jointing the same to the solid electrolyte 2 of the stabilized zirconia ceramics, the fuel electrode 10 and the solid electrolyte 2 are also thermally matched in the above-mentioned high temperature atmosphere, and a large adhesive strength is secured. Further, since the solid electrolyte 2 and the air electrode 4 are ceramics, they are naturally thermally matched. Thus, even if the fuel electrode 10 has a structure having the metal 11 inside, the fuel electrode 10 itself mechanically bonds strongly in a high temperature atmosphere, and the fuel electrode 10, the solid electrolyte 2 and the air electrode 4 also join the ceramics together. It is mechanically tightly bound and retained.

【0018】続いて、燃料電極10の側に燃料の水素等
を、空気電極4の側に空気中の酸素を連続的に供給す
る。すると空気電極4では酸素が外部回路5を流れる電
子と、高温雰囲気で活発に結合してイオン化され、この
酸素イオンが高温雰囲気の安定化ジルコニアの固体電解
質2をその特性により通過する。そして燃料電極10で
はその酸素イオンが水素と活発に結合して電子と水を生
じるのであり、このような電気化学反応により電力を発
生する。このとき三層構造の燃料電極10の全体で燃焼
反応して電子を発生するが、内部に抵抗の非常に小さい
金属11が存在することで、この金属11に良好に集電
しかつ損失の非常に少ない状態で流れるようになり、こ
うして発電効率もアップする。
Subsequently, hydrogen or the like of the fuel is continuously supplied to the fuel electrode 10 side, and oxygen in the air is continuously supplied to the air electrode 4 side. Then, in the air electrode 4, oxygen is actively combined with the electrons flowing in the external circuit 5 in the high temperature atmosphere and ionized, and the oxygen ions pass through the solid electrolyte 2 of stabilized zirconia in the high temperature atmosphere due to its characteristics. Then, in the fuel electrode 10, the oxygen ions actively combine with hydrogen to generate electrons and water, and electric power is generated by such an electrochemical reaction. At this time, the entire three-layer fuel electrode 10 undergoes a combustion reaction to generate electrons. However, since the metal 11 having a very low resistance is present inside, the metal 11 can collect current well and have a high loss. It will flow in a very small amount, thus improving power generation efficiency.

【0019】また支持体6を使用してセル1を構成する
場合は、ジルコニア等のセラミックスの支持体6に対し
て燃料電極10の他方の傾斜部12bが、固体電解質2
の場合と同様に同種接合する。このため高温雰囲気でこ
れら支持体6と燃料電極10が、セラミックス同士によ
り熱的に整合して、大きい接着強度が確保される。そこ
で支持体6と燃料電極10および固体電解質2ならびに
空気電極4の四者が、機械的に強く結合して電気を発生
することが可能になる。
When the cell 1 is constructed by using the support 6, the other inclined portion 12b of the fuel electrode 10 with respect to the support 6 made of ceramics such as zirconia has the solid electrolyte 2
The same type of bonding is performed as in the case of. Therefore, in the high temperature atmosphere, the support 6 and the fuel electrode 10 are thermally matched by the ceramics, and a large adhesive strength is secured. Therefore, the support 6, the fuel electrode 10, the solid electrolyte 2, and the air electrode 4 can be mechanically strongly coupled to generate electricity.

【0020】上述した実施例は、この発明をいわゆる円
筒型の固体電解質燃料電池に適用した例であるが、この
発明は平板型の燃料電池に適用することもできる。図2
はその一例を示す模式的な断面図であり、Ni などの耐
熱強度の高い金属板20の表裏両面側に矩形断面の溝2
1a,21bが縦横にかつ互いに交差しないように形成
されている。この金属板20の図での上面側と下面側と
の両方に傾斜部22a,22bが形成されている。図2
での上側の傾斜部22aは、金属板20側で金属の配合
割合を多くし、かつこれとは反対側で安定化ジルコニア
(YSZ)の配合割合を多くすることにより特性が連続
的もしくは段階的に変化する層であり、この傾斜部22
aの上側(表面側)に安定化ジルコニアからなる固体電
解質層23aが形成され、さらにその固体電解質層23
aの上側(表面側)にペロブスカイト型のランタン系複
合酸化物からなる空気電極層24aが形成されている。
すなわち金属板20の図2での上側には、この金属板2
0および傾斜部22aを燃料電極としたセル25aが形
成されている。
The embodiments described above are examples in which the present invention is applied to a so-called cylindrical solid electrolyte fuel cell, but the present invention can also be applied to a flat plate fuel cell. Figure 2
Is a schematic cross-sectional view showing an example thereof, in which a groove 2 having a rectangular cross-section is formed on both front and back surfaces of a metal plate 20 having high heat resistance such as Ni.
1a and 21b are formed vertically and horizontally so as not to intersect with each other. Inclined portions 22a and 22b are formed on both the upper surface side and the lower surface side of the metal plate 20 in the figure. Figure 2
The upper sloped portion 22a in FIG. 2 has a continuous or stepwise characteristic by increasing the metal compounding ratio on the metal plate 20 side and increasing the compounding ratio of stabilized zirconia (YSZ) on the opposite side. It is a layer that changes to
A solid electrolyte layer 23a made of stabilized zirconia is formed on the upper side (a surface side) of a, and the solid electrolyte layer 23 is further formed.
An air electrode layer 24a made of a perovskite-type lanthanum-based composite oxide is formed on the upper side (front side) of a.
That is, on the upper side of the metal plate 20 in FIG.
A cell 25a having 0 and the inclined portion 22a as a fuel electrode is formed.

【0021】これに対して金属板20の図での下側に形
成してある傾斜部22bは、金属板20から遠くなるほ
どペロブスカイト型ランタン系複合酸化物の配合割合の
多くなることにより、特性が厚さ方向に連続的もしくは
段階的に変化する層であり、この傾斜部22bの下側
(表面側)に安定化ジルコニアからなる固体電解質層2
3bが形成され、さらにその固体電解質層23bの下側
(表面側)にNi もしくはNi /YSZサーメットから
なる燃料電極層24bが形成されている。すなわち金属
板20の図2での下側には、この金属板20および傾斜
部22bを空気電極としたセル25bが形成されてい
る。
On the other hand, the sloped portion 22b formed on the lower side of the metal plate 20 in the figure has characteristics because the mixing ratio of the perovskite-type lanthanum-based composite oxide increases as the distance from the metal plate 20 increases. A solid electrolyte layer 2 that is a layer that changes continuously or stepwise in the thickness direction and that is made of stabilized zirconia on the lower side (surface side) of the inclined portion 22b.
3b is formed, and a fuel electrode layer 24b made of Ni or Ni / YSZ cermet is further formed on the lower side (surface side) of the solid electrolyte layer 23b. That is, a cell 25b having the metal plate 20 and the inclined portion 22b as an air electrode is formed on the lower side of the metal plate 20 in FIG.

【0022】図2に示す固体電解質型燃料電池は、2枚
の平板型セル25a,25bを直列に接続したものであ
り、図2での上面側に空気を流すとともに、金属板20
の上面側の溝21aに水素ガス等の燃料ガスを流す。ま
たこの金属板20の下面側の溝21bに空気を流す一
方、図2での下側には水素ガス等の燃料ガスを流す。そ
の結果、上下の各セル25a,25bでは固体電解質層
24a,24bを介した電気化学的な酸化還元反応が生
じ、それぞれ起電力を生じる。その場合、図2での上側
のセル25aは、金属板20側がマイナス極となり、こ
れに対して図2での下側のセル25bは、金属板20側
がプラス極となるので、結局、上下のセル25a,25
bが直列接続された状態になる。したがって電力は上側
の空気電極24aと下側の燃料電極24bとから取り出
すことができる。
The solid oxide fuel cell shown in FIG. 2 is formed by connecting two flat plate cells 25a and 25b in series. Air is flown to the upper surface side in FIG.
A fuel gas such as hydrogen gas is flown into the groove 21a on the upper surface side of the. Further, while air is allowed to flow in the groove 21b on the lower surface side of the metal plate 20, fuel gas such as hydrogen gas is allowed to flow to the lower side in FIG. As a result, in each of the upper and lower cells 25a and 25b, an electrochemical redox reaction occurs via the solid electrolyte layers 24a and 24b, and electromotive force is generated respectively. In that case, the upper cell 25a in FIG. 2 has a negative pole on the metal plate 20 side, whereas the lower cell 25b in FIG. Cells 25a, 25
b is connected in series. Therefore, electric power can be taken out from the upper air electrode 24a and the lower fuel electrode 24b.

【0023】そして図2に示す構成であっても、各セル
25a,25bを接続している層は、金属板20と傾斜
部22a,22bとから構成されているから、その導電
率が高いため燃料電池全体としての起電力を向上させる
ことができ、また上下の各固体電解質23a,23bに
対していわゆる同種接続となるので、高温での熱的な整
合性が良好で剥離などのおそれはない。
Even in the structure shown in FIG. 2, since the layer connecting the cells 25a and 25b is composed of the metal plate 20 and the inclined portions 22a and 22b, its conductivity is high. Since the electromotive force of the fuel cell as a whole can be improved, and the so-called same-type connection is made to the upper and lower solid electrolytes 23a and 23b, thermal compatibility at high temperature is good and there is no risk of peeling. .

【0024】なおここでこの発明の好ましい実施の態様
の一例を記す。この発明は、金属層を挟んだ両側にセラ
ミック層が配置され、かつその金属層と各セラミック層
との間が金属とセラミックとの配合割合を連続的に変化
させた傾斜機能層とされた燃料電極が、セラミック製支
持体と固体電解質との間に形成されていることを特徴と
する固体電解質燃料電池とすることができる。
Here, an example of a preferred embodiment of the present invention will be described. According to the present invention, a ceramic layer is disposed on both sides of a metal layer, and a functionally graded layer is formed between the metal layer and each ceramic layer in which the mixing ratio of the metal and the ceramic is continuously changed. The solid electrolyte fuel cell may be characterized in that the electrode is formed between the ceramic support and the solid electrolyte.

【0025】[0025]

【発明の効果】以上に説明したようにこの発明による
と、固体電解質燃料電池において、中間に金属を有する
電極を使用するから、電極として抵抗が非常に小さくな
って、導電性が向上し、また中間の金属の両側に金属と
セラミックを傾斜配合した傾斜部を形成し、これら傾斜
部の両外側にセラミックスをそれぞれ一体的に形成して
三層構造に構成するので、電極自体が高温雰囲気で熱
的、機械的に強固になるのみならず、固体電解質、支持
体を使用してセルを構成する場合にはその支持体に対す
る高温雰囲気での熱的、機械的強度が高くなる。
As described above, according to the present invention, in the solid electrolyte fuel cell, since the electrode having the metal in the middle is used, the resistance as the electrode becomes very small, and the conductivity is improved. The electrodes are heated in a high temperature atmosphere by forming inclined parts on both sides of the intermediate metal, in which the metal and ceramic are inclined and mixed, and integrally forming ceramics on both outsides of these inclined parts to form a three-layer structure. In addition to being mechanically and mechanically strong, when a cell is formed using a solid electrolyte and a support, the thermal and mechanical strength of the support in a high temperature atmosphere is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る固体電解質燃料電池の実施例を
示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a solid oxide fuel cell according to the present invention.

【図2】この発明の他の実施例を模式的に示す断面図で
ある。
FIG. 2 is a sectional view schematically showing another embodiment of the present invention.

【図3】従来の固体電解質燃料電池のセルを示す断面図
である。
FIG. 3 is a cross-sectional view showing a cell of a conventional solid electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1,25a,25b…セル、 2,23a,23b…固
体電解質、 4,24a…空気電極、 10,24b…
燃料電極、 11,20…金属、 12a,12b,2
2a,22b…傾斜部。
1, 25a, 25b ... Cell, 2, 23a, 23b ... Solid electrolyte, 4, 24a ... Air electrode, 10, 24b ...
Fuel electrode, 11, 20 ... Metal, 12a, 12b, 2
2a, 22b ... Inclined portion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 小野 幹幸 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Satoru Yamaoka 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Mikiyuki Ono 1-1-5 Kiba, Koto-ku, Tokyo Shares Inside Fujikura

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 安定化ジルコニアからなる固体電解質の
一方に、セラミックスの多孔質膜の空気電極を形成し、
固体電解質の他方に、金属とセラミックスとからなる多
孔質膜の燃料電極を形成して、セルを三層一体化膜で構
成した固体電解質燃料電池において、 金属からなる中間層を挟んだ両側に、その金属とセラミ
ックとを傾斜配合した傾斜部を形成した電極が前記セラ
ミックからなる層に挟まれて形成されていることを特徴
とする固体電解質燃料電池。
1. An air electrode having a porous film of ceramics is formed on one of solid electrolytes made of stabilized zirconia,
On the other side of the solid electrolyte, a fuel electrode of a porous film made of metal and ceramics is formed, and in a solid electrolyte fuel cell in which the cell is composed of a three-layer integrated film, on both sides sandwiching an intermediate layer made of metal, A solid electrolyte fuel cell, characterized in that an electrode having an inclined portion in which the metal and the ceramic are obliquely mixed is formed and sandwiched between layers of the ceramic.
JP6058189A 1994-03-03 1994-03-03 Solid electrolyte fuel cell Pending JPH07245107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6058189A JPH07245107A (en) 1994-03-03 1994-03-03 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6058189A JPH07245107A (en) 1994-03-03 1994-03-03 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH07245107A true JPH07245107A (en) 1995-09-19

Family

ID=13077082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6058189A Pending JPH07245107A (en) 1994-03-03 1994-03-03 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH07245107A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164821A (en) * 2004-12-09 2006-06-22 Toyota Motor Corp Fuel cell
WO2007093759A1 (en) 2006-02-14 2007-08-23 Rolls-Royce Plc A solid oxide fuel cell module with multilayered anode
JP2008502113A (en) * 2004-06-10 2008-01-24 テクニカル ユニバーシティ オブ デンマーク Solid oxide fuel cell
US8343685B2 (en) 2007-01-31 2013-01-01 Technical University Of Denmark Composite material suitable for use as an electrode material in a SOC

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502113A (en) * 2004-06-10 2008-01-24 テクニカル ユニバーシティ オブ デンマーク Solid oxide fuel cell
JP2006164821A (en) * 2004-12-09 2006-06-22 Toyota Motor Corp Fuel cell
WO2007093759A1 (en) 2006-02-14 2007-08-23 Rolls-Royce Plc A solid oxide fuel cell module with multilayered anode
US8343685B2 (en) 2007-01-31 2013-01-01 Technical University Of Denmark Composite material suitable for use as an electrode material in a SOC

Similar Documents

Publication Publication Date Title
US7157169B2 (en) Fuel cell
US20080286630A1 (en) Electrochemical Cell Holder and Stack
JP2002319413A (en) Solid electrolyte fuel cell plate and stack
JPH1167247A (en) Solid electrolyte fuel cell
JP2000048831A (en) Solid electrolyte fuel cell
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP7254755B2 (en) Manufacturing method of electrochemical reaction cell stack
JP2002329511A (en) Stack for solid electrolyte fuel cell and solid electrolyte fuel cell
JP5362605B2 (en) Solid oxide fuel cell
JP3487630B2 (en) Cylindrical solid electrolyte fuel cell
JPH07245107A (en) Solid electrolyte fuel cell
JP2004281353A (en) Separator for fuel cell
JP3688305B2 (en) Cylindrical solid electrolyte fuel cell
JP4645095B2 (en) Membrane electrode assembly, fuel cell
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JP2003086204A (en) Solid electrolyte type fuel cell
JP2002270198A (en) Fuel cell
JPH0644981A (en) Flat plate-shaped solid electrolyte fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
JP7194070B2 (en) Electrochemical reaction cell stack
JP3007780B2 (en) Fuel cell and method of manufacturing the same
JP7159126B2 (en) Electrochemical reaction cell stack
JP2013257973A (en) Solid oxide fuel cell stack
JP7023898B2 (en) Electrochemical reaction cell stack
JP2018181405A (en) Fuel cell power generation module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20090803

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 16