JPS58131666A - Fused salt type fuel cell - Google Patents

Fused salt type fuel cell

Info

Publication number
JPS58131666A
JPS58131666A JP57014013A JP1401382A JPS58131666A JP S58131666 A JPS58131666 A JP S58131666A JP 57014013 A JP57014013 A JP 57014013A JP 1401382 A JP1401382 A JP 1401382A JP S58131666 A JPS58131666 A JP S58131666A
Authority
JP
Japan
Prior art keywords
electrolyte
anode
cathode
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57014013A
Other languages
Japanese (ja)
Other versions
JPH0349181B2 (en
Inventor
Hideo Okada
秀夫 岡田
Masahito Takeuchi
将人 竹内
Shigeru Okabe
岡部 重
Hiroshi Hida
飛田 紘
Munehiko Tonami
戸波 宗彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57014013A priority Critical patent/JPS58131666A/en
Publication of JPS58131666A publication Critical patent/JPS58131666A/en
Publication of JPH0349181B2 publication Critical patent/JPH0349181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a fuel cell where high performance can be maintained for long term, by previously holding more electrolyte than that required for reacting with an electrode material in a thin hole of an anode and/or cathode thereby preventing the flow-out and movement of the electrolyte from an electrolytic member to the electrode. CONSTITUTION:More electrolyte than that required for reacting with an electrode material is held in thin hole of an anode and/or cathode. When all holes are filled with the electrolyte, the dispersion of the reaction gas is slowed considerably thereby the three-phase interface is not formed easily to deteriorate the electrochemical reaction. In order to promote the electrochemical reaction, the holding amount is preferable to be more than that required for the electrode material while less than 50vol.% of the electrode thin hole volume. When it will exceed over 50vol.%, the gas diffusion is deteriorated to deteriorate the cell performance.

Description

【発明の詳細な説明】 本発明は浴−塩型燃料電池に係9、特に糞期にわたり安
定した電池性aを維持するのに好適な電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bath-salt fuel cell, and particularly to an electrode suitable for maintaining stable cell performance over a period of time.

118塩型燃料電池はアノード及びカソードの両極間に
配設される電解質体とアノード及びカソードに反応ガス
を供給するガス室を配設したセパレータから構成される
。電解質体はアルカリ炭酸塩@解質とそれを保持するマ
トリックス材から成り、電池作動の650C付近で電解
質は#融して雌状とな9マトリツクス材に保持されてい
る。しかしながら、#!融電電解質電解質体と密着して
いるアノード及びカソードに吸収される開成がメジ、電
極材料によっては電解質と反応してしまい、電解質体の
電解質量が減少し、イオン電導性が着しくそこなわれ電
池性能が低下する。一方、電解質が不足状態となつ九電
解質体は小さな空孔が発生し、アノードガスがカソード
側に流出しf#−9、筐たその逆の現象が生じ、電池性
能1発電効率が低トし、ひいては電池運転が不可能とな
る。
A 118 salt fuel cell is composed of an electrolyte body disposed between an anode and a cathode, and a separator provided with a gas chamber for supplying a reactive gas to the anode and cathode. The electrolyte body consists of an alkali carbonate@solite and a matrix material that holds it, and at around 650C during battery operation, the electrolyte melts into a female shape and is held in the matrix material. however,#! The electrolyte absorbed by the anode and cathode that are in close contact with the electrolyte body may react with the electrolyte depending on the electrode material, reducing the electrolyte mass of the electrolyte body and seriously damaging ionic conductivity. Battery performance deteriorates. On the other hand, small pores are generated in the electrolyte body when the electrolyte is in a state of insufficient electrolyte, and the anode gas flows out to the cathode side. As a result, battery operation becomes impossible.

本発明の目的は以上の橡な従来技術の欠点を補い長期に
わ九って高性能′に維持する燃料電池を提供することに
るる。
The object of the present invention is to provide a fuel cell which compensates for the disadvantages of the above-mentioned conventional techniques and maintains high performance over a long period of time.

