JPH07123046B2 - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH07123046B2
JPH07123046B2 JP60216528A JP21652885A JPH07123046B2 JP H07123046 B2 JPH07123046 B2 JP H07123046B2 JP 60216528 A JP60216528 A JP 60216528A JP 21652885 A JP21652885 A JP 21652885A JP H07123046 B2 JPH07123046 B2 JP H07123046B2
Authority
JP
Japan
Prior art keywords
electrode
molten carbonate
gas
support plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60216528A
Other languages
Japanese (ja)
Other versions
JPS6276261A (en
Inventor
信和 鈴木
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60216528A priority Critical patent/JPH07123046B2/en
Publication of JPS6276261A publication Critical patent/JPS6276261A/en
Publication of JPH07123046B2 publication Critical patent/JPH07123046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、溶融炭酸塩型燃料電池に係わり、特に多孔質
電極板へのガス供給路の構造に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a molten carbonate fuel cell, and more particularly to the structure of a gas supply path to a porous electrode plate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、高能率のエネルギー変換装置として溶融炭酸塩型
燃料電池の開発が進められている。溶融炭酸塩型燃料電
池は、対向配置された一対のガス拡散電極板、すなわち
酸化剤極および燃料極と、これら電極間に介在させたア
ルカリ炭酸塩を電解質とする電解質層とからなる単位電
池を、例えばインターコネクタを介して複数積層して構
成される。そして、運転時においては、上記アルカリ炭
酸塩を600〜700℃の高温下で溶融状態にし、この炭酸塩
と各電極板に拡散された酸化剤ガスおよび燃料ガスとを
反応させて電気化学的プロセスによって直流出力を得る
ものである。
In recent years, a molten carbonate fuel cell has been developed as a highly efficient energy conversion device. A molten carbonate fuel cell is a unit cell composed of a pair of gas diffusion electrode plates arranged opposite to each other, that is, an oxidizer electrode and a fuel electrode, and an electrolyte layer having an alkali carbonate as an electrolyte interposed between these electrodes. , For example, a plurality of layers are stacked via an interconnector. Then, during operation, the alkali carbonate is brought into a molten state at a high temperature of 600 to 700 ° C., and the carbonate is reacted with the oxidant gas and the fuel gas diffused in each electrode plate to perform an electrochemical process. To obtain a DC output.

ところで、前述した起電反応は多孔質電極における電
極、炭酸塩および反応ガスからなる反応サイト(三相界
面)で生じる。この起電反応を効率良く進行させるに
は、上記反応サイトへ反応ガスを均一に分配・供給する
ためのガス供給路を形成しなければならない。
By the way, the above-mentioned electromotive reaction occurs at the reaction site (three-phase interface) of the electrode, the carbonate and the reaction gas in the porous electrode. In order to allow this electromotive reaction to proceed efficiently, it is necessary to form a gas supply path for uniformly distributing and supplying the reaction gas to the reaction site.

第8図は、従来のガス供給路の構造を示したもので、同
図(a)に示すものは、セパレータ1上にガス供給路の
確保および集電機能を有する波板2を設置して、この上
に集電板3、電極4および電解質層5などを配置する構
造のもの、同図(b)に示すものは、厚い多孔質体から
なる電極6に溝7を形成し、この溝7をガス通路とした
もの(リブ電極型)である。
FIG. 8 shows the structure of a conventional gas supply passage. The structure shown in FIG. 8 (a) has a corrugated plate 2 having a gas supply passage and a current collecting function installed on a separator 1. The structure shown in FIG. 2B in which the current collector plate 3, the electrode 4, the electrolyte layer 5 and the like are arranged on top of this has a groove 7 formed in an electrode 6 made of a thick porous body, and this groove is formed. 7 is a gas passage (rib electrode type).

しかしながら、このように構成された従来の溶融炭酸塩
型燃料電池では、次のような問題があった。
However, the conventional molten carbonate fuel cell thus configured has the following problems.

すなわち、この種の電池では、通常、単位電池の端部に
反応ガスの意図しない側への漏洩を防止するためのウェ
ットシールを形成する。このウェットシールは、セパレ
ータ1の端部に土手部8を形成し、この土手部8と電解
質層5との間にしみでた溶融炭酸塩によって形成され
る。しかしながら、通常、この土手部8の厚みt1と、波
板2+集電板3+電極4の厚みt2(或は電極6の厚みt
2)とは、電池組立て時には略同一寸法であっても運転
時においては熱膨脹によって変化し、しかもそれぞれを
構成する材質が異なることから、両者が全く同一の変化
を示すことはなく、両者の間に寸法差を生じてしまう。
このように寸法差を生じると、電解質層5に過大な応力
が作用してクラックが発生したり、また、土手部8と電
解質層5との間に隙間を生じてガスの漏洩が発生すると
いう問題があった。
That is, in this type of battery, a wet seal is usually formed at the end of the unit battery to prevent the reaction gas from leaking to the unintended side. This wet seal is formed by forming a bank portion 8 at the end of the separator 1 and using molten carbonate that is a stain between the bank portion 8 and the electrolyte layer 5. However, normally, the thickness t1 of this bank portion 8 and the thickness t2 of the corrugated plate 2 + current collector plate 3 + electrode 4 (or the thickness t of the electrode 6)
2) means that even if the batteries have almost the same dimensions when assembled, they change due to thermal expansion during operation, and because the materials that make up each differ, they do not show exactly the same change. Cause a dimensional difference.
When such a dimensional difference occurs, excessive stress acts on the electrolyte layer 5 to cause cracks, and a gap is generated between the bank portion 8 and the electrolyte layer 5 to cause gas leakage. There was a problem.

〔発明の目的〕[Object of the Invention]

本発明は、このような問題を考慮してなされたもので、
その目的とするところは、電極支持構造部の局所的な寸
法変化を防止し、電解質層のクラックや電池端部でのガ
スの漏洩等の問題を起こすことのない溶融炭酸塩型燃料
電池を提供することにある。
The present invention has been made in consideration of such problems,
The purpose is to provide a molten carbonate fuel cell that prevents local dimensional changes in the electrode support structure and does not cause problems such as cracks in the electrolyte layer or gas leakage at the cell edges. To do.

〔発明の概要〕[Outline of Invention]

本発明は、溶融炭酸塩電解質層の両面に一対の多孔質電
極を配してなる単位電池の両側に、上記多孔質電極へ反
応ガスを導く多孔質体からなる電極支持板を配置すると
ともに、上記電極支持板の周縁部で上記反応ガスの導入
および排出に供されない部分にガスシール部を一体に形
成したことを特徴としている。
The present invention, on both sides of the unit battery formed by arranging a pair of porous electrodes on both sides of the molten carbonate electrolyte layer, while arranging an electrode support plate made of a porous body for guiding a reaction gas to the porous electrode, It is characterized in that a gas seal portion is integrally formed at a peripheral portion of the electrode support plate which is not used for introducing and discharging the reaction gas.

〔発明の効果〕〔The invention's effect〕

本発明によれば、電極支持板の周縁部で反応ガスの導入
および排出に供されない部分に一体的にガスシール部を
形成しているので、電極支持板に局所的な寸法変化が生
じることがない。そして、この電極支持板で電極や電解
質層を支持するようにしているので、電解質層の一部に
過大な応力が作用してクラックが発生するような問題
や、単位電池の端部でガスが漏洩するという問題を解決
できる。
According to the present invention, since the gas seal portion is integrally formed at the peripheral portion of the electrode supporting plate that is not used for introducing and discharging the reaction gas, a local dimensional change may occur in the electrode supporting plate. Absent. Since the electrode and the electrolyte layer are supported by this electrode support plate, a problem that excessive stress acts on a part of the electrolyte layer to cause cracks, or gas is generated at the end of the unit battery. The problem of leakage can be solved.

したがって、本発明によれば、耐熱サイクル性能および
ガスの利用率の向上化を図ることができる。
Therefore, according to the present invention, the heat cycle performance and the gas utilization rate can be improved.

〔発明の実施例〕Example of Invention

以下、図面を参照しながら本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

〈実施例1〉 第1図に示すように、気孔率90%、厚さ1.2mmのNiの多
孔質体(発泡メタル)からなる電極支持板11の一対の対
向端部、すなわち電極支持板11の周縁部で後述する燃料
ガスPの導入および排出に供されない部分に、アルミナ
微粉のスラリーを含浸し、端部から5mmの部分に析出さ
せた後、その部分に溶融塩を十分に含浸してち密構造部
12を形成し、これをガスシール部とした。この電極支持
板11の上に、電極(アノード)13、電解質層14および電
極(カソード)15を積層し、さらにその上に上述と同様
の方法にて形成された別の電極支持板16を積層した。な
お、電極支持板11と電極支持板16とは、それぞれのち密
構造部12を90°異ならせて配置した。このような積層体
の両面に導電性のセパレータ板17を配置して100mm角の
単位電池18を構成した。
<Example 1> As shown in FIG. 1, a pair of opposite ends of an electrode supporting plate 11 made of a Ni porous body (foamed metal) having a porosity of 90% and a thickness of 1.2 mm, that is, the electrode supporting plate 11 A portion of the peripheral portion of the above which is not used for introduction and discharge of fuel gas P described later is impregnated with a slurry of alumina fine powder and deposited on a portion 5 mm from the end portion, and then that portion is sufficiently impregnated with molten salt. Dense structure part
12 was formed and this was made into the gas seal part. An electrode (anode) 13, an electrolyte layer 14, and an electrode (cathode) 15 are laminated on this electrode supporting plate 11, and another electrode supporting plate 16 formed by the same method as described above is further laminated thereon. did. Note that the electrode support plate 11 and the electrode support plate 16 were arranged with the dense structure portions 12 being different by 90 °. A 100 mm square unit battery 18 was constructed by disposing conductive separator plates 17 on both surfaces of such a laminate.

この単位電池18を650℃に昇温して、図示のように電極
支持板11に燃料ガスPを、また電極支持板16に酸化剤ガ
スQをそれぞれ直交するように供給し、起電反応を生じ
させた。そして、200〜650℃の温度サイクルで繰返し運
転し、650℃、150mA/cm2の時の電圧を測定したところ、
30サイクルを超えても初期値の±5%の値を維持し続け
た。
The unit battery 18 is heated to 650 ° C., the fuel gas P is supplied to the electrode support plate 11 and the oxidant gas Q is supplied to the electrode support plate 16 so as to be orthogonal to each other as shown in the figure, and the electromotive reaction is performed. Caused. Then, when repeatedly operating at a temperature cycle of 200 to 650 ° C. and measuring the voltage at 650 ° C. and 150 mA / cm 2 ,
The value of ± 5% of the initial value was maintained even after 30 cycles.

〈実施例2〉 第2図に示すように、気孔率90%、厚さ1.2mmのNi多孔
質体からなる電極支持板21の一対の対向する端部に実施
例1と同様の方法にてち密構造部22を形成し、これをガ
スシール部とした。さらにこの電極支持板21の上面に、
平均孔径3μmのNi微粉をスラリー状にして塗布し、ち
密な層23を形成した。そして、このち密な層23を電極と
した。
<Example 2> As shown in FIG. 2, the same method as in Example 1 was applied to a pair of opposing ends of an electrode supporting plate 21 made of a Ni porous body having a porosity of 90% and a thickness of 1.2 mm. The dense structure portion 22 was formed and used as a gas seal portion. Furthermore, on the upper surface of this electrode support plate 21,
Ni fine powder having an average pore diameter of 3 μm was applied in a slurry form to form a dense layer 23. Then, the dense layer 23 was used as an electrode.

〈実施例3〉 前記実施例1の電極支持板11におけるち密部12の厚みを
電極13の厚み分だけ厚くして、第3図に示すような電極
支持板31を形成し、この厚肉のち密構造部32をガスシー
ル部とした。そして、厚肉部によって形成される溝に電
極33を嵌合し、電極および電極支持板の結合体を構成し
た。
<Embodiment 3> The dense portion 12 of the electrode support plate 11 of the first embodiment is thickened by the thickness of the electrode 13 to form an electrode support plate 31 as shown in FIG. The dense structure portion 32 was used as the gas seal portion. Then, the electrode 33 was fitted in the groove formed by the thick portion to form a combined body of the electrode and the electrode support plate.

ちなみに上記実施例1,2では、電極と電極支持板の縦横
寸法を同じにしている。なぜなら、電極が極めて薄いた
め、溶融炭酸塩が十分に含浸し、電極端部における反応
ガスの漏洩は殆どないと考えられるからである。しか
し、この実施例3の構造であると、電極端部のシール性
能を更に高められる。
By the way, in Examples 1 and 2 described above, the vertical and horizontal dimensions of the electrode and the electrode support plate are the same. This is because it is considered that the electrode is extremely thin, so that it is sufficiently impregnated with the molten carbonate and there is almost no leakage of the reaction gas at the end of the electrode. However, with the structure of the third embodiment, the sealing performance of the electrode end portion can be further improved.

〈実施例4〉 気孔率90%、厚さ1.2mmのNi多孔質体からなる電極支持
板41の両端部を第4図に示すように圧縮して潰し、この
部分を実施例1と同様な方法でち密構造部42に形成し、
ガスシール部を形成した。セパレータ43の端部には、上
記電極支持板41の両端部と嵌合するような土手部44を形
成した。
<Example 4> Both ends of an electrode support plate 41 made of a Ni porous body having a porosity of 90% and a thickness of 1.2 mm were compressed and crushed as shown in FIG. Formed in the dense structure portion 42 by the method,
A gas seal was formed. At the end of the separator 43, a bank portion 44 that fits with both ends of the electrode support plate 41 was formed.

〈実施例5〉 第5図に示すように、気孔率94%、厚さ1.2mmのNi多孔
質体からなる電極支持板51の両端部を、厚さ0.2mmのFe-
Cr-Al合金の薄板52でコの字状に覆い、一体に接合して
ガスシール部を形成した。
<Embodiment 5> As shown in FIG. 5, both ends of an electrode support plate 51 made of a Ni porous body having a porosity of 94% and a thickness of 1.2 mm were attached to a Fe-layer having a thickness of 0.2 mm.
A thin plate 52 of Cr-Al alloy was covered in a U-shape and integrally bonded to form a gas seal portion.

〈実施例6〉 実施例2の一体型電極支持板に、第6図に示すように、
放電加工によってガス通流のための複数の溝61を形成
し、電極支持板62を形成した。
<Example 6> As shown in FIG. 6, the integrated electrode support plate of Example 2 was prepared.
A plurality of grooves 61 for gas flow were formed by electric discharge machining, and an electrode support plate 62 was formed.

〈実施例7〉 上記実施例6の電極支持板62の溝61によって形成される
複数の突条を第7図に示すように、リブ71によって連結
し、強度を増した電極支持板72を形成した。
<Embodiment 7> As shown in FIG. 7, a plurality of ridges formed by the grooves 61 of the electrode support plate 62 of Embodiment 6 are connected by ribs 71 to form an electrode support plate 72 having increased strength. did.

上記実施例2〜実施例7の各電極支持板を使用した単位
電池について、実施例1と同様な試験を行なったとこ
ろ、実施例1と同様に良好な経時特性を得ることができ
た。
The same tests as in Example 1 were performed on the unit batteries using the electrode support plates of Examples 2 to 7 above, and as a result, good aging characteristics could be obtained as in Example 1.

一方、比較のために第8図に示した従来の単位電池につ
いて前述と同様の試験を行なったところ、10サイクル以
降で大幅な性能劣化を生じた。
On the other hand, when the conventional unit battery shown in FIG. 8 was tested in the same manner as described above for comparison, a significant performance deterioration occurred after 10 cycles.

なお、本発明は、上述した実施例に限定されるものでは
ない。
The present invention is not limited to the above embodiment.

上記実施例では電極支持板としてNiの発泡メタルを使用
したが、例えばNi系合金、ステンレス綱系金属等、他の
発泡メタルを用いても良い。また、通常の粉末焼結体や
金属繊維の焼結体からなる多孔質体を用いても良い。
Although the foam metal of Ni is used as the electrode support plate in the above embodiment, other foam metal such as Ni-based alloy or stainless steel-based metal may be used. Further, a porous body made of an ordinary powder sintered body or a metal fiber sintered body may be used.

また、本発明では、反応ガスを外部マニホールドから供
給し、電極支持板の内部を直交方向で通流させるものを
用いたが、内部マニホールドなど他のマニホールドタイ
プの燃料電池に適用することも可能である。この場合に
はち密構造のガスシール部を電極支持板の周縁部全周に
形成する必要がある。
Further, in the present invention, the one in which the reaction gas is supplied from the external manifold and the inside of the electrode supporting plate is made to flow in the orthogonal direction is used, but it is also applicable to other manifold type fuel cells such as the internal manifold. is there. In this case, it is necessary to form a gas-sealed portion having a dense structure all around the periphery of the electrode support plate.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
の単位電池の構成を示す斜視図、第2図〜第7図は本発
明の他の実施例に係る電極支持体をそれぞれを示す図、
第8図は従来の単位電池の一部構成を示す断面図であ
る。 1,17……セパレータ、2……波板、3……集電板、4,6,
13,15,33……電極、5,14……電解質層、8,44……土手
部、11,16,21,31,41,51,62,72……電極支持板、12,22,3
2,42……ち密構造部、23……ち密な層、52……薄板、P
……燃料ガス、Q……酸化剤ガス。
FIG. 1 is a perspective view showing the structure of a unit cell of a molten carbonate fuel cell according to an embodiment of the present invention, and FIGS. 2 to 7 show electrode supports according to other embodiments of the present invention. Showing the figure,
FIG. 8 is a sectional view showing a partial configuration of a conventional unit battery. 1,17 ... Separator, 2 ... Corrugated plate, 3 ... Current collector plate, 4,6,
13,15,33 …… Electrode, 5,14 …… Electrolyte layer, 8,44 …… Bank portion, 11,16,21,31,41,51,62,72 …… Electrode support plate, 12,22, 3
2,42 ... Dense structure part, 23 ... Dense layer, 52 ... Thin plate, P
…… Fuel gas, Q …… Oxidizer gas.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】溶融炭酸塩電解質層の両面に一対の多孔質
電極を配してなる単位電池と、この単位電池の両側に配
置され、前記多孔質電極へ反応ガスを導く多孔質体から
なる電極支持板とを具備し、前記電極支持板の周縁部で
前記反応ガスの導入および排出に供されない部分にガス
シール部を一体に形成したことを特徴とする溶融炭酸塩
型燃料電池。
1. A unit cell comprising a pair of porous electrodes on both sides of a molten carbonate electrolyte layer, and a porous body disposed on both sides of the unit cell to guide a reaction gas to the porous electrode. A molten carbonate fuel cell, comprising: an electrode supporting plate, wherein a gas seal part is integrally formed at a peripheral portion of the electrode supporting plate that is not used for introducing and discharging the reaction gas.
【請求項2】前記ガスシール部は、前記電極支持板の前
記部分を他の部分よりもち密に形成し、この部分に溶融
炭酸塩を含浸してなるものであることを特徴とする特許
請求の範囲第1項記載の溶融炭酸塩型燃料電池。
2. The gas seal portion is characterized in that the portion of the electrode support plate is formed more densely than other portions, and this portion is impregnated with molten carbonate. 2. A molten carbonate fuel cell according to claim 1.
【請求項3】前記ガスシール部は、前記電極支持板の前
記部分を金属の薄板で覆ってなるものであることを特徴
とする特許請求の範囲第1項記載の溶融炭酸塩型燃料電
池。
3. The molten carbonate fuel cell according to claim 1, wherein the gas seal portion is formed by covering the portion of the electrode support plate with a thin metal plate.
JP60216528A 1985-09-30 1985-09-30 Molten carbonate fuel cell Expired - Fee Related JPH07123046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216528A JPH07123046B2 (en) 1985-09-30 1985-09-30 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216528A JPH07123046B2 (en) 1985-09-30 1985-09-30 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS6276261A JPS6276261A (en) 1987-04-08
JPH07123046B2 true JPH07123046B2 (en) 1995-12-25

Family

ID=16689841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216528A Expired - Fee Related JPH07123046B2 (en) 1985-09-30 1985-09-30 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH07123046B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264874A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Electrode plate for molten carbonate fuel cell and its manufacture
US6379833B1 (en) * 1998-08-07 2002-04-30 Institute Of Gas Technology Alternative electrode supports and gas distributors for molten carbonate fuel cell applications
DE10056535C2 (en) * 2000-11-15 2003-06-12 Mtu Friedrichshafen Gmbh A fuel cell assembly

Also Published As

Publication number Publication date
JPS6276261A (en) 1987-04-08

Similar Documents

Publication Publication Date Title
US5328779A (en) Fuel cell battery and solid electrolyte fuel cells therefore
US5288562A (en) Solid electrolyte fuel cell
EP0188873B1 (en) Lightweight bipolar metal-gas battery
EP1618619A2 (en) Solid oxide fuel cell stack with floating cells
EP0551380B1 (en) Hollow electrode for an electrochemical cell provided with at least one inlet and one outlet opening for gases, and also electrochemical cell which contains such an electrode
JP2002343376A (en) Lamination structure of plate-shaped solid oxide fuel cell
JPH07123046B2 (en) Molten carbonate fuel cell
JP3096721B2 (en) Disc-stacked solid electrolyte fuel cell
JP2002533869A (en) PEM fuel cell with improved long-term performance, method of operating PEM fuel cell, and PEM fuel cell storage battery
JPS59154772A (en) Fuel cell
JP2547743B2 (en) Method for manufacturing electrode support plate for molten carbonate fuel cell
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
JP4240285B2 (en) Method for producing gas diffusion layer of polymer electrolyte fuel cell
JPH1125999A (en) Solid electrolyte fuel cell
JP3102052B2 (en) Solid oxide fuel cell
JPH06196198A (en) Solid electrolyte type fuel cell
JPS5927466A (en) Fuel cell
JP7237043B2 (en) Electrochemical reaction cell stack
JPH0766822B2 (en) Method for manufacturing electrode support plate in molten carbonate fuel cell
JP7210509B2 (en) Electrochemical reaction cell stack
JPH0850911A (en) Platelike solid electrolytic fuel cell
JPH039589B2 (en)
JPH11185774A (en) Stack structure of unit cell for solid electrolyte fuel cell
JP2000306590A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees