KR0163816B1 - Cathode for molten carbonate fuel cell and its manufacturing method - Google Patents

Cathode for molten carbonate fuel cell and its manufacturing method Download PDF

Info

Publication number
KR0163816B1
KR0163816B1 KR1019950041251A KR19950041251A KR0163816B1 KR 0163816 B1 KR0163816 B1 KR 0163816B1 KR 1019950041251 A KR1019950041251 A KR 1019950041251A KR 19950041251 A KR19950041251 A KR 19950041251A KR 0163816 B1 KR0163816 B1 KR 0163816B1
Authority
KR
South Korea
Prior art keywords
cathode
fuel cell
molten carbonate
carbonate fuel
electrode
Prior art date
Application number
KR1019950041251A
Other languages
Korean (ko)
Other versions
KR970031050A (en
Inventor
이인자
국승택
Original Assignee
김건
정유경
박동곤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김건, 정유경, 박동곤 filed Critical 김건
Priority to KR1019950041251A priority Critical patent/KR0163816B1/en
Publication of KR970031050A publication Critical patent/KR970031050A/en
Application granted granted Critical
Publication of KR0163816B1 publication Critical patent/KR0163816B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명은 용융탄산염 연료전지(MCFC)용 캐소드의 제조방법 및 그 방법에 의해 얻어지는 MCFC용 캐소드에 관한 것으로서, 폴리비닐알콜/금속염 복합물 졸 용액이 코팅액으로서 이용됨으로써 다공성 니켈 캐소드의 용출현상이 억제되고 전기전도도가 향상되며 수명이 연장된다.The present invention relates to a method for producing a cathode for molten carbonate fuel cell (MCFC) and to a cathode for MCFC obtained by the method, the polyvinyl alcohol / metal salt composite sol solution is used as a coating liquid is suppressed dissolution of porous nickel cathode The conductivity is improved and the life is extended.

Description

용융탄산염 연료전지용 캐소드 및 그 제조방법Cathode for Molten Carbonate Fuel Cell and Manufacturing Method Thereof

제1도는 일반적인 전극제조장치를 개략적으로 나타낸 도면이다.1 is a view schematically showing a general electrode manufacturing apparatus.

제2도는 일반적인 단위전지실험장치를 개략적으로 나타낸 도면이다.2 is a view schematically showing a general unit cell experiment apparatus.

제3도는 본 발명의 실시예와 비교예에 의해 제조된 MCFC용 니켈 캐소드에 대해 실시된 단위전지실험결과를 나타내는 그래프이다.3 is a graph showing the results of unit cell experiments performed on the nickel cathode for MCFC prepared by Examples and Comparative Examples of the present invention.

본 발명은 용융탄산염 연료전지(Molten Carbonate Fuel Cell:이하 MCFC라 칭함)용 캐소드(cathode) 및 그 제조방법에 관한 것으로서, 상세하게는 PVA(polyvinyl alcohol)-금속염의 무기-유기 복합물 졸(sol)용액으로 코팅처리되어 있는 새로운 MCFC용 캐소드 및 그 제조방법에 관한 것이다.The present invention relates to a cathode for a molten carbonate fuel cell (hereinafter referred to as MCFC) and a method of manufacturing the same, and more particularly, to an inorganic-organic composite sol of polyvinyl alcohol (PVA) -metal salt. It relates to a novel MCFC cathode coated with a solution and a method of manufacturing the same.

연료전지는 연료가스와 산화제가스를 전기화학적으로 반응시켜 생기는 에너지를 직접 전기에너지로 변환시켜 사용하는 새로운 발전시스템으로서 두 개의 전극과 전해질로 구성되어 있어 일반적인 전지와 유사하지만, 일반적인 전지와의 근본적인 차이점은 적당한 반응물인 연료와 산화제가 연속적으로 공급된다는 것이다. 이와 같은 연료전지는 그 특성으로 인해 차세대 무공해 발전시스템으로서 주목을 받아왔다.A fuel cell is a new power generation system that converts the energy generated by the electrochemical reaction between fuel gas and oxidant gas into direct electric energy. It is composed of two electrodes and an electrolyte, similar to a general cell, but fundamentally different from a general cell. Is the continuous supply of the appropriate reactants, fuel and oxidant. Such a fuel cell has attracted attention as a next generation pollution-free power generation system due to its characteristics.

MCFC는 다공성 니켈 합금으로 이루어진 애노드, Li-도프된 다공성 니켈 산화물로 이루어진 캐소드, 및 전해질로서 리튬 및 칼륨 탄산염이 적절한 몰비로 채워진 리튬 알루미네이트 매트릭스로 구성된다. 이 전해질은 500℃ 부근에서 용융 이온화되고, 여기에서 생성된 탄산이온(CO3 2-)이 전극 사이에서 전하를 운반하게 된다. 수소는 애노드 영역에서 소모되어 물, 이산화탄소 및 전자를 생성하고, 전자가 외부 회로를 통하여 캐소드로 흐르면서 원하는 전류를 생성한다.MCFC consists of an anode made of a porous nickel alloy, a cathode made of Li-doped porous nickel oxide, and a lithium aluminate matrix filled with appropriate molar ratios of lithium and potassium carbonate as electrolyte. The electrolyte is melt ionized at around 500 ° C., and the carbonate ions (CO 3 2− ) generated therefrom carry charge between the electrodes. Hydrogen is consumed in the anode region to produce water, carbon dioxide and electrons, and electrons flow through the external circuit to the cathode to produce the desired current.

전술한 바와 같이, 캐소드로는 초기에 다공성 Ni판을 사용하였으나 전기전도도가 낮아서 Li을 약 2% 도핑시킨 다공성 NiO 전극을 사용하게 되었다. 그러나, 이 경우에도 1000시간 정도 운전 후 발생되는 NI+2의 용출현상으로 인해 전지가 단락되는 등의 문제가 있어 대체 전극의 개발이 요구되어 왔다. 이와 관련하여 대체전극을 개발하기 위하여 여러 가지 방법이 이용되어 왔는데, 이러한 방법으로는 Li이 도핑된 NiO 전극에 MgO, ZnO 등의 산화물을 첨가하여 전극을 강화시키거나 La-페로브스카이트 전극 또는 Li-Co 산화물 전극을 개발하거나 또는 Li-Fe 산화물에 Mg, Co 등을 첨가하는 방법 등이 있다. 그러나, 이들 방법들은 모두 전극의 대면적화를 달성하기가 곤란하며 원료의 가격 또한 상당히 고가라는 문제점이 있다.As described above, the cathode initially used a porous Ni plate, but the electrical conductivity was low, so that a porous NiO electrode doped with Li about 2% was used. However, even in this case, there is a problem such as short-circuit of the battery due to dissolution of NI +2 generated after about 1000 hours of operation, and thus development of an alternative electrode has been required. In this regard, various methods have been used to develop an alternative electrode, which includes an oxide such as MgO and ZnO added to a Li-doped NiO electrode to strengthen the electrode, or a La-Perovskite electrode or Or a method of developing a Li-Co oxide electrode or adding Mg, Co, or the like to a Li-Fe oxide. However, these methods all have a problem in that it is difficult to achieve large area of the electrode and the cost of the raw material is also quite expensive.

따라서, 상기와 같은 문제점을 해결하기 위하여 본 발명에서는 다공성의 NiO 전극을 LiCo와 PVA로 이루어진 졸-겔로 코팅함으로써 캐소드의 용출현상을 억제하고 전기전도도를 증가시킬 수 있는 MCFC용 캐소드의 제조방법 및 그 방법에 의해 얻어지는 MCFC용 캐소드를 제공하는 것을 목적으로 하고 있다.Therefore, in order to solve the above problems, the present invention provides a method for producing a cathode for MCFC, which can suppress the dissolution of the cathode and increase the electrical conductivity by coating the porous NiO electrode with a sol-gel consisting of LiCo and PVA It is an object to provide a cathode for MCFC obtained by the method.

상기 첫번째 목적을 달성하기 위하여 본 발명에서는 MCFC용 다공성 니켈 캐소드를 제조하는 방법에 있어서, Li, Co의 질산염을 이용하여 Li/Co 금속이온의 비가 1:1이 되도록 물 1ℓ에 용해하여 금속염 수용액을 얻는 단계, 폴리비닐알콜의 단위체의 분자량을 기준으로 상기 금속이온의 총몰수의 1-5배의 폴리비닐알콜을 물 1ℓ에 용해하여 폴리비닐알콜 수용액을 얻는 단계, 상기 두 용액을 혼합하여 18-24시간 교반하여 점성 졸 용액을 얻는 단계, 및 상기 점성 졸 용액에 다공성 니켈 전극을 1-12시간 담구어 코팅한 다음 건조하는 단계로 이루어진 방법이 제공된다.In order to achieve the first object in the present invention in the method for producing a porous nickel cathode for MCFC, using a nitrate of Li, Co, dissolved in 1L of water so that the ratio of Li / Co metal ions to 1: 1 to the aqueous metal salt solution Obtaining a polyvinyl alcohol solution by dissolving polyvinyl alcohol 1-5 times the total molar number of the metal ions in 1 L of water based on the molecular weight of the unit of polyvinyl alcohol, and mixing the two solutions. It is provided with a step of obtaining a viscous sol solution by stirring for 24 hours, and coating the porous nickel electrode by soaking for 1-12 hours in the viscous sol solution and then drying.

바람직하기로는, 상기 점성 졸 용액의 온도는 70-80℃이다.Preferably, the temperature of the viscous sol solution is 70-80 ° C.

본 발명의 두 번째 목적은 상기 방법에 의해 코팅됨으로써 형성된 캐소드에 의해 달성된다.A second object of the invention is achieved by the cathode formed by coating by the above method.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 단, 하기의 실시예는 본 발명의 예시일 뿐, 본 발명을 이들로만 제한하는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, the following examples are only examples of the present invention, and the present invention is not limited thereto.

[비교예][Comparative Example]

니켈 분말(INCO 255)에 CMC(carboxy methyl cellulose), MC(methyl cellulose)와 통상의 첨가제를 혼합하여 약 20시간 볼밀링한 후 물과 소포제로서 이소프로필알콜을 첨가하여 제1도에 도시된 장치를 이용하여 약 10시간 교반 및 탈포하여 캐소드용 현탁액을 제조하였다. 이 현탁액을 24시간 정도 방치하여 기포를 제거하고 테이프 캐스팅하여 1.0㎜ 정도의 박판으로 성형한 후 약 24시간 대기중에서 건조시켜 전극의 그린시이트를 만들었다. 이것을 수소 분위기의 조건에서 약 850℃에서 약 50분 열처리하여 다공성 니켈 캐소드를 만들었다.The apparatus shown in FIG. 1 is prepared by mixing a nickel powder (INCO 255) with CMC (carboxy methyl cellulose), MC (methyl cellulose) and conventional additives for about 20 hours, and then adding isopropyl alcohol as an antifoaming agent with water. For about 10 hours using agitation and defoaming to prepare a suspension for the cathode. The suspension was left for 24 hours to remove bubbles, tape cast to form a 1.0 mm thin plate, and then dried in air for about 24 hours to form a green sheet of the electrode. This was heat treated at about 850 ° C. for about 50 minutes under hydrogen atmosphere to form a porous nickel cathode.

[실시예]EXAMPLE

Li, Co의 질산염을 이용하여 Li/Co 금속이온의 비가 1/1이 되도록 하여 증류수 1ℓ에 용해하여 금속염 수용액을 만들고, 또한 PVA(Junsei Co. #1500, 단위체 분자량 44)를 그 단위체를 기준으로 금속이온의 총몰수에 대해 약 3배의 양을 증류수 1ℓ에 용해하여 그 수용액을 만들었다. 이들 두 용액을 서로 혼합하여 약 75℃를 유지하면서 20시간 교반하여 진분홍색의 투명한 점성 졸 용액을 얻었다. 이 졸 용액에 다공성 니켈 전극을 약 10시간 동안 담군 채 방치한 다음 건조시켰다.Li / Co metal ions are dissolved in 1 L of distilled water by using nitrates of Li and Co to make a metal salt aqueous solution, and PVA (Junsei Co. # 1500, unit molecular weight 44) is based on the unit. An aqueous solution was prepared by dissolving about three times the amount of metal ions in 1 L of distilled water. These two solutions were mixed with each other and stirred for 20 hours while maintaining the temperature at about 75 ° C. to obtain a dark pink transparent viscous sol solution. The porous nickel electrode was left to soak for about 10 hours in this sol solution and then dried.

비교예 및 실시예에서 얻은 니켈 캐소드에 대하여 제2도에 도시된 장치를 이용하여 단위전지 실험을 실시하였다.A unit cell experiment was conducted on the nickel cathodes obtained in Comparative Examples and Examples using the apparatus shown in FIG. 2.

애노드로서는 1000℃에서 1시간 소결한 다공성 Ni-10% Cr 전극을 사용하고 캐소드 전극으로서는 비교예 및 실시예에서 얻은 전극을 각각 사용하였다. 이때 매트릭스는 다공성 γ-LiAlO2판을 사용하였고 (Li/K)2CO3=62/38wt.% 조성의 전해질판을 사용하였다. 또한 단위전지 실험을 위해 채택된 운전방법은 다음과 같이 하였다. 애노드 쪽에 대해서는 상온에서 300℃까지 공기를 공급하여 매트릭스 속의 유기물의 분해를 촉진시켰으며, 그 후에는 CO2/H2를 550℃까지는 95/5%, 650℃까지는 50/50%, 650℃ 이후로는 정상조건인 80/20%로 조절하였다. 캐소드 쪽에 대해서는 상온에서 450℃까지 공기를 공급하였고, 그 후 CO2/O2를 550℃까지는 90/10%, 650℃까지는 50/50%, 650℃ 이상으로는 2/1로 조절하였다.As an anode, the porous Ni-10% Cr electrode sintered at 1000 degreeC for 1 hour was used, and the electrode obtained by the comparative example and the Example was used as a cathode electrode, respectively. In this case, a porous γ-LiAlO 2 plate was used as the (Li / K) 2 CO 3 = 62/38 wt.% Electrolyte plate. In addition, the operation method adopted for the unit cell experiment was as follows. On the anode side, air was supplied at room temperature up to 300 ° C to promote decomposition of organic matter in the matrix, after which CO 2 / H 2 was 95/5% up to 550 ° C, 50/50% up to 650 ° C and after 650 ° C. The furnace was adjusted to 80/20% under normal conditions. On the cathode side, air was supplied up to 450 ° C. at room temperature, and then CO 2 / O 2 was adjusted to 90/10% up to 550 ° C., 50/50% up to 650 ° C., and 2/1 above 650 ° C.

제3도에 도시되어 있듯이 약 250시간 운전을 실시한 결과 캐소드로 기존의 다공성 NiO(비교예) 전극을 사용한 경우에 비하여 본 발명에 따라 제조된 전극(실시예)이 전체적으로 약 0.1V(10%) 이상 높은 전압값을 나타내고 있으며, 250시간 이상 운전시킨 경우에도 비교예에 의해 제조된 종래의 전극은 시간이 경과할수록 전압값이 점점 하락하는데 반하여 본 발명의 실시예에서 제조된 전극은 전압값을 계속 유지하고 있는 것으로 나타났다. 이는 다공성 NiO 전극의 입자 표면을 PVA/금속염 졸 용액 용액이 균일하게 둘러싸고 있어서 Li, Co의 영향으로 인해 전기전도도가 향상되기 때문인 것으로 생각된다.As shown in FIG. 3, after about 250 hours of operation, the electrode (example) manufactured according to the present invention was about 0.1V (10%) as a whole, compared to the case of using a conventional porous NiO (comparative) electrode as a cathode. The above-described high voltage value is observed, and even when the battery is operated for 250 hours or more, the conventional electrode manufactured by the comparative example gradually decreases with time, whereas the electrode manufactured in the embodiment of the present invention continues to maintain the voltage value. Appeared to be maintained. It is thought that this is because the PVA / metal salt sol solution solution uniformly surrounds the particle surface of the porous NiO electrode, thereby improving the electrical conductivity due to the influence of Li and Co.

이상, 살펴본 바와 같이 본 발명의 MCFC용 캐소드는 PVA/금속염 졸 용액으로 코팅처리가 되어 있어서 전기전도도가 증가되는 등 그 성능이 향상될 뿐만 아니라 작동시간이 연장될 수 있다.As described above, the MCFC cathode of the present invention is coated with a PVA / metal salt sol solution so that the electrical conductivity may be increased, and the operation time may be extended.

Claims (3)

Li, Co의 질산염을 이용하여 Li/Co 금속이온의 비가 1:1이 되도록 물 1ℓ에 용해하여 금속염 수용액을 얻는 단계, 폴리비닐알콜의 단위체의 분자량을 기준으로 상기 금속이온의 총몰수의 1-5배의 폴리비닐알콜을 물 1ℓ에 용해하여 폴리비닐알콜 수용액을 얻는 단계, 상기 두 용액을 혼합하여 18-24시간 교반하여 점성 졸 용액을 얻는 단계, 및 상기 점성 졸 용액에 다공성 니켈 전극을 1-12시간 담구어 코팅한 다음 건조하는 단계를 포함하는 것을 특징으로 하는 용융탄산염 연료전지용 다공성 니켈 캐소드의 제조방법.Dissolving in 1 L of water so that the ratio of Li / Co metal ions to 1: 1 using Li, Co nitrate to obtain a metal salt aqueous solution, 1- of the total mole number of the metal ions based on the molecular weight of the unit of polyvinyl alcohol Dissolving 5 times polyvinyl alcohol in 1 L of water to obtain an aqueous polyvinyl alcohol solution, mixing the two solutions and stirring for 18-24 hours to obtain a viscous sol solution, and adding a porous nickel electrode to the viscous sol solution. Method of producing a porous nickel cathode for molten carbonate fuel cell, characterized in that it comprises-12 hours immersion coating and drying. 제1항에 있어서, 상기 점성 졸 용액의 온도가 70-80℃인 것을 특징으로 하는 용융탄산염 연료전지용 다공성 니켈 캐소드의 제조방법.The method of manufacturing a porous nickel cathode for molten carbonate fuel cell according to claim 1, wherein the temperature of the viscous sol solution is 70-80 ° C. 제1항 또는 제2항의 방법에 따라 제조된 용융탄산염 연료전지용 다공성 니켈 캐소드.Porous nickel cathode for molten carbonate fuel cell prepared according to the method of claim 1 or 2.
KR1019950041251A 1995-11-14 1995-11-14 Cathode for molten carbonate fuel cell and its manufacturing method KR0163816B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950041251A KR0163816B1 (en) 1995-11-14 1995-11-14 Cathode for molten carbonate fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950041251A KR0163816B1 (en) 1995-11-14 1995-11-14 Cathode for molten carbonate fuel cell and its manufacturing method

Publications (2)

Publication Number Publication Date
KR970031050A KR970031050A (en) 1997-06-26
KR0163816B1 true KR0163816B1 (en) 1998-12-15

Family

ID=19434033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950041251A KR0163816B1 (en) 1995-11-14 1995-11-14 Cathode for molten carbonate fuel cell and its manufacturing method

Country Status (1)

Country Link
KR (1) KR0163816B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439164B1 (en) * 1997-12-30 2004-09-18 주식회사 효성생활산업 Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448518B1 (en) * 2002-09-13 2004-09-13 한국과학기술연구원 Method for manufacturing high-strength cathode for molten carbonate fuel cell and high-strength cathode made from the same method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439164B1 (en) * 1997-12-30 2004-09-18 주식회사 효성생활산업 Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability

Also Published As

Publication number Publication date
KR970031050A (en) 1997-06-26

Similar Documents

Publication Publication Date Title
JPH11219722A (en) Lithium secondary battery
KR20170129238A (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
CN110729528B (en) Solar-assisted rechargeable zinc-air battery with low charging potential
CN111883822A (en) Sulfide solid electrolyte with stable performance and preparation method and application thereof
CN108199083A (en) Electrolyte of sodium-ion battery and preparation method thereof, sodium-ion battery
JP3228377B2 (en) Molten carbonate fuel cell cathode and method for suppressing its dissolution
CN115411351A (en) Solid-state battery modified by ion/electron mixed conductive solid interface layer and preparation method thereof
RU2383659C2 (en) Method of producing surface of nickel oxide of enhanced conductivity
KR0163816B1 (en) Cathode for molten carbonate fuel cell and its manufacturing method
CN106784720B (en) A kind of high performance manganese base lithium ion cell positive material and preparation method
CN111952598B (en) Negative plate, preparation method thereof and secondary battery
Abrashev et al. Optimization of the bi-functional oxygen electrode (BOE) structure for application in a Zn-air accumulator
CN109273670A (en) A kind of lithium anode and preparation method thereof with high-specific-surface mesoporous protective film
US6585931B1 (en) Molten carbonate fuel cell anode and method for manufacturing the same
CN111416139A (en) Electrolyte corrosion inhibitor, aluminum-air battery, alkaline electrolyte and preparation method thereof
CN107403932B (en) Positive electrode for battery, method for preparing same, and battery having same
CN109616662A (en) Nickel carries tungstic acid negative electrode material and preparation method thereof and lithium ion battery
CN109950484A (en) Prepare method, the anode, battery of rich lithium composite positive pole
CN115036447B (en) Lithium/sodium metal battery electrode plate protective coating and preparation method thereof
KR100276965B1 (en) Zinc sulfate (II) aqueous solution secondary battery containing manganese salt (II) and carbon powder
CN103606713B (en) A kind of sodium-sulphur battery of normal temperature work and control method thereof
JPH0261095B2 (en)
GB2108312A (en) Electrochemical cells
KR100331082B1 (en) A method for making anode of molten carbonate fuel cell
JP2708820B2 (en) Electrolyte of molten carbonate fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020306

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee