KR100439164B1 - Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability - Google Patents

Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability Download PDF

Info

Publication number
KR100439164B1
KR100439164B1 KR1019970077683A KR19970077683A KR100439164B1 KR 100439164 B1 KR100439164 B1 KR 100439164B1 KR 1019970077683 A KR1019970077683 A KR 1019970077683A KR 19970077683 A KR19970077683 A KR 19970077683A KR 100439164 B1 KR100439164 B1 KR 100439164B1
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium secondary
electrode plate
temperature
polymer
Prior art date
Application number
KR1019970077683A
Other languages
Korean (ko)
Other versions
KR19990057620A (en
Inventor
광만 김
우성 전
정훈 오
Original Assignee
주식회사 효성생활산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성생활산업 filed Critical 주식회사 효성생활산업
Priority to KR1019970077683A priority Critical patent/KR100439164B1/en
Publication of KR19990057620A publication Critical patent/KR19990057620A/en
Application granted granted Critical
Publication of KR100439164B1 publication Critical patent/KR100439164B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A method for manufacturing an electrode plate for lithium secondary battery is provided to reduce the reactivity with an electrolyte, to improve the contact degree with active material particles, and to improve the bindability and flexibility as an electrode plate. CONSTITUTION: The method for manufacturing an electrode plate for lithium secondary battery comprises the steps of: adding active material powder and a conductive agent or additive particles to a polymer solution in which a polyvinylidene fluoride-based polymer is dissolved; adding an organic solvent thereto to form slurry; and coating the slurry on a collector. In the method, the coated collector is dried at a drying temperature defined by the formula of £drying temperature = Tm - avertTm -TcC|, wherein Tc is the crystallization temperature, Tm is the melting temperature of crystals and a is a value of 0.5-0.9.

Description

리튬2차전지용 극판의 제조방법Manufacturing method of electrode plate for lithium secondary battery

본 발명은 재충전이 가능한 비수용성 전해액 전지인 리튬2차전지의 극판의 제조방법에 관한 것으로, 더욱 상세하게는 상기 극판의 제조에 있어서 결착제로 사용하는 폴리비닐리덴플루오라이드(polyvinylidene fluoride ;이하 PVDF라 함) 계열 고분자의 건조온도 조건을 변화시켜 결정성을 조절함으로써 제조된 극판의 활물질 입자들간의 결착성, 금속 집전체와의 밀착성, 전해액과의 내약품성, 활물질 입자와의 접촉 가능 면적 또는 체적 (이하 입자와의 접촉도라 한다) 등의 조건들을 최적화시킬 수 있는 리튬2차전지용 극판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a pole plate of a lithium secondary battery that is a rechargeable non-aqueous electrolyte battery, and more particularly, to polyvinylidene fluoride (hereinafter referred to as PVDF) used as a binder in the manufacture of the pole plate. Binding between the active material particles of the electrode plate prepared by changing the drying temperature conditions of the polymer series, adhesion with the metal current collector, chemical resistance with the electrolyte solution, contactable area or volume with the active material particles ( Hereinafter, a method for manufacturing a lithium secondary battery pole plate capable of optimizing conditions such as contact with particles).

최근 전자기기의 발달로 인해 그 전원으로서 가볍고 에너지 밀도가 높은 2차전지가 광범위하게 사용되고 있으며, 전자기기의 고성능화, 소형화, 휴대형화가 진행됨에 따라 전원으로 사용되는 2차전지에서도 동일한 특성이 요구되고 있다. 이러한 2차전지 가운데 비수전해액을 전해액으로 사용하는 리튬 이온 2차전지가 전지전압이 높고 싸이클 특성도 다른 2차전지에 비하여 우수하여 각광을 받고 있다.Recently, due to the development of electronic devices, light and high energy density secondary batteries are widely used as power sources, and the same characteristics are required in secondary batteries used as power sources as high performance, miniaturization, and portable type of electronic devices are progressed. Among such secondary batteries, lithium ion secondary batteries using a nonaqueous electrolyte as an electrolyte have a high battery voltage and excellent cycle characteristics compared to other secondary batteries.

일반적으로 이러한 리튬2차전지의 극판은 결착제로서 주로 사용하는 PVDF 계열 고분자 분말을 적정 유기용매에 녹인 상태에서 전극 활물질 분말, 도전제 및/또는 첨가제 입자들과 혼합하여 슬러리 상태로 만든다음 이를 금속 집전체에 코팅, 건조함으로써 제조된다.In general, the electrode plates of such lithium secondary batteries are mixed with electrode active material powder, conductive agent and / or additive particles in a state of dissolving PVDF-based polymer powder mainly used as a binder in a suitable organic solvent, and then made into a slurry. It is produced by coating and drying the current collector.

이 때의 건조조건은 현재 슬러리 중의 유기용매가 휘발되는 온도를 기준으로 행하고 있는 것이 일반적이나, 입자와 고분자 용액이 혼합되어 있는 슬러리에서의 유기용매는 그 휘발온도가 고정되어 있는 것이 아니라 넓은 온도 영역에 걸쳐 천천히 휘발되므로 공정효율상 그 적정 건조온도 설정이 매우 중요하다.At this time, the drying conditions are generally performed based on the temperature at which the organic solvent in the slurry is volatilized. However, the volatilization temperature of the organic solvent in the slurry in which the particles and the polymer solution are mixed is not fixed, but a wide temperature range. Due to the slow volatilization, the proper drying temperature is very important for process efficiency.

또한 코팅 후 건조과정에 있어서도 결착제인 고분자 성분이 반결정성 고분자라면 건조온도에 따라 유기용매가 휘발되면서 결착제로 사용하는 고분자 물질의 결정성이 변화하게 되는데, 이러한 결정성도 리튬2차전지용 극판으로의 용도상 내약품성, 입자와의 접촉도 등에 영향을 주므로 이에 대한 고려도 필요하다.In addition, in the drying process after coating, if the polymer component of the binder is a semi-crystalline polymer, the organic solvent is volatilized according to the drying temperature, and the crystallinity of the polymer material used as the binder is changed. Such crystallinity is also used as a cathode plate for a lithium secondary battery. It also affects phase chemical resistance, contact with particles, etc., so consideration should be given.

본 발명의 목적은 상술한 바와 같은 고려사항을 근거로 PVDF 계열 고분자를 결착제로 사용하는 리튬2차전지용 극판을 제조함에 있어서 슬러리의 코팅후 건조온도를 최적으로 조정함으로써 전해액과의 반응성이 저하되고 입자들과의 접촉도가 향상되며 극판으로서의 결착성 및 유연성이 향상된 리튬2차전지용 극판의 제조방법을 제공하는 것이다.An object of the present invention is to reduce the reactivity with the electrolyte solution by adjusting the drying temperature after coating of the slurry in the production of a lithium secondary battery electrode plate using the PVDF-based polymer as a binder based on the above considerations It is to provide a method for manufacturing a lithium secondary battery pole plate improved contact with the field and improved binding and flexibility as a pole plate.

즉, 본 발명은 폴리비닐리덴플루오라이드 계열 고분자를 녹인 고분자 용액에 활물질 분말 및 도전제 또는 첨가제 입자를 첨가하고 유기용매 액체를 혼합하여 슬러리 상태로 만든후 금속 집전체에 코팅하여 리튬2차전지용 극판을 제조함에 있어서, 코팅 후 건조온도를 하기 수학식 1로 설정하여 건조시키는 것을 특징으로 하는 리튬2차전지용 극판의 제조방법을 제공하는 것이다.That is, the present invention adds an active material powder, a conductive agent or an additive particle to a polymer solution in which a polyvinylidene fluoride-based polymer is dissolved, mixes an organic solvent liquid, forms a slurry, and then coats a metal current collector on a lithium secondary battery electrode plate. In manufacturing, to provide a method for manufacturing a lithium secondary battery pole plate characterized in that the drying after coating by setting the drying temperature to the following formula (1).

[수학식 1][Equation 1]

건조온도=Tm-a|Tm- Tc|Drying temperature = T m -a | T m -T c |

상기 식에서,T c ; 결정화온도(℃);In the above formula, T c ; Crystallization temperature (° C.);

T m ; 결정의 용융온도(℃); T m ; Melting temperature of the crystal (° C.);

a; 0.5∼0.9의 범위내의 값이다.a; It is a value in the range of 0.5-0.9.

도 1은 폴리비닐리덴플루오라이드와 1-메틸-2-피롤리디논으로 구성된 고분자 희박용액(시료 1과 시료 2) 및 희박 고분자 용액으로 만들어진 활물질 슬러리 (시료 3)를 각각 열중량 분석한 결과를 그래프로 도시한 도면,1 is a thermogravimetric analysis of a polymer lean solution (sample 1 and sample 2) consisting of polyvinylidene fluoride and 1-methyl-2-pyrrolidinone and an active material slurry (sample 3) made of a lean polymer solution, respectively. Graphical drawing,

도 2는 시료 1을 건조온도 증가에 따라 형성된 고분자 필름상의 결정을 500 배 확대하여 관찰한 편광현미경사진이다.FIG. 2 is a polarized light micrograph of magnification of 500 times the crystals on the polymer film formed by increasing the drying temperature of Sample 1. FIG.

이하에서 본 발명을 도면을 참조하여 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명 방법에 의해 리튬2차전지용 극판을 제조하는 경우에는 폴리비닐리덴플루오라이드 계열 고분자를 용해시킨 고분자 용액에 활물질 분말 및 도전제 또는 첨가제 입자를 첨가하고 유기용매를 혼합하여 슬러리 상태로 만든후 금속 집전체에 코팅하여 리튬2차전지용 극판을 제조한다.When manufacturing a lithium secondary battery electrode plate by the method of the present invention, the active material powder and the conductive agent or additive particles are added to the polymer solution in which the polyvinylidene fluoride-based polymer is dissolved, and the organic solvent is mixed to make a slurry and then metal Coating on the current collector to produce a lithium secondary battery pole plate.

이 때 상기 유기용매로는 메틸피롤리디논, 디메틸포름아마이드, 톨루엔, 아세톤으로 구성되는 그룹으로 부터 선택되는 1종을 사용하는 것이 바람직하다.At this time, it is preferable to use one kind selected from the group consisting of methylpyrrolidinone, dimethylformamide, toluene, acetone as the organic solvent.

또한, 상기 활물질이 탄소재료이고 도전제와 첨가제는 사용하지 않으며 제조되는 극판은 음극판인 것이 바람직하다.In addition, it is preferable that the active material is a carbon material, the conductive agent and the additive are not used, and the electrode plate manufactured is a negative electrode plate.

이 때 코팅후의 건조온도는 상기 수학식 1의 범위로 설정하는 것이 필요한데, 여기서 a 값은 0.5∼0.9의 범위, 더욱 바람직하게는 0.7∼0.9의 범위내인 것이 좋다. 만약 a값의 범위가 상기 범위를 벗어나면 본 발명이 의도하는 효과를 수득할 수 없게 되어 바람직하지 않다.At this time, it is necessary to set the drying temperature after coating in the range of the formula (1), where the a value is in the range of 0.5 to 0.9, more preferably in the range of 0.7 to 0.9. If the value of a is outside the range, the effect intended by the present invention cannot be obtained, which is not preferable.

일반적으로 PVDF 계열 고분자는 반결정성 고분자로서 그 제조조건, 제조 후 사용조건(주로 온도, 압력, 전기장, 자기장 등)에 따라 여러 가지 결정 형태를 나타내는데(A.J. Lovinger, "Developments in Crystalline Polymer", Vol.1, Applied Science Publishers, New York(1982), Chap.5 참조), 전기장 및 자기장의 영향을 배제할 때 가장 흔히 나타나는 결정형태로서 α형과 γ형 결정이 있다. a 형 결정은 주로 분말체를 용융 또는 적당한 용매로 녹인 후 적정온도 유지 또는 과냉각시에 나타나며 대개 100 미크론 이상의 크기를 가진 구정(球晶 : spherulite)의 형태를 띤다. γ형 결정은 α형 결정을 고온 아닐링 처리함에 따라 α형 결정간 경계 부분에서 작은 구정으로 생성된다.In general, PVDF-based polymers are semicrystalline polymers and exhibit various crystal forms according to their production conditions and post-production conditions (mainly temperature, pressure, electric field, magnetic field, etc.) (AJ Lovinger, "Developments in Crystalline Polymer", Vol. 1, Applied Science Publishers, New York (1982), Chap. 5), the most common crystal forms when excluding the effects of electric and magnetic fields are type α and γ crystals. Form a crystals usually appear when the powder is melted or dissolved in a suitable solvent and then maintained at an appropriate temperature or overcooled. It usually takes the form of a spherulite with a size of 100 microns or more. The γ-type crystals are formed as small spheres at the boundary between the α-type crystals by subjecting the α-type crystals to high temperature annealing.

그러나 상기의 결정 형태들과 본 발명의 목적상 바람직한 극판의 성질 사이에는 서로 상반되는 원리가 존재하고 있다. 즉, 전해액과의 내약품성 제고를 위해서는 α형 결정과 같은 대형 결정이 유리한 반면 입자와의 접촉도 측면에서는 결정성이 없거나 매우 작은 경우가 유리하다. 구체적으로 대형 결정인 경우에는 입자와의 접촉도가 적어 활물질들을 결착시키거나 금속 집전체와 입자들을 밀착시키는데 불리한 반면에, 결정성이 적거나 무정형인 경우에는 전해액과의 내약품성이 현저히 약화되어 전지 안정성에 대한 위해요인의 하나가 된다. 따라서 γ형 결정과 같이 가능한 한 작은 결정들이 가능한 한 많이 그리고 넓게 분포되는 것이 극판에 대한 최적 결정상태라 할 수 있다.However, there is a conflicting principle between the above crystal forms and the properties of the electrode plate, which is preferred for the purposes of the present invention. That is, large crystals such as α-type crystals are advantageous for enhancing chemical resistance with the electrolyte, while crystallinity or very small crystals are advantageous in terms of contact with particles. Specifically, in the case of large crystals, the contact with the particles is small, which is disadvantageous in binding the active materials or in contact with the metal current collector and the particles, whereas in the case of low crystallinity or amorphous form, the chemical resistance with the electrolyte is significantly weakened. It is one of the risk factors for stability. Therefore, the optimal crystal state for the plate is that the smallest possible crystals, such as γ-type crystals, are distributed as much and widely as possible.

반결정성 고분자인 PVDF 계열 고분자의 결정성을 확인하는 주요 수단으로는 그 결정의 결정화온도(T c )와 결정 용융온도(T m )를 기준으로 하는 일정 온도에서 각 고분자 필름에 생성된 결정을 편광현미경으로 촬영하여 결정의 크기 및 배향성을 관찰하는 것이 가장 손쉬운 방법이다. 단, 본 발명의 관심 범위상 PVDF 계열 고분자의 구정을 다루므로 결정의 배향성은 배제할 수 있다. 따라서 일반적으로T c 이전,T c 주변,T c T m 사이,T m 주변,T m 이후에서의 각 결정의 크기를 판별하여 서로 비교함으로써 최적의 결정상태를 정하는 것이 바람직하다. 그리고 이로부터 최적 건조온도를 설정하려면, 유기용매와의 혼합 고분자 용액에서 건조온도에 따라 유기용매의 휘발 정도에 관한 자료를 함께 참고하여 공정효율성이 가장 높은 온도를 택하여야 한다.As a main means of verifying the crystallinity of PVDF-based polymers, which are semi-crystalline polymers, the crystals formed in each polymer film are polarized at a predetermined temperature based on the crystallization temperature ( T c ) and the crystal melting temperature ( T m ). Microscopic observation is the easiest way to observe the size and orientation of the crystals. However, in the scope of interest of the present invention, since the crystallinity of PVDF-based polymers is dealt with, the orientation of crystals can be excluded. Thus generally T c before, T c close to, to determine the size of each determination between T c and T m, T m and surrounding, T m Since it is desirable by determining the optimum crystal state are compared with each other. In order to set the optimum drying temperature therefrom, it is necessary to refer to the data on the degree of volatilization of the organic solvent in accordance with the drying temperature in the mixed polymer solution with the organic solvent and select the temperature having the highest process efficiency.

[실 험 예][Experimental example]

3 종류의 시료(시료 1, 시료 2 및 시료 3)에 대하여 PVDF 계열 고분자를 결착제로 사용하는 경우에 가장 많이 함께 사용하는 유기용매인 1-메틸-2-피롤리디논(1-methyl-2-pyrrolidinone ; 이하 NMP라 함)을 함께 혼합, 교반하여 고분자 희박용액을 만들어 이를 열중량 분석하여 그 결과를 도 1에 도시하였다. 여기서의 시료 1은 PVDF 호모폴리머 12 중량%를 시약급 NMP 88중량%에 혼합시킨 것이며, 시료 2는 비닐리덴플루오라이드 단량체와 모노에스테르류 단량체의 공중합체 13 중량%를 시약급 NMP 87 중량%에 혼합시킨 것이다. 시료 3은 시료 1을 50중량%, 탄소활물질 50중량%를 혼합하여 만든 슬러리이다.1-methyl-2-pyrrolidinone (1-methyl-2-), an organic solvent most commonly used when PVDF-based polymer is used as a binder for three types of samples (sample 1, sample 2 and sample 3) pyrrolidinone (hereinafter referred to as NMP) were mixed together and stirred to form a polymer lean solution, which was then thermogravimetrically analyzed and the results are shown in FIG. 1. Sample 1 is a mixture of 12% by weight of PVDF homopolymer to 88% by weight of reagent grade NMP, Sample 2 is 13% by weight of copolymer of vinylidene fluoride monomer and monoester monomer to 87% by weight of reagent grade NMP. It is mixed. Sample 3 is a slurry made by mixing 50% by weight of sample 1 and 50% by weight of a carbon active material.

도 1에서 보는 바와 같이, 세 시료 모두 50℃ 이전부터 NMP가 증발하기 시작하여 160℃ 정도에 이르면 투입된 NMP의 거의 전량이 휘발되며 140℃에서는 NMP 전량의 95% 이상이 휘발됨을 알 수 있다. 따라서 공정효율상 NMP 전량의 95% 이상 휘발을 기준으로 할 때, 상기 시료를 사용하는 코팅 공정에서는 최종 건조온도를 140℃ 이상으로 설정할 필요가 있다.As shown in FIG. 1, when all three samples started to evaporate before 50 ° C. and reached about 160 ° C., almost all of the added NMP was volatilized, and at 140 ° C., at least 95% of the total amount of NMP was volatilized. Therefore, based on the volatilization of 95% or more of the total amount of NMP in terms of process efficiency, it is necessary to set the final drying temperature to 140 ℃ or more in the coating process using the sample.

한편 시차주사열량계로 시험한 결과, 본 발명에서 사용하는 PVDF 계열 고분자 중 호모폴리머인 PVDF의T c 는 133∼137℃,T m 은 166∼170℃로 나타났다. 이 결과는 상기 문헌 및 기존의 여타 문헌에 기술된 것과 일치하는 결과이다. 따라서 이와 같은 결정화온도 및 결정용융온도를 갖는 PVDF 계열 고분자를 결착제로 사용하는 경우에는 110℃(T c 이전), 130℃(T c 주변), 150℃(T c T m 사이), 170℃(T m 주변), 190℃(T m 이후)로 각각 나누어 고분자 필름을 건조시켜 그 결정형태를 비교하는 것이 바람직하다.On the other hand, as a result of testing with a differential scanning calorimeter, the PVDF of the homopolymer of the PVDF series polymer used in the present inventionT c Is 133 to 137 ° C,T m Was found to be 166 to 170 ° C. This result is consistent with that described in the above documents and other existing documents. Therefore, when using PVDF-based polymer having such crystallization temperature and crystal melting temperature as a binder, 110 ℃ (T c Previous), 130 ° C (T c Ambient), 150 ° C (T c Wow T m ), 170 ℃ (T m Ambient), 190 ° C (T m After that, it is preferable to dry the polymer film and compare the crystal forms.

이하에서 본 발명을 실시예를 들어 더욱 상세히 설명하나 본 발명이 하기 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실 시 예Example

상기의 시료 1에 해당하는 PVDF 고분자는 중량평균 분자량 316000, 비중 1.77이었고 시차열량주사계 시험 결과 정확한T c T m 은 각각 136.3℃와 172.7℃이었다. 이 PVDF 고분자 분말 12g과 시약급 NMP 88g을 상온에서 혼합, 교반하여 균일한 고분자 희박용액을 만들었다. 두께가 10 미크론인 전해 동박(銅箔)의 표면에 닥터블레이드로 코팅두께가 320 미크론이 되도록 고분자 액을 코팅시켜 리튬2차전지용 극판을 제조하였다.The PVDF polymer corresponding to Sample 1 had a weight average molecular weight of 316000 and a specific gravity of 1.77. Accurate T c and T m were 136.3 ° C. and 172.7 ° C., respectively. 12 g of this PVDF polymer powder and 88 g of reagent grade NMP were mixed and stirred at room temperature to form a uniform polymer lean solution. A polymer plate was coated on a surface of an electrolytic copper foil having a thickness of 10 microns with a doctor blade so as to have a coating thickness of 320 microns to prepare a lithium secondary battery electrode plate.

이어서 코팅된 동박을 유리판에 고정시킨 후 일정 온도가 유지되고 있는 열풍건조로에 투입, 10분 건조시킨 후 꺼내어 상온에서 30분 정도 방치시켰다. 필름 뒷면의 동박을 조심스럽게 뜯어내어 남은 고분자 필름을 편광현미경에서 500배 확대하여 그 결정성을 관찰하였다. 도 2는 상기의 건조온도별로 관찰한 PVDF 고분자 필름의 편광현미경 사진이다.Subsequently, the coated copper foil was fixed to a glass plate, and then put into a hot air drying furnace maintained at a constant temperature, dried for 10 minutes, taken out, and left to stand at room temperature for about 30 minutes. The copper foil on the back of the film was carefully peeled off, and the remaining polymer film was enlarged 500 times under a polarizing microscope to observe its crystallinity. 2 is a polarization microscope picture of the PVDF polymer film observed for each drying temperature.

또한 건조된 필름들의 전해액과의 반응성을 알아보기 위하여 에틸렌카보네이트/디에틸카보네이트/디메틸카보네이트(EC/DEC/DMC)가 각각 체적분율 1:1:1로 조성된 전해액에 1 몰 농도의 리튬헥사플루오로포스페이트(LiPF6)가 녹아 있는 비수계 전해액에 각 고분자 필름 시료를 담그고 아르곤 기체 분위기의 글로브 박스 내에서 1 주일간 방치시킨 후 남은 필름을 꺼내어 다시 편광 현미경으로 관찰하였다.In addition, in order to examine the reactivity of the dried films with the electrolyte, lithium hexafluorine at a molar concentration of 1 mole in an electrolyte containing ethylene carbonate / diethyl carbonate / dimethyl carbonate (EC / DEC / DMC) in a volume fraction of 1: 1: 1, respectively. Each polymer film sample was immersed in a non-aqueous electrolyte in which low phosphate (LiPF 6 ) was dissolved, and left in a glove box under an argon gas atmosphere for one week, and then the remaining film was taken out and observed under a polarization microscope.

도 2에 있어서, 미편광 사진들의 갈라진 영역 이내 부분은 결정이 아니라 표면장력 구배로 인한 고분자 유체의 내류 때문에 육각 세포형 불안정체로 나타나는 부분이다. 편광 사진에서의 흰 부분들이 바로 결정에 해당하는 부분이며, 검은 부분은 고분자 사슬들이 불규칙하게 분포되어 무정형을 이루고 있는 부분이라 할 수 있다. 도 2의 편광 사진에서 보는 바와 같이 110℃는 무정형 부분이 지배적이며 130℃ 이상에서 결정들이 확연해지기 시작한다. 170℃를 지나면서 이 결정의 영역이 서로 겹쳐지는 부분이 발생함을 볼 수 있으며 190℃에 이르면 대형 결정들이 지배적으로 분포됨을 알 수 있다. 따라서 상기 언급한 바와 같이 작은 결정들이 많이 분포되는 경우는T c 이상T m 이하의 온도(130∼170℃)에서 건조시킨 경우이나 가능하다면T c 에 가까운 편이 공정효율상 유리하다는 것을 확인할 수 있다.In FIG. 2, the part within the cracked area of the unpolarized photographs is a part that appears as a hexagonal cell insulator due to the inflow of the polymer fluid due to the surface tension gradient, not the crystal. The white parts of the polarized photo correspond to crystals, and the black parts are amorphous parts of the polymer chains irregularly distributed. As shown in the polarization photograph of FIG. 2, 110 ° C. is dominant in the amorphous portion, and crystals begin to become apparent at 130 ° C. or higher. It can be seen that as the region of the crystal overlaps with each other as it passes through 170 ° C, when the temperature reaches 190 ° C, the large crystals dominate. Therefore, as mentioned above, it can be seen that the case where a large number of small crystals are distributed at a temperature of T c or more and T m or less (130-170 ° C.) or, if possible, is closer to T c is advantageous in process efficiency.

또한 전해액과의 반응성 시험에 있어서도 110℃, 130℃ 건조필름의 경우는 필름이 상당량 녹아내려 현미경 관찰이 불가능할 정도이었으며 그 이상의 온도에서는 거의 결정상 변화가 없었다.Also, in the reactivity test with the electrolyte, in the case of dry film at 110 ° C. and 130 ° C., the film melted a considerable amount, making it impossible to observe the microscope.

이상의 결과로 보아 130℃를 제외하고 그 이상의 온도에서부터 150℃ 까지가 적정 건조온도 범위일 것으로 고려할 수 있으나, 상기 NMP 휘발 결과를 함께 고려하면 건조온도 상한을 140℃ 정도로 한정시키는 것이 타당할 것이다.In view of the above results, it can be considered that the temperature is higher than 150 ° C. except for 130 ° C., but it may be considered to be an appropriate drying temperature range.

따라서T c T m 이 약간씩 다르게 나타나는 PVDF 계열 고분자에 대해서는 이러한 경우를 동일하게 적용하여 일반화시키면 최적 건조온도 범위를T m -a│T m -T c │에 있어서 a=0.5∼0.9의 범위로 유지하는 것이 바람직하다는 것을 확인할 수 있다.Therefore, for PVDF series polymers in which T c and T m are slightly different, generalizing by applying the same case, the optimum drying temperature range is a = 0.5 to 0.9 for T m -a│ T m - T c │. It can be confirmed that it is preferable to keep as.

PVDF 계열 고분자를 결착제로 사용하는 경우에 이상과 같은 건조온도 범위를 적용시켜 극판을 제조하면 전해액과의 내약품성이 우수하므로 본 발명의 제조방법에 의해 제조된 리튬2차전지는 충방전 싸이클 수명이 우수할 뿐만 아니라, 활물질 입자와의 접촉도도 증가되어 극판의 결착력 내지 내구성을 향상시킬 수 있다.In the case of using PVDF-based polymer as a binder, if the electrode plate is manufactured by applying the above drying temperature range, the lithium secondary battery manufactured by the manufacturing method of the present invention has excellent charge and discharge cycle life because the chemical resistance with electrolyte is excellent. In addition, the degree of contact with the active material particles is also increased to improve the binding force and durability of the electrode plate.

Claims (4)

폴리비닐리덴플루오라이드 계열 고분자를 녹인 고분자 용액에 활물질 분말 및 도전제 또는 첨가제 입자를 첨가하고 유기용매 액체를 혼합하여 슬러리 상태로 만든후 금속 집전체에 코팅하여 리튬2차전지용 극판을 제조함에 있어서, 상기 코팅 후 건조온도를 하기 수학식 1로 설정하여 건조시키는 것을 특징으로 하는 리튬2차전지용 극판의 제조방법을 제공하는 것이다.In preparing a lithium secondary battery electrode plate by adding an active material powder, a conductive agent or an additive particle to a polymer solution in which a polyvinylidene fluoride-based polymer is dissolved, mixing an organic solvent liquid to form a slurry, and then coating a metal current collector, After the coating is to provide a method for manufacturing a lithium secondary battery pole plate characterized in that the drying by setting the drying temperature to the following formula (1). [수학식 1][Equation 1] 건조온도=Tm-a|Tm- Tc|Drying temperature = T m -a | T m -T c | 상기 식에서,T c ; 결정화온도(℃);In the above formula, T c ; Crystallization temperature (° C.); T m ; 결정의 용융온도(℃); T m ; Melting temperature of the crystal (° C.); a; 0.5∼0.9의 범위내의 값이다.a; It is a value in the range of 0.5-0.9. 제 1항에 있어서, 상기 유기용매로 메틸피롤리디논, 디메틸포름아마이드, 톨루엔, 아세톤으로 구성되는 그룹으로 부터 선택되는 1종을 사용하는 것을 특징으로 하는 리튬2차전지용 극판의 제조방법.The method of claim 1, wherein the organic solvent is one selected from the group consisting of methylpyrrolidinone, dimethylformamide, toluene, and acetone. 제 1항에 있어서, 상기 활물질이 탄소재료이고 도전제와 첨가제는 사용하지 않으며 제조되는 극판이 음극판임을 특징으로 하는 리튬2차전지용 극판의 제조방법.The method of claim 1, wherein the active material is a carbon material, and a conductive plate is used without using a conductive agent and an additive. 제 1항에 있어서, a 값이 0.7∼0.9 범위내인 것을 특징으로 하는 리튬2차전지용 극판의 제조방법.The method for manufacturing a cathode plate for a lithium secondary battery according to claim 1, wherein the value a is in the range of 0.7 to 0.9.
KR1019970077683A 1997-12-30 1997-12-30 Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability KR100439164B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970077683A KR100439164B1 (en) 1997-12-30 1997-12-30 Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970077683A KR100439164B1 (en) 1997-12-30 1997-12-30 Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability

Publications (2)

Publication Number Publication Date
KR19990057620A KR19990057620A (en) 1999-07-15
KR100439164B1 true KR100439164B1 (en) 2004-09-18

Family

ID=37349038

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970077683A KR100439164B1 (en) 1997-12-30 1997-12-30 Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability

Country Status (1)

Country Link
KR (1) KR100439164B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102283794B1 (en) 2014-11-19 2021-07-30 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553874A (en) * 1978-10-16 1980-04-19 Furukawa Battery Co Ltd:The Method of manufacturing cadmium negative electrode for alkaline battery
KR960027012A (en) * 1994-12-07 1996-07-22 윤종용 Method of manufacturing negative electrode of nickel-hydrogen battery
KR19980026047A (en) * 1996-10-07 1998-07-15 손욱 Manufacturing method of electrode assembly for solid polymer battery
KR0163816B1 (en) * 1995-11-14 1998-12-15 김건 Cathode for molten carbonate fuel cell and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553874A (en) * 1978-10-16 1980-04-19 Furukawa Battery Co Ltd:The Method of manufacturing cadmium negative electrode for alkaline battery
KR960027012A (en) * 1994-12-07 1996-07-22 윤종용 Method of manufacturing negative electrode of nickel-hydrogen battery
KR0163816B1 (en) * 1995-11-14 1998-12-15 김건 Cathode for molten carbonate fuel cell and its manufacturing method
KR19980026047A (en) * 1996-10-07 1998-07-15 손욱 Manufacturing method of electrode assembly for solid polymer battery

Also Published As

Publication number Publication date
KR19990057620A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
Xu et al. Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery
JP5108504B2 (en) Electrolyte composition and its use as an electrolyte material for electrochemical energy storage systems
US10868289B2 (en) Separator, method for preparing the same and electrochemical device including the same
Song et al. Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries
CN110880620A (en) Composite solid electrolyte and preparation method thereof, solid lithium battery and preparation method thereof
Sousa et al. Poly (vinylidene fluoride-co-chlorotrifluoroethylene)(PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion
JP2007012595A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2008544457A (en) Electrolyte-separator system free of film formers and its use in electrochemical energy storage systems
KR20080088651A (en) Coated metal oxide particles with low dissolution rate, methods for preparing same and use thereof in electrochemical systems
WO2021232904A1 (en) Isolating membrane of electrochemical device and preparation method therefor
CN113285118A (en) Compound solid electrolyte based on MOF three-dimensional framework support and preparation method thereof
KR20070066453A (en) Positive electrode active material, manufacturing method thereof and lithium secondary battery comprising the same
Song et al. Thermally stable gel polymer electrolytes
CN110994017B (en) Nitride-enhanced polymer electrolyte, preparation method and long-life solid lithium ion battery
KR100743982B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
CN115332608A (en) Composite solid electrolyte membrane and preparation method and application thereof
Gong et al. High-performance gel polymer electrolytes derived from PAN-POSS/PVDF composite membranes with ionic liquid for lithium ion batteries
Michael et al. Rechargeable lithium battery employing a new ambient temperature hybrid polymer electrolyte based on PVK+ PVdF–HFP (copolymer)
US20230335784A1 (en) Advanced solid electrooyte membranes and batteries made therefrom
KR100439164B1 (en) Method for manufacturing electrode plate for lithium secondary battery having excellent chemical resistance and durability
US20200014079A1 (en) Battery internal short circuit trigger and improved performance method
JP7439138B2 (en) Electrodes for lithium ion batteries and other applications
KR100327487B1 (en) Producing method of lithium polymer secondary battery
Ma et al. Ultrahigh salt content enables the nonflammable PVDF-based solid electrolyte with high ionic conductivity
US20230317948A1 (en) Electrode plate and method for preparing same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140512

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150514

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160513

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170516

Year of fee payment: 14