JP3487630B2 - Cylindrical solid electrolyte fuel cell - Google Patents

Cylindrical solid electrolyte fuel cell

Info

Publication number
JP3487630B2
JP3487630B2 JP04967194A JP4967194A JP3487630B2 JP 3487630 B2 JP3487630 B2 JP 3487630B2 JP 04967194 A JP04967194 A JP 04967194A JP 4967194 A JP4967194 A JP 4967194A JP 3487630 B2 JP3487630 B2 JP 3487630B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel electrode
fuel
fuel cell
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04967194A
Other languages
Japanese (ja)
Other versions
JPH07235316A (en
Inventor
武憲 中島
雅克 永田
力 岩沢
悟 山岡
幹幸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP04967194A priority Critical patent/JP3487630B2/en
Publication of JPH07235316A publication Critical patent/JPH07235316A/en
Application granted granted Critical
Publication of JP3487630B2 publication Critical patent/JP3487630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、円筒縦縞形の固体電
解質燃料電池(SOFC)に関し、特に集電手段と支持
手段とを兼ねた燃料電極管の構造に関するものである。 【0002】 【従来の技術】固体電解質型の燃料電池は、固体イオン
導電体としてのセラミックスのジルコニアにイットリア
を固溶した安定化ジルコニア(YSZ)が電解質に使用
され、その電解質を挟んで燃料電極と空気電極とを形成
したものである。この安定化ジルコニアは、1000℃
の高温になると酸素イオンの透過性が高くなり、電子導
電性がほとんど無く、酸素や水素のガスを透過しない等
の特性を有することから、この特性を電解質に利用して
いる。この場合に、イオン透過性が高いとは言え他の方
式と比較すると低いため、固体電解質が極めて薄い膜状
に生成される。こうして構成要素の全てが固体になるた
め、電池構造が簡素化し、高温で作動するため電極反応
が非常に活発で効率が良くなり、触媒等も不要になる等
の利点を有する。 【0003】一方、固体電解質が1000℃の高温で作
動するため、空気電極と燃料電極も必然的にその高温雰
囲気となり、高温加熱、強い酸化や還元反応、熱膨張等
の影響を受ける。そこで空気電極は、酸素の高温雰囲気
で化学的に安定であり、更に電子導電性が高く、酸素ガ
スの透過性が良く、電解質との熱膨張の整合が良いこと
が要求され、このような条件を満たす材料として例えば
ペロブスカイト形ランタン系複合酸化物を使用して薄い
多孔質膜に形成されている。燃料電極は、電子導電性や
電解質との熱膨張の整合が良く、水素との燃焼反応や反
応物の除去等が良いことが要求され、このため例えば金
属のニッケルとジルコニアとの混合物のサーメットを使
用して薄い多孔質膜に形成されている。また複数個のセ
ルを接続するインターコネクターも、高温雰囲気で安定
で導電性の良いセラミックスが使用されている。 【0004】これらセラミックスの固体電解質、2つの
電極等で実際にセルをを構成する場合は、例えば機械的
に支持する多孔絶縁性の支持体を使用し、その支持体の
上に各種の薄膜を多層に積層形成して、三層一体化膜に
構成される。この薄膜形成の場合には、各膜に要求され
る異なった条件を満たすため、各種溶射法、スラリ法等
が用いられている。また平板形にした場合は端部でのガ
スシールの問題があるため、円筒形構造にすることが多
い。 【0005】従来、円筒縦縞形の固体電解質燃料電池
は、例えば図3のように構成されている。即ち、燃料電
池1はアルミナやジルコニアを使用した多孔絶縁性の筒
状支持管2を有し、この支持管2の上に軸方向に長い単
一のセル3が配置されている。即ち、支持管2の上の最
も内側に複合酸化物の多孔質膜の空気電極4が形成さ
れ、この空気電極4の外周側に安定化ジルコニアの固体
電解質5が形成され、固体電解質5の外周側の最も外側
にニッケルとジルコニアのサーメットの多孔質膜の燃料
電極6が形成され、三層一体化膜に構成されている。 【0006】また集電して外部回路を構成するため、空
気電極4の外周一部の軸方向全域に導電性の良いセラミ
ックスのインターコネクター7が外側に露出した状態で
形成され、このインターコネクター7と最外側の燃料電
極6にそれぞれ金属集電体8,9が接触される。そして
金属集電体8,9によりそれぞれ他のセルの燃料電極
6’とインターコネクター7’とに接続される。こうし
て燃料電池1が全体として細い筒状でセル3を縦縞模様
に配置した構造となる。 【0007】そこで燃料電池1の作動時には、セル3を
1000℃の高温雰囲気にして支持管2の内部に空気中
の酸素を、周囲に燃料の水素等を連続的に供給する。す
ると空気電極4では酸素が外部回路を流れる電子と反応
してイオン化され、この酸素イオンが固体電解質5を通
って燃料電極6に達する。そして燃料電極6ではその酸
素イオンが水素と結合して電子と水とを生じるのであ
り、このような電気化学的な反応により電気を発生す
る。この場合にセル3の電気は、水素の還元雰囲気中で
インターコネクター7、金属集電体8,9で集電して外
に取り出される。 【0008】 【発明が解決しようとする課題】ところで、上記従来技
術のものにあっては、特に燃料電極6がニッケルとジル
コニアの一定配合のサーメットであり、この燃料電極6
に金属集電体8,9を単に接触した構成であるから、集
電抵抗が大きくなって、電池の出力低下の原因になって
いる。また金属集電体8,9により隣接するセル同士を
接触しながら接続するため、作業性が悪く、均一な接触
抵抗を得ることが難しい。 【0009】空気電極4と燃料電極6の集電抵抗を低減
する方法として、金属または金属混合物をインターコネ
クター7や燃料電極6の外表面に形成することが考えら
れるが、製造が面倒になり、他のセルとの接触抵抗の低
減は解消されない等の問題がある。 【0010】この発明は、このような点に鑑み、支持
管、燃料電極及び集電体の部分の構成を改善して、集電
抵抗を低減し且つ構造を簡素化することを目的とするも
のである。 【0011】 【課題を解決するための手段】上記の目的を達成するた
め、この発明は、少なくとも筒状に形成される燃料電
極、固体電解質及び空気電極を径方向に薄膜多層に積層
してセルが構成され、これら燃料電極と空気電極とにそ
れぞれ集電手段が設けられた円筒形固体電解質燃料電池
において、内周部に金属製の集電部を備え、外周側でセ
ラミックの配合割合が多く、かつ内周側で金属の配合割
合が多い傾斜構造の集電手段と支持管との機能を兼ねた
燃料電極管が中心部に設けられていることを特徴とする
ものである。 【0012】 【作用】上記構成によるこの発明では、燃料電極の機能
を有する燃料電極管が内周に金属の集電部を有するが、
その肉厚方向の金属の傾斜機能で、高温雰囲気中で熱的
に整合したものになる。そして電池作動時には、燃料電
極管で発生した電子が軸方向に低抵抗で集電される。 【0013】また高温雰囲気では、燃料電極管がその肉
厚方向のセラミックスの傾斜機能で固体電解質とセラミ
ックス同士で接合して、大きい接着強度が得られ、固体
電解質と空気電極も熱的に整合する。そこでこれら三者
は、円周及び軸方向の全域で強固に一体結合し、この結
合状態でセルが支持されて支持体等が不要になる。 【0014】 【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1と図2において、円筒縦縞形の固体電解質
燃料電池の全体の構成について説明する。符号1は固体
電解質燃料電池であり、比較的厚い筒状の燃料電極管1
0を有し、この燃料電極管10に単一のセル3が配置さ
れる。燃料電極管10は、導電性の良い金属のニッケル
と、固体電解質5との熱整合性の良い安定化ジルコニア
を混合したサーメットの多孔質膜に形成され、軸方向全
域で燃料電極としての機能を有する。この場合に、例え
ば溶射法で製造する場合は、材料の配合割合を制御する
ことにより、外周側では安定化ジルコニアが多く、内周
側ではニッケルが多くなるように配合して、肉厚方向に
傾斜化され、最も内周にはニッケルのみの多孔性の集電
部11が形成されて、集電と支持を兼ねることが可能に
なっている。 【0015】続いて、セル3の構成について説明する
と、上記燃料電極管10の外周側で軸方向の略全域に安
定化ジルコニアからなる固体電解質5が形成され、固体
電解質5の外周側に同様に複合酸化物の多孔質膜の空気
電極4が形成されている。こうして円筒状の燃料電極管
10、固体電解質5及び空気電極4が、隙間の無い状態
で径方向に薄膜多層に積層されて、実質的に三層一体化
膜に構成されている。そして燃料電極6と空気電極4と
の配置が従来の場合と逆になることで、内側の燃料電極
管10に水素が、外側の空気電極4に空気中の酸素が供
給される。 【0016】一方、集電して外部回路を構成するため、
内側の燃料電極管10の一端に金属の集電リング12
が、内周の集電部11に接するように螺合されている。
また空気電極4の一部には集電リング13が嵌着され、
これら集電リング12,13が結線14により他のセル
に接続される。 【0017】次に、この実施例の作用について説明す
る。先ず、燃料電池1の作動時にセル3を1000℃の
高温雰囲気すると、燃料電極管10、固体電解質5及び
空気電極4が高温に加熱される。そこで燃料電極管10
では、肉厚方向のニッケルの傾斜機能により内周のニッ
ケルの集電部11との接合箇所が熱的に整合し、このた
め上記高温雰囲気でも剥離等を生じることなく大きい接
着強度が確保される。 【0018】また燃料電極管10と固体電解質5との接
合箇所は、燃料電極管10の肉厚方向の安定化ジルコニ
アの傾斜機能により安定化ジルコニア同士の接合となっ
て、熱的に整合する。更に、固体電解質5と空気電極4
との接合箇所は、セラミックス同士の接合で、当然、熱
的に整合する。こうして燃料電極管10、固体電解質5
及び空気電極4が、高温雰囲気中で円周及び軸方向の全
域で強固に一体結合し、この結合状態でセル3が支持さ
れて支持体等が不要になる。 【0019】続いて、燃料電極管10の内部に燃料の水
素等を、周囲に空気中の酸素を連続的に供給すると、燃
料電極管10、固体電解質5及び空気電極4が、隙間の
無い状態で径方向に薄膜多層に積層することで、これら
の円周及び軸方向の全域で電気化学的に反応する。即
ち、高温雰囲気の空気電極4では酸素が外部回路を流れ
る電子と活発に反応してイオン化され、このイオンが高
温雰囲気の安定化ジルコニアの固体電解質5をその特性
により通る。そして燃料電極管10では固体電解質5を
通った酸素イオンが水素と活発に結合し、電子と水とを
生じるように燃焼反応して効率良く電気を発生する。 【0020】このとき燃料電極管10では軸方向の略全
域で発電するが、この電子が内周のニッケルの集電部1
1により低抵抗で集電され、この電子が集電リング12
と結線14により取り出される。また空気電極4では、
結線14と集電リング13とにより電子が良好に導入さ
れる。 【0021】以上、この発明の実施例について説明した
が、燃料電極管の材料、構成が異なる場合も同様に適応
できることは勿論である。 【0022】 【発明の効果】以上説明したように、この発明によれ
ば、円筒形固体電解質燃料電池において、金属とセラミ
ックスを混合した多孔質膜の燃料電極の機能を有する筒
状の燃料電極管を有し、この燃料電極管は内周に金属の
集電部を有して構成されているので、特に燃料電極側の
軸方向の集電抵抗を大幅に低減できる。また、燃料電極
管が、金属とセラミックスとの配合割合を肉厚方向に傾
化されて、高温雰囲気で固体電解質と熱的、機械的に
強く結合するように構成されているので、支持体等を不
要とすることができる。その結果、セル構造を単純化す
ることができる。そのため、円筒形固体電解質燃料電池
の製造時間を短縮化することができるので、コスト低減
が図れる。そして燃料電極管は金属とセラミックスとの
材料で製造されるので、低コスト化を図ることができ
る。さらにまた円筒縦縞形として、円筒状の燃料電極
管、固体電解質及び空気電極が、隙間の無い状態で径方
向に薄膜多層に積層して構成されるので、発電効率が向
上する。さらに、集電リングと結線とにより隣接するセ
ル同士が接続されるので、モジュール化する際の作業性
や抵抗の低減など点で優れたものとなる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell (SOFC) having a cylindrical vertical stripe shape, and more particularly, to a structure of a fuel electrode tube serving both as a current collecting means and a supporting means. It is about. 2. Description of the Related Art A solid electrolyte fuel cell uses a stabilized zirconia (YSZ) in which yttria is dissolved in ceramic zirconia as a solid ionic conductor as an electrolyte, and a fuel electrode is sandwiched between the electrolytes. And an air electrode. This stabilized zirconia has a temperature of 1000 ° C.