本発@OR1!llするとζろは、めらかしめアノード
及び/又はカソード0IIA孔内にその電極材料と反応
するよりも多くの電解質を保持しておくことによシ、電
解質体から電極への電解質の流出、移動を防ぐにある。
Original @OR1! In this case, by retaining more electrolyte in the anode and/or cathode pores than will react with its electrode material, the flow of electrolyte from the electrolyte body to the electrode is reduced. The purpose is to prevent

ところで、f#融塩置燃料電aは電極と電解質及び反応
ガスが接触する三、相界面において電気化学反応が進行
する。
By the way, in the f# molten salt fuel cell a, an electrochemical reaction proceeds at the phase interface where the electrode, electrolyte, and reactant gas contact each other.

wLyf6′j[を電極細孔内に保持Tるにめ友って、
電解質が電極細孔の全てに充満した場合には反応ガスの
拡散が看しく遅くなり、三相界面、が形成されに<<1
気化学反応が損われる。したがって、電気化学反応を有
効に進めるためのその保持量としては、′電極材料と反
応するよりも多くの量で、かつ電極細孔容積のs o 
vat%以下でめることが望ましいa s o vot
%以上ではガス拡散が悪くなり区池性−ヒが低下する。
To hold wLyf6'j in the electrode pore,
If the electrolyte fills all of the electrode pores, the diffusion of the reactant gas will be unbelievably slow, and a three-phase interface will be formed.
Gas chemical reactions are impaired. Therefore, in order to effectively proceed with the electrochemical reaction, the retained amount must be greater than the amount that reacts with the electrode material, and the amount so
It is preferable that it is less than VAT%.aso vot
% or more, gas diffusion becomes poor and the water resistance decreases.

以F1本発明t−夾施別により場らに詳細に睨明する。Hereinafter, the present invention will be discussed in detail in detail.

実施例1 めらかしめリチウム化した多孔質ニッケル焼結俸鑞極(
100X100■、厚さ1.5■、気孔率59%)にア
ルカリ炭酸塩!IL解質(層数すチウム士炭酸カリウム
=62:38モル比)4.42gを均一にふりかけ電気
炉に入れて530C,1時間テラ本雰囲気中で加熱し、
電極細孔内に電解質を含浸した。電解質の担持量は電極
一孔谷遣V約25100%でめった。ζ0(41it−
アノード及びカソードに用い単電池を構成し、反応ガス
としてアノード111150%水素−テラ票、カソード
111t125%酸素−25%炭酸ガスーチッ素から成
る混合ガスを用い6500で電池性能を測定した。ぞV
給米、電流密度100mA15I”において初期性舵が
α72V、100時間経過後で0.77V、200時間
経過後でα75Vでめった。
Example 1 Smooth lithiated porous sintered nickel electrode (
100X100■, thickness 1.5■, porosity 59%) and alkaline carbonate! Sprinkle 4.42 g of IL solute (layered potassium carbonate = 62:38 molar ratio) and heat in an electric furnace at 530C for 1 hour in a hot atmosphere.
Electrolyte was impregnated into the electrode pores. The amount of electrolyte supported was approximately 25,100% per hole in the electrode. ζ0(41it-
A cell was constructed using the anode and cathode, and the cell performance was measured at 6500 using a mixed gas consisting of 50% hydrogen-TERA for the anode 111 and 125% oxygen-25% carbon dioxide-nitrogen for the cathode 111T as the reactive gas. zoV
When rice was fed and the current density was 100mA15I'', the initial rudder was α72V, 0.77V after 100 hours, and α75V after 200 hours.

比較例1 多孔質ニッケル11ft体電1j(100X100m。Comparative example 1 Porous nickel 11ft body electric 1j (100X100m.

厚さ1.!s■、気孔率59%)をアノード及びカソー
ドに用い単電池を#成し%11!11it同じ条汗で電
池性能tIllllぺた。電流密度100mA/crn
”において初期電池性能はα78Vを示したが50時間
経過後ではo、azvtで低下した。またこのときカン
ード側出ロガスをガスクロマトグラフで分析したところ
水素がα38 VOt%検出され、アノードガスがカソ
ードガス儒ヘクロスオーパしたことが罐められ九。
Thickness 1. ! s ■, porosity 59%) was used for the anode and cathode to form a single cell.The battery performance was 11!11it with the same porosity. Current density 100mA/crn
”, the initial battery performance showed α78V, but after 50 hours, it decreased to o, azvt. At this time, when the log gas emitted from the cando side was analyzed by gas chromatography, hydrogen was detected at α38 VOt%, and the anode gas was the cathode gas. It has been reported that Confucianism was a cross-over.

Claims (1)

【特許請求の範囲】[Claims] 1、アノード及びカソードと両電極間に配設される電解
質体と燃料及び酸化剤がそれぞれアノード側に配設され
る燃料室及びカソード側に配設される酸化剤呈に供給さ
れることにより、電気化学的に発電ぜ°る燃料電池にお
いて、アノード及び/又はカソードの細孔内にその電極
材料と反応するよりも多くの電解質が保持されることを
特徴とする浴融塩型燃料電池。
1. The electrolyte body, fuel, and oxidizer disposed between the anode and cathode and both electrodes are supplied to the fuel chamber disposed on the anode side and the oxidizer chamber disposed on the cathode side, respectively. 1. A fuel cell that generates electricity electrochemically, characterized in that more electrolyte is retained in the pores of the anode and/or cathode than reacts with the electrode material thereof.
JP57014013A 1982-01-29 1982-01-29 Fused salt type fuel cell Granted JPS58131666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57014013A JPS58131666A (en) 1982-01-29 1982-01-29 Fused salt type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57014013A JPS58131666A (en) 1982-01-29 1982-01-29 Fused salt type fuel cell

Publications (2)

Publication Number Publication Date
JPS58131666A true JPS58131666A (en) 1983-08-05
JPH0349181B2 JPH0349181B2 (en) 1991-07-26

Family

ID=11849306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57014013A Granted JPS58131666A (en) 1982-01-29 1982-01-29 Fused salt type fuel cell

Country Status (1)

Country Link
JP (1) JPS58131666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133063A (en) * 1989-10-19 1991-06-06 Hitachi Ltd Molten carbonate fuel cell
JP2008166195A (en) * 2006-12-28 2008-07-17 Doosan Heavy Industries & Construction Co Ltd Manufacturing method of electrolyte impregnating air pole of fused carbonate fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185678A (en) * 1981-04-27 1982-11-15 Energy Res Corp High temperature fuel battery assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185678A (en) * 1981-04-27 1982-11-15 Energy Res Corp High temperature fuel battery assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133063A (en) * 1989-10-19 1991-06-06 Hitachi Ltd Molten carbonate fuel cell
JP2008166195A (en) * 2006-12-28 2008-07-17 Doosan Heavy Industries & Construction Co Ltd Manufacturing method of electrolyte impregnating air pole of fused carbonate fuel cell

Also Published As

Publication number Publication date
JPH0349181B2 (en) 1991-07-26

Similar Documents

Publication Publication Date Title
US4663250A (en) Reduction of electrode dissolution
US5318863A (en) Near ambient, unhumidified solid polymer fuel cell
JPH10302804A (en) Gas dispersion electrode for polymeric membrane fuel cell
CN102024961A (en) Gaseous diffusion layer of proton exchange membrane fuel cell and preparation method thereof
Cameron et al. Direct methanol fuel cells
US6905794B2 (en) Air-hydrogen battery
JP2002289230A (en) Polymer electrolyte fuel cell
JP2008541402A (en) High lithium electrolyte for use in molten carbonate fuel cells and method for producing the same
US4654278A (en) Thermal cell non-deflagration design
US3775185A (en) Fuel cell utilizing fused thallium oxide electrolyte
US3419900A (en) Fuel cells with alkali metal hydroxide electrolyte and electrode containing fluorocarbon polymer
US4001039A (en) Electrochemical cell with alkali and alkaline earth metal containing electrolyte
JP2003510767A (en) Fuel cell having internal reformer and method of operating the same
JPH0821415B2 (en) Fuel cell for rebalancing device for secondary battery
JPS58131666A (en) Fused salt type fuel cell
Abrashev et al. Optimization of the bi-functional oxygen electrode (BOE) structure for application in a Zn-air accumulator
JP2813350B2 (en) Molten carbonate fuel cell
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
JP2003234115A (en) Air-hydrogen cell
JPH03238764A (en) Method of starting molten carbonate fuel cell
KR0163816B1 (en) Cathode for molten carbonate fuel cell and its manufacturing method
JP2005071851A (en) Manufacturing method of gas diffusion electrode
JP3199182B2 (en) Polymer solid oxide fuel cell
JP3094767B2 (en) Fuel cell electrolyte replenishment method