When the temperature becomes high, the permeability of oxygen ions becomes high, and there are characteristics such as almost no electronic conductivity and no permeation of oxygen or hydrogen gas. Therefore, these characteristics are used for the electrolyte. In this case, the solid electrolyte is formed in an extremely thin film because the ion permeability is high but low as compared with other methods. In this way, since all the components are solid, the battery structure is simplified, and since the battery operates at a high temperature, the electrode reaction is very active and the efficiency is improved. On the other hand, since the solid electrolyte operates at a high temperature of 1000 ° C., the air electrode and the fuel electrode necessarily have a high-temperature atmosphere, and are affected by high-temperature heating, strong oxidation and reduction reactions, thermal expansion, and the like. Therefore, the air electrode is required to be chemically stable in a high-temperature atmosphere of oxygen, to have high electron conductivity, to have good oxygen gas permeability, and to have good thermal expansion matching with the electrolyte. A thin porous film is formed using, for example, a perovskite-type lanthanum-based composite oxide as a material satisfying the above conditions. The fuel electrode is required to have good electron conductivity and good thermal expansion matching with the electrolyte, good combustion reaction with hydrogen and removal of reactants, and so on.For example, a cermet of a mixture of metal nickel and zirconia is required. Used to form a thin porous membrane. Ceramics that are stable and have high conductivity in a high-temperature atmosphere are also used as interconnectors for connecting a plurality of cells. When a cell is actually constituted by a solid electrolyte of these ceramics, two electrodes, etc., for example, a porous insulating support which is mechanically supported is used, and various thin films are formed on the support. It is formed as a three-layer integrated film by laminating a plurality of layers. In the case of thin film formation, various thermal spraying methods, slurry methods, and the like are used to satisfy different conditions required for each film. Further, in the case of a flat plate shape, there is a problem of gas sealing at an end portion, so that a cylindrical structure is often used. Conventionally, a solid electrolyte fuel cell having a cylindrical vertical stripe shape is constructed as shown in FIG. 3, for example. That is, the fuel cell 1 has a porous insulating tubular support tube 2 using alumina or zirconia, and a single cell 3 that is long in the axial direction is arranged on the support tube 2. That is, an air electrode 4 of a composite oxide porous film is formed on the innermost part of the support tube 2, and a stabilized zirconia solid electrolyte 5 is formed on the outer peripheral side of the air electrode 4. A fuel electrode 6 of a porous membrane of cermet of nickel and zirconia is formed on the outermost side, and is formed as a three-layer integrated membrane. Further, in order to form an external circuit by collecting current, an interconnector 7 made of ceramics having good conductivity is formed on the entire outer peripheral portion of the air electrode 4 in the axial direction so as to be exposed to the outside. And the outermost fuel electrodes 6 are brought into contact with the metal current collectors 8, 9, respectively. Then, they are connected to the fuel electrode 6 'and the interconnector 7' of the other cells by the metal current collectors 8, 9, respectively. In this manner, the fuel cell 1 has a structure in which the cells 3 are arranged in a thin tubular shape and the cells 3 are arranged in a vertical stripe pattern. Therefore, when the fuel cell 1 is operated, the cell 3 is kept at a high temperature of 1000 ° C. to continuously supply oxygen in the air into the inside of the support tube 2 and hydrogen as fuel to the surroundings. Then, in the air electrode 4, oxygen reacts with the electrons flowing in the external circuit and is ionized, and the oxygen ions reach the fuel electrode 6 through the solid electrolyte 5. In the fuel electrode 6, the oxygen ions combine with hydrogen to generate electrons and water, and generate electricity by such an electrochemical reaction. In this case, the electricity of the cell 3 is collected by the interconnector 7 and the metal current collectors 8 and 9 in a reducing atmosphere of hydrogen and is taken out. [0008] In the above-mentioned prior art, the fuel electrode 6 is a cermet containing a certain mixture of nickel and zirconia.
In this configuration, the metal current collectors 8 and 9 are simply brought into contact with each other, so that the current collecting resistance is increased, which causes a decrease in the output of the battery. In addition, since the adjacent cells are connected by the metal current collectors 8 and 9 while being in contact with each other, workability is poor, and it is difficult to obtain a uniform contact resistance. As a method for reducing the current collecting resistance between the air electrode 4 and the fuel electrode 6, it is conceivable to form a metal or a mixture of metals on the outer surfaces of the interconnector 7 and the fuel electrode 6, but the production becomes troublesome. There is a problem that the reduction in contact resistance with other cells cannot be eliminated. SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to improve the configuration of a support tube, a fuel electrode, and a current collector to reduce current collection resistance and simplify the structure. It is. In order to achieve the above object, the present invention relates to a cell comprising a fuel cell, a solid electrolyte, and an air electrode formed at least in a cylindrical shape and laminated in a thin film multilayer in a radial direction. In a cylindrical solid electrolyte fuel cell in which current collecting means is provided for each of the fuel electrode and the air electrode , a metal current collecting portion is provided on the inner peripheral portion, and the collector is provided on the outer peripheral side.
High mixing ratio of lamic and metal mixing ratio on inner circumference
It also functions as a current collecting means and support pipe with a tilted structure
The fuel electrode tube is provided at the center . According to the present invention having the above-described structure, the fuel electrode tube having the function of the fuel electrode has a metal current collector on the inner periphery.
Due to the function of tilting the metal in the thickness direction, it becomes thermally matched in a high-temperature atmosphere. When the battery operates, electrons generated in the fuel electrode tube are collected in the axial direction with low resistance. In a high-temperature atmosphere, the fuel electrode tube is joined to the solid electrolyte and the ceramics by the function of tilting the ceramics in the thickness direction, so that a large adhesive strength is obtained, and the solid electrolyte and the air electrode are also thermally matched. . Therefore, these three members are firmly and integrally connected in the entire region in the circumferential and axial directions, and the cells are supported in this connected state, so that a support or the like becomes unnecessary. Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, the overall configuration of a cylindrical vertical stripe solid electrolyte fuel cell will be described. Reference numeral 1 denotes a solid electrolyte fuel cell, which is a relatively thick tubular fuel electrode tube 1.
0, and a single cell 3 is arranged in the fuel electrode tube 10. The fuel electrode tube 10 is formed as a cermet porous film in which nickel, which is a metal having good conductivity, and stabilized zirconia having good thermal compatibility with the solid electrolyte 5 are mixed, and functions as a fuel electrode throughout the axial direction. Have. In this case, for example, in the case of manufacturing by a thermal spraying method, by controlling the compounding ratio of the material, the stabilized zirconia is increased on the outer peripheral side, and the nickel is compounded on the inner peripheral side so as to increase the nickel. A porous current collecting portion 11 made of only nickel is formed at the innermost periphery and is made to be able to serve both as current collecting and supporting. Next, the structure of the cell 3 will be described. A solid electrolyte 5 made of stabilized zirconia is formed on the outer peripheral side of the fuel electrode tube 10 in substantially the entire area in the axial direction, and similarly on the outer peripheral side of the solid electrolyte 5. An air electrode 4 of a porous film of a composite oxide is formed. In this way, the cylindrical fuel electrode tube 10, the solid electrolyte 5, and the air electrode 4 are laminated in a thin-film multilayer in the radial direction without any gap, thereby forming a substantially three-layer integrated film. Then, the arrangement of the fuel electrode 6 and the air electrode 4 is reversed from that in the conventional case, so that hydrogen is supplied to the inner fuel electrode tube 10 and oxygen in the air is supplied to the outer air electrode 4. On the other hand, since the current is collected to form an external circuit,
A metal current collector ring 12 is attached to one end of the inner fuel electrode tube 10.
Are screwed so as to be in contact with the current collector 11 on the inner periphery.
A current collecting ring 13 is fitted to a part of the air electrode 4,
These current collecting rings 12 and 13 are connected to other cells by a connection 14. Next, the operation of this embodiment will be described. First, when the cell 3 is heated to a high temperature of 1000 ° C. during the operation of the fuel cell 1, the fuel electrode tube 10, the solid electrolyte 5 and the air electrode 4 are heated to a high temperature. Therefore, the fuel electrode tube 10
In this case, the joint portion of the inner periphery of the nickel with the current collector 11 is thermally matched by the function of inclining the nickel in the thickness direction, so that a large adhesive strength is ensured without causing separation or the like even in the high-temperature atmosphere. . The joint between the fuel electrode tube 10 and the solid electrolyte 5 becomes a joint between the stabilized zirconia due to the function of tilting the stabilized zirconia in the thickness direction of the fuel electrode tube 10 and is thermally matched. Further, the solid electrolyte 5 and the air electrode 4
Is naturally joined thermally by joining ceramics. Thus, the fuel electrode tube 10, the solid electrolyte 5
In addition, the air electrode 4 is firmly and integrally bonded in the entire area in the circumferential and axial directions in a high-temperature atmosphere, and the cell 3 is supported in this connected state, so that a support or the like becomes unnecessary. Subsequently, when fuel hydrogen or the like is continuously supplied to the inside of the fuel electrode tube 10 and oxygen in the air is supplied to the surroundings, the fuel electrode tube 10, the solid electrolyte 5 and the air electrode 4 are brought into a state where there is no gap. By laminating the thin film multilayer in the radial direction with, electrochemical reaction occurs in the entire area in the circumferential and axial directions. That is, in the air electrode 4 in the high-temperature atmosphere, oxygen actively reacts with the electrons flowing in the external circuit to be ionized, and the ions pass through the stabilized zirconia solid electrolyte 5 in the high-temperature atmosphere due to its characteristics. Then, in the fuel electrode tube 10, oxygen ions that have passed through the solid electrolyte 5 are actively combined with hydrogen, and a combustion reaction occurs to generate electrons and water, thereby efficiently generating electricity. At this time, the fuel electrode tube 10 generates power in substantially the entire axial direction, and the electrons are generated by the nickel current collector 1 on the inner periphery.
1, the electrons are collected with low resistance, and the electrons are
And the connection 14. In the air electrode 4,
Electrons are favorably introduced by the connection 14 and the current collection ring 13. Although the embodiment of the present invention has been described above, it goes without saying that the present invention can be similarly applied to the case where the material and configuration of the fuel electrode tube are different. As described above , according to the present invention, in a cylindrical solid electrolyte fuel cell, a cylindrical fuel electrode tube having a function of a fuel electrode of a porous membrane in which metal and ceramics are mixed. Since the fuel electrode tube has a metal current collecting portion on the inner periphery, the current collecting resistance particularly in the axial direction on the fuel electrode side can be significantly reduced. Also, fuel electrode
Tubes, are inclined the mixing ratio of the metals and ceramics the thickness direction, the solid electrolyte and thermally at a high temperature atmosphere, which is configured to mechanically strong coupling, the support or the like not
It can be important. As a result, the cell structure is simplified.
Can be Therefore, cylindrical solid electrolyte fuel cells
Production time can be shortened, thus reducing costs
Can be achieved. Since the fuel electrode tube is made of a metal and ceramic material, the cost can be reduced. Furthermore, since the cylindrical fuel electrode tube, the solid electrolyte, and the air electrode are formed as a cylindrical vertical stripe in a radially stacked state with no gaps, the power generation efficiency is improved . Furthermore, since the adjacent cells are connected by the current collecting ring and the connection, the present invention is excellent in terms of workability and reduction in resistance when modularized.

【図面の簡単な説明】 【図1】この発明に係る円筒形固体電解質燃料電池の実
施例を示す断面図である。 【図2】同実施例の全体の斜視図である。 【図3】従来の円筒縦縞形固体電解質燃料電池を示す断
面図である。 【符号の説明】 1…円筒形固体電解質燃料電池、 3…セル、 4…空
気電極、 5…固体電解質、 10…燃料電極管、 1
1…集電部。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an embodiment of a cylindrical solid oxide fuel cell according to the present invention. FIG. 2 is an overall perspective view of the embodiment. FIG. 3 is a cross-sectional view showing a conventional cylindrical vertical stripe solid electrolyte fuel cell. [Description of Signs] 1 ... Cylindrical solid electrolyte fuel cell, 3 ... Cell, 4 ... Air electrode, 5 ... Solid electrolyte, 10 ... Fuel electrode tube, 1
1 ... current collector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式 会社フジクラ内 (72)発明者 小野 幹幸 東京都江東区木場一丁目5番1号 株式 会社フジクラ内 (56)参考文献 特開 平3−95859(JP,A) 特開 平5−13090(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02 H01M 8/12 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Satoru Yamaoka 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Mikiyuki Ono 1-1-1, Kiba, Koto-ku, Tokyo Co., Ltd. In Fujikura (56) References JP-A-3-95859 (JP, A) JP-A-5-13090 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/02 H01M 8/12

Claims (1)

(57)【特許請求の範囲】 【請求項1】 少なくとも筒状に形成される燃料電極、
固体電解質及び空気電極を径方向に薄膜多層に積層して
セルが構成され、これら燃料電極と空気電極とにそれぞ
れ集電手段が設けられた円筒形固体電解質燃料電池にお
いて、内周部に金属製の集電部を備え、外周側でセラミックの
配合割合が多く、かつ内周側で金属の配合割合が多い傾
斜構造の集電手段と支持管との機能を兼ねた燃料電極管
が中心部に設けられている ことを特徴とする円筒形固体
電解質燃料電池。
(57) Claims 1. A fuel electrode formed at least in a cylindrical shape,
A cell is formed by laminating a solid electrolyte and an air electrode in a thin film multilayer in the radial direction, and in a cylindrical solid electrolyte fuel cell in which a current collecting means is provided for each of the fuel electrode and the air electrode , a metal material is formed on an inner peripheral portion. With a current collector, and a ceramic
Increasing the mixing ratio and increasing the metal mixing ratio on the inner circumference side
Fuel electrode tube that has the function of the current collector and support tube of the oblique structure
A cylindrical solid electrolyte fuel cell characterized in that is provided at the center .
JP04967194A 1994-02-23 1994-02-23 Cylindrical solid electrolyte fuel cell Expired - Fee Related JP3487630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04967194A JP3487630B2 (en) 1994-02-23 1994-02-23 Cylindrical solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04967194A JP3487630B2 (en) 1994-02-23 1994-02-23 Cylindrical solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH07235316A JPH07235316A (en) 1995-09-05
JP3487630B2 true JP3487630B2 (en) 2004-01-19

Family

ID=12837642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04967194A Expired - Fee Related JP3487630B2 (en) 1994-02-23 1994-02-23 Cylindrical solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3487630B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ315499A0 (en) * 1999-09-29 1999-10-21 Ceramic Fuel Cells Limited Fuel cell assembly
KR100681007B1 (en) * 2006-04-04 2007-02-09 한국에너지기술연구원 The sealing element for anode-supported tubular solid oxide fuel cell, and the sealing method of the same
JP2008041493A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Tube type fuel cell
JP5299753B2 (en) * 2008-06-27 2013-09-25 Toto株式会社 Fuel cell unit
JP2010055862A (en) * 2008-08-27 2010-03-11 Toto Ltd Fuel cell unit
TWI379455B (en) * 2009-05-15 2012-12-11 Univ Nat Taiwan Science Tech Solid oxide fuel cell (sofc) device having gradient interconnect and fabrication method thereof
KR101109233B1 (en) 2009-08-04 2012-01-30 삼성전기주식회사 Fuel cell comprising manifold capable of current collecting
JP5703355B2 (en) * 2013-09-06 2015-04-15 日本碍子株式会社 Fuel cell

Also Published As

Publication number Publication date
JPH07235316A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
JP5234554B2 (en) Solid oxide fuel cell stack structure
US7816055B2 (en) Compact fuel cell
US7740966B2 (en) Electrochemical cell stack assembly
US8173322B2 (en) Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections
US20120009497A1 (en) Electrochemical cell holder and stack
JPH0159705B2 (en)
JP2004146345A (en) Fuel cell
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP3487630B2 (en) Cylindrical solid electrolyte fuel cell
KR20120033661A (en) Metal-supported solid oxide fuel cell and manufacturing method
JP6982582B2 (en) Electrochemical reaction cell stack
JP2022112590A (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP3688305B2 (en) Cylindrical solid electrolyte fuel cell
US9123945B2 (en) Fuel cell with electrolyte electrode assembly projections forming reactant gas channel
JP2003086204A (en) Solid electrolyte type fuel cell
JP7104129B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6917398B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7288928B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH07245107A (en) Solid electrolyte fuel cell
JP7465849B2 (en) Electrochemical reaction single cells and electrochemical reaction cell stacks
JP7194070B2 (en) Electrochemical reaction cell stack
JP7301094B2 (en) Electrochemical reaction cell stack
JP2002358989A (en) Gas preheating device for fuel cell
JP2003109646A (en) Gas supply pipe structure for fuel cell
JP2816471B2 (en) Solid oxide fuel cell module

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees