JPS63105478A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS63105478A
JPS63105478A JP61250372A JP25037286A JPS63105478A JP S63105478 A JPS63105478 A JP S63105478A JP 61250372 A JP61250372 A JP 61250372A JP 25037286 A JP25037286 A JP 25037286A JP S63105478 A JPS63105478 A JP S63105478A
Authority
JP
Japan
Prior art keywords
battery
diethoxyethane
conductive polymer
electrolyte
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61250372A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61250372A priority Critical patent/JPS63105478A/en
Publication of JPS63105478A publication Critical patent/JPS63105478A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve cycle characteristic by using an organic solvent, a mixture of propylene carbonate and 1, 2 diethoxyethane, as a solvent for electrolyte. CONSTITUTION:An organic solvent mode of propylene carbonate mixed with 1, 2 dithozyethane in volume proportion of 1/9-4 is used as an electrolyte solvent for a secondary battery. In this case, a solvation of anion and 1, 2 diethoxyethane tends to become disconnected due to interaction between the 1, 2 diethoxyethane and a conductive polymer. This tendency becomes particularly conspicuous when what is easily be doped like poly aniline and poly pyrrole composed of 6-ring or 5-ring macro molecules including a nitrogen atoms is used as the conductive polymer. By this method, decomposition of an electrolyte, a dopant, or the conductive polymer, is inhibited, which results in the improved charge and discharge characteristic, and cycle characteristic, of a battery.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、導電性ポリマーを電極に用いた二次電池に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a secondary battery using a conductive polymer as an electrode.

〈従来の技術〉 近年、例えば特開昭56−136469号にみられるよ
うに、導電性ポリマーを電極に用いた二次電池が提案さ
れている。
<Prior Art> In recent years, secondary batteries using conductive polymers as electrodes have been proposed, as seen in, for example, Japanese Patent Application Laid-Open No. 56-136469.

この二次電池の電極に使用される導電性ポリマーは、通
常は導電性は僅かであるが、各種のドーパントをドーピ
ング、アンド−ピングすることが可能であり、ドーピン
グにより導電性が飛躍的に上昇する。そして、CJ20
4−やBF4−などのアニオンをドーピングした導電性
ポリマーは正極材料として、またLl やNa なとの
カチオンをドーピングした導電性ポリマーは負極材料と
して各々使用され、ドーピング及びアンド−ピンクを電
気化学的に可逆的に行なわせることによって充放電可能
な電池が構成される。
The conductive polymer used for the electrodes of this secondary battery usually has a slight conductivity, but it can be doped with various dopants, and the conductivity can be dramatically increased by doping. do. And CJ20
Conductive polymers doped with anions such as 4- and BF4- are used as positive electrode materials, and conductive polymers doped with cations such as Ll and Na are used as negative electrode materials. A battery that can be charged and discharged is constructed by making the process reversible.

この様な導電性ポリマーは、一般に、酸化剤による化学
的重合、あるいは電解重合などによって作られ、例えば
ポリアセチレン、ポリピロ−ル、ポリチオフェン、ポリ
アニリン、ポリパラフェニレン等が従来から知られてい
る。そしてこのポリマーが粉状で得られる場合は電曝形
状に応じた形状に加圧成形して、またフィルム状の場合
はそのまま電極寸法に打法いたり、あるいは粉砕して粉
状とする等して使用されている。これらの導電性ポリマ
ーを使用した電池は、軽量で高エネルギー密度であるば
かりか無公害であるといった特長のある電池として期待
されている。とりわけ、上記のポリピロールやポリアニ
リンは特性が良好で、これらを用いた二次電池は実用化
電池として有望視されている。
Such conductive polymers are generally made by chemical polymerization using an oxidizing agent or electrolytic polymerization, and conventionally known examples include polyacetylene, polypyrrole, polythiophene, polyaniline, and polyparaphenylene. If this polymer is obtained in powder form, it is pressure-molded into a shape that corresponds to the shape of the electrode, and if it is in film form, it is directly applied to the electrode dimensions, or it is pulverized to form a powder. It is used. Batteries using these conductive polymers are expected to be lightweight, have high energy density, and are non-polluting. In particular, the above-mentioned polypyrrole and polyaniline have good properties, and secondary batteries using these are considered promising as practical batteries.

この種の二次電池の電解液としては、通常、リチウム電
池などの既存の非水電池に使用されているのと同様な、
プロピレンカーボネートなどの非プロトン性の有は溶媒
に、過塩素酸リチウムLiCβ04の如きリチウム塩な
どのアルカリ金属塩を溶解したものが用いられている。
The electrolyte for this type of secondary battery is usually the same as that used in existing non-aqueous batteries such as lithium batteries.
A solution prepared by dissolving an alkali metal salt such as a lithium salt such as lithium perchlorate LiCβ04 in an aprotic solvent such as propylene carbonate is used.

〈発明が解決しようとする問題点〉 しかしながら、これら導電性ポリマーを電極に使用した
二次電池は、一般に、既存の非水電池などに較べてその
電極電位がかなり高く、上記従来の電解液を用いて電池
を構成した場合、充電時には充電進行と共に電池電圧が
高くなりすぎてしまい、この結果、電池缶や集電体など
の腐食が起こり易くなるばかりか、電解液やドーパント
、更には導電性ポリマーが分解する等の副反応が起こり
、充放電効率の低下や保存特性の劣化を招き、またサイ
クル寿命が短くなるといった問題がある。
<Problems to be Solved by the Invention> However, secondary batteries using these conductive polymers as electrodes generally have a considerably higher electrode potential than existing non-aqueous batteries, making it difficult to use the conventional electrolyte described above. If a battery is configured using these materials, the battery voltage will become too high as charging progresses, and as a result, not only will the battery can and current collector be susceptible to corrosion, but also the electrolyte, dopant, and even conductive There are problems such as side reactions such as decomposition of the polymer, resulting in decreased charge/discharge efficiency, deterioration of storage characteristics, and shortened cycle life.

〈問題点を解決するための手段〉 本発明者は、この種の二次電池に使用する電解液の組成
を改良することで、この電池の充放電特性並びにサイク
ル特性向上を図らんと研究した所、下記の手段を用いた
場合には所期の目的を達成できることを知得した。
<Means for Solving the Problems> The present inventor conducted research to improve the charging/discharging characteristics and cycle characteristics of this type of secondary battery by improving the composition of the electrolyte used in this type of secondary battery. However, I learned that the desired purpose could be achieved by using the following methods.

即ち、この発明の二次電池は、導電性ポリマーを少なく
とも一方の電極とする二次電池であって、電解液の溶媒
として、プロピレンカーボネートと1,2ジエトキシエ
タンとを混合してなる有機溶媒を用いたことを要旨とす
る。
That is, the secondary battery of the present invention is a secondary battery that uses a conductive polymer as at least one electrode, and uses an organic solvent prepared by mixing propylene carbonate and 1,2 diethoxyethane as a solvent for the electrolytic solution. The gist is that it was used.

〈作 用〉 上記のようにプロピレンカーボネートと1,2ジエトキ
シエタンとの混合液を電解液溶媒として用いて電池を構
成することで、充電時における電圧の上昇を低く抑える
ことができ、この結果、電池缶や集電体の腐食が防げ、
また電解液やドーパントあるいは導電性ポリマーの分解
などが抑制されて電池の充放電特性並びにサイクル特性
が向上する。
<Function> By configuring a battery using a mixed solution of propylene carbonate and 1,2 diethoxyethane as an electrolyte solvent as described above, the rise in voltage during charging can be suppressed to a low level, and as a result, , prevents corrosion of battery cans and current collectors,
Furthermore, decomposition of the electrolyte, dopant, or conductive polymer is suppressed, and the charge/discharge characteristics and cycle characteristics of the battery are improved.

このようにプロピレンカーボネートに1,2ジエトキシ
エタンを混合して用いた場合の特性が良好になるのは次
の理由に依るものと考えられる。即ち、この種の電池に
おいてドーパントとして用いられている例えばアニオン
は、アンド−ピング状態ではこれらが溶解している溶媒
と溶媒和して存在する一方、ドーピング反応が起こる時
にはこの溶媒和が外れてアニオン自体が導電性ポリマー
中へドーピングされる。この時、溶媒和の外れ易さ並び
にドーピングのし易さは、アニオンが溶媒和している溶
媒とアニオンがドーピングされる導電性ポリマーとの相
互作用によって大きく影響される。
The reason why the properties are improved when propylene carbonate is mixed with 1,2-diethoxyethane is considered to be due to the following reason. In other words, for example, anions used as dopants in this type of battery exist as solvates with the solvent in which they are dissolved in an undoped state, but when a doping reaction occurs, this solvation is removed and the anions are dissolved. itself doped into the conductive polymer. At this time, the ease of desolvation and the ease of doping are greatly influenced by the interaction between the solvent in which the anion is solvated and the conductive polymer to which the anion is doped.

そして、上記のように1,2ジエトキシエタンを含有す
る有機溶媒を電解液溶媒に用いた場合、アニオンと1,
2ジエトキシエタンとの溶媒和が、1.2ジエトキシエ
タンと導電性ポリマーとの相互作用により外れ易くなる
ものと考えられる。
When an organic solvent containing 1,2 diethoxyethane is used as an electrolyte solvent as described above, anion and 1,
It is thought that the solvation with 2-diethoxyethane becomes easier to release due to the interaction between 1.2-diethoxyethane and the conductive polymer.

この傾向は、導電性ポリマーとしてポリアニリンやポリ
ピロールのように、窒素原子を含む六員環部るいは五員
環高分子からなる非常にドーピングされ易いものを用い
た場合は特に顕著となる。
This tendency is particularly noticeable when a conductive polymer such as polyaniline or polypyrrole, which is composed of a six-membered ring or a five-membered ring polymer containing a nitrogen atom and is very easily doped, is used.

一方、1,2ジエトキシエタンの構造式はであり、また
例えばポリピロールの構造式はである。よって、ポリピ
ロールからなる電極中では、1,2ジエトキシエタンの
酸素原子がポリピロールの単位ユニットの2位、5位の
炭素原子に近づき、ポリピロール鎖に沿ってこの酸素原
子がポリピロールの上記炭素原子に配位するか、あるい
は、1,2ジエトキシエタンの酸素原子がポリピロール
の窒素原子に近づき、ポリピロール鎖に沿ってこの酸素
原子がポリピロールの窒素原子に配位する等の反応が起
こる可能性が考えられる。
On the other hand, the structural formula of 1,2 diethoxyethane is and, for example, the structural formula of polypyrrole is. Therefore, in an electrode made of polypyrrole, the oxygen atom of 1,2 diethoxyethane approaches the carbon atoms at the 2nd and 5th positions of the polypyrrole unit, and this oxygen atom approaches the above carbon atoms of the polypyrrole along the polypyrrole chain. It is thought that a reaction may occur in which the oxygen atom of 1,2-diethoxyethane approaches the nitrogen atom of polypyrrole and the oxygen atom coordinates with the nitrogen atom of polypyrrole along the polypyrrole chain. It will be done.

一方、ポリアニリンの構造式は であり、このポリアニリンを用いた電極中では、1.2
ジエトキシエタンの酸素原子がポリアニリンの単位ユニ
ットの1位、4位の炭素原子に近づき、ポリアニリン鎖
に沿ってこの酸素原子がポリアニリンの上記炭素原子に
配位するなどの反応が起こっている可能性が考えられる
On the other hand, the structural formula of polyaniline is 1.2 in an electrode using this polyaniline.
There is a possibility that a reaction occurs in which the oxygen atom of diethoxyethane approaches the carbon atoms at the 1st and 4th positions of the polyaniline unit, and this oxygen atom coordinates with the above carbon atoms of the polyaniline along the polyaniline chain. is possible.

そして、このように導電性ポリマーの一部に1.2ジエ
トキシエタンが配位することにより、上記したアニオン
の溶媒和からの脱離がよりスムースになり、アニオンの
導電性ポリマーへのドーピングがより起こり易くなるこ
とが考えられる。
By coordinating 1.2 diethoxyethane to a part of the conductive polymer in this way, the above-mentioned desorption from the solvation of the anion becomes smoother, and the doping of the anion into the conductive polymer becomes easier. It is conceivable that this will occur more easily.

このように、本発明によれば、電池の充電反応であるア
ニオンのドーピングが非常に起こり易くなるので、充電
時における充電電圧の上昇が抑制されるのである。
As described above, according to the present invention, anion doping, which is a charging reaction of the battery, occurs very easily, so that an increase in charging voltage during charging is suppressed.

〈実施例〉 電解重合法によってピロールを徂合し、1qられたフィ
ルム状のポリピロールを電極から剥した後に粉砕してポ
リピロール粉末を得、このポリピロール粉末を円板状に
加圧成形して正極とした。この正極に、リチウムフォイ
ルを円盤状に打法いたものを負極として組合せた。そし
て、電解液には、プロピレンカーボネート(PC)と1
,2ジエトキシエタン(1,2−DEE)とを体積比(
PC:  1.2−DEE)でそれぞれ90:10(電
池A>、50:50 (電池B)、20:80(電池C
)の割合で混合した有機溶媒に、過塩素酸リチウムを1
M溶解させた溶液を用いて、第1図に示す構造の電池A
−Cを夫々作製した。尚、同図において1は正極、2は
負極、3はセパレータ、4は正極缶、5は負極缶、6は
正極集電体、7は負極集電体、8は絶縁ガスケットであ
る。また、電解液としてプロピレンカーボネートのみか
らなる有機溶媒に過塩素酸リチウムを1M溶解させた溶
液を用いた他は同様にして電池りを、更に電解液として
1,2ジエトキシエタンのみからなる有機溶媒に過塩素
酸リチウムを1M溶解させた溶液を用いた他は同様にし
て電池Eをそれぞれ作製した。
<Example> Pyrrole was assembled by electrolytic polymerization, and 1q of film-like polypyrrole was peeled off from the electrode and crushed to obtain polypyrrole powder. This polypyrrole powder was pressure-molded into a disk shape and used as a positive electrode. did. This positive electrode was combined with a disk-shaped lithium foil as a negative electrode. The electrolyte contains propylene carbonate (PC) and 1
, 2 diethoxyethane (1,2-DEE) at a volume ratio (
PC: 1.2-DEE), respectively 90:10 (Battery A>, 50:50 (Battery B), 20:80 (Battery C)
), add 1 liter of lithium perchlorate to an organic solvent mixed at a ratio of
Using a solution containing M, a battery A having the structure shown in FIG.
-C were produced respectively. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a positive electrode can, 5 is a negative electrode can, 6 is a positive electrode current collector, 7 is a negative electrode current collector, and 8 is an insulating gasket. In addition, a battery solution was prepared in the same manner except that a solution of 1M lithium perchlorate dissolved in an organic solvent consisting only of propylene carbonate was used as the electrolyte, and an organic solvent consisting only of 1,2 diethoxyethane was used as the electrolyte. Battery E was prepared in the same manner except that a solution containing 1M lithium perchlorate was used.

これらの電池A−Eについて、’1mAの電流で10時
間充電を行ない、また1mAの電流で電池電圧が2.5
Vになるまで放電するという充放電サイクルを繰返し行
ない、各電池における充放電効率(%)のサイクル変化
を調べた。第2図にこの結果を示した。第2図より、プ
ロピレンカーボネートと1,2ジエトキシエタンとを混
合したものを電解液の溶媒として用いた本発明の電池A
−Cは、充放電効率の低下が極く僅かで、第150サイ
クルをすぎても95%以上もの高率を示しており、サイ
クル特性が良好である。これに対してプロピレンカーボ
ネートあるいは1.2ジエトキシエタンを単独で用いた
電池り。
These batteries A-E were charged for 10 hours at a current of 1 mA, and the battery voltage was 2.5 at a current of 1 mA.
A charge/discharge cycle of discharging until the voltage reached V was repeated, and the cycle change in charge/discharge efficiency (%) of each battery was examined. Figure 2 shows the results. From FIG. 2, a battery A of the present invention using a mixture of propylene carbonate and 1,2 diethoxyethane as the electrolyte solvent is shown.
-C shows a very slight decrease in charge/discharge efficiency, showing a high rate of 95% or more even after the 150th cycle, and has good cycle characteristics. On the other hand, batteries using propylene carbonate or 1.2 diethoxyethane alone.

Eはサイクル特性が劣悪で、充放電効率が50%以下に
なった時点をサイクル寿命とした場合、夫々100サイ
クル、120サイクルの野命であった。
Battery E had poor cycle characteristics, and when the cycle life was defined as the time when the charge/discharge efficiency became 50% or less, the cycle life was 100 cycles and 120 cycles, respectively.

電池A−Cの特性が良好なのは、これらの電池は充電時
の電圧上昇が緩かでまた充電終止電 圧が低いために、
電池缶や集電体が腐食したり、あるいは電解液やドーパ
ント並びに正極のポリピロールなどが分解するといった
副反応が生じにくいことに依るものと考えられる。これ
に対し、電池り、Eては充電時にあける電圧上昇が大き
いので上記の副反応が顕著に起こり、このために充放電
サイクルの進行に伴って充放電効率が急速に低下してサ
イクル特性が劣化したものと思われる。尚、本発明で用
いる電解液の溶媒においては、プロピレンカーボネート
に対して1,2ジエトキシエタンを体積比で1/9〜4
の割合で混合することが好ましい。
The characteristics of Batteries A-C are good because these batteries have a slow voltage rise during charging and a low end-of-charge voltage.
This is thought to be due to the fact that side reactions such as corrosion of the battery can and current collector or decomposition of the electrolyte, dopant, and polypyrrole of the positive electrode are less likely to occur. On the other hand, with battery E, the voltage rise during charging is large, so the side reactions mentioned above occur significantly, and as a result, as the charge/discharge cycle progresses, the charge/discharge efficiency rapidly decreases and the cycle characteristics deteriorate. It seems to have deteriorated. In addition, in the solvent of the electrolytic solution used in the present invention, the volume ratio of 1,2 diethoxyethane to propylene carbonate is 1/9 to 4.
It is preferable to mix at a ratio of .

第3図に第100サイクル目の充放電における電池A−
Eの電池電圧(V)の経時変化を、また第1表には第1
0ザイクル目並びに第100サイクル目の充電終了時に
おける電池電圧(V)をそれぞれ示した。
Figure 3 shows battery A- during the 100th charge/discharge cycle.
Table 1 shows the changes over time in the battery voltage (V) of E.
The battery voltage (V) at the end of charging at the 0th cycle and the 100th cycle is shown.

上記の結果より、本発明の電池A−Cでは、充電時にお
ける電池電圧の上昇が小さく抑えられており、またサイ
クル初期だけでなくサイクルが進行した時点においても
充電終止電圧が低い。更に、放電時の電圧の低下が少な
くて充放電効率が高いこともわかる。
From the above results, in batteries A to C of the present invention, the increase in battery voltage during charging is suppressed to a small extent, and the end-of-charge voltage is low not only at the beginning of the cycle but also at the time when the cycle progresses. Furthermore, it can be seen that the voltage drop during discharging is small and the charging/discharging efficiency is high.

尚、以上は導電性ポリマーとしてポリピロール、負極と
してリチウム、また電解液溶質として過塩素酸リチウム
を夫々用いた例であるが、ポリアニリンやポリチオフェ
ンあるいはポリアセチレン等の他の導電性ポリマーを正
極に用いたり、リチウム−アルミニウム合金やリチウム
−ホウ素合金などの他のリチウム合金ないしはナトリウ
ムやカリウムなどの軽金属あるいはそれらの合金を負極
に用いたり、または L!BF4、L!PF6、L!ASF6、L ! CF
3303 、L ! 2 B1(>Ci2.10などの
リチウム塩を溶質に用いた場合にも同様の効果が得られ
ることは勿論である。
The above examples are examples in which polypyrrole is used as the conductive polymer, lithium is used as the negative electrode, and lithium perchlorate is used as the electrolyte solute, but other conductive polymers such as polyaniline, polythiophene, or polyacetylene may be used as the positive electrode. Other lithium alloys such as lithium-aluminum alloys and lithium-boron alloys, light metals such as sodium and potassium, or alloys thereof may be used for the negative electrode, or L! BF4, L! PF6, L! ASF6, L! C.F.
3303, L! Of course, similar effects can be obtained when a lithium salt such as 2B1 (>Ci2.10) is used as the solute.

また、以上は正極にのみ本発明に係る導電性ポリマーを
用いた例であるが、負極あるいは正負極に本発明の導電
性ポリマーを用いた場合も同様な結果が得られることは
他言を要しない。
Additionally, although the above is an example in which the conductive polymer of the present invention is used only in the positive electrode, it is needless to say that similar results can be obtained when the conductive polymer of the present invention is used in the negative electrode or positive and negative electrodes. do not.

〈発明の効果〉 以上詳述した通り、この発明の二次電池によれば、充電
時における電池電圧の上昇を低く抑えることができるの
で、電池缶や集電体の腐食が防止でき、また電解液やド
ーパント並びに導電性ポリマーの分解が抑制され、この
結果、充放電効率が高まり、またサイクル特性の向上を
図ることができるという効果を奏し、その工業上の利用
(iIIi(iiIは大でおる。
<Effects of the Invention> As detailed above, according to the secondary battery of the present invention, the rise in battery voltage during charging can be suppressed to a low level, so corrosion of the battery can and current collector can be prevented, and electrolytic The decomposition of the liquid, dopant, and conductive polymer is suppressed, and as a result, the charge/discharge efficiency is increased, and the cycle characteristics can be improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の電池などの構造を示した断面図、第2
図は実施例の電池などのサイクル特[生を示したグラフ
、第3図は実施例の電池などの第100サイクル目の充
放電における電池電圧の経時変化を示したグラフである
。 1・・・正極、2・・・負極、3・・・セパレータ。 第1図 第2図 プ   イ   り   /し  ft   (凹)第
3図 充放電時間(晴間] 手続ネ甫正言(自発差出) 昭和62年1月26日
Figure 1 is a sectional view showing the structure of the battery of the example, Figure 2
The figure is a graph showing the cycle characteristics of the battery of the example, and FIG. 3 is a graph showing the change in battery voltage over time during the 100th charge/discharge cycle of the battery of the example. 1...Positive electrode, 2...Negative electrode, 3...Separator. Figure 1 Figure 2 Plui ri/shi ft (concave) Figure 3 Charging/discharging time (Sunny weather) Procedures Neho Seigen (Voluntary Submission) January 26, 1985

Claims (1)

【特許請求の範囲】 1、導電性ポリマーを少なくとも一方の電極とする二次
電池であつて、電解液の溶媒として、プロピレンカーボ
ネートと1、2ジエトキシエタンとを混合してなる有機
溶媒を用いたことを特徴とする二次電池。 2、プロピレンカーボネートに対して 1、2ジエトキ
シエタンを体積比で1/9〜4の割合で混合したことを
特徴とする特許請求の範囲第1項記載の二次電池。 3、前記導電性ポリマーがポリピロールあるいはポリア
ニリンであることを特徴とする特許請求の範囲第1項ま
たは第2項記載の二次電池。
[Claims] 1. A secondary battery using a conductive polymer as at least one electrode, which uses an organic solvent made of a mixture of propylene carbonate and 1,2-diethoxyethane as a solvent for the electrolyte. A secondary battery characterized by: 2. The secondary battery according to claim 1, wherein 1,2 diethoxyethane is mixed with propylene carbonate at a volume ratio of 1/9 to 4. 3. The secondary battery according to claim 1 or 2, wherein the conductive polymer is polypyrrole or polyaniline.
JP61250372A 1986-10-20 1986-10-20 Secondary battery Pending JPS63105478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61250372A JPS63105478A (en) 1986-10-20 1986-10-20 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61250372A JPS63105478A (en) 1986-10-20 1986-10-20 Secondary battery

Publications (1)

Publication Number Publication Date
JPS63105478A true JPS63105478A (en) 1988-05-10

Family

ID=17206940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61250372A Pending JPS63105478A (en) 1986-10-20 1986-10-20 Secondary battery

Country Status (1)

Country Link
JP (1) JPS63105478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200562A (en) * 1988-02-05 1989-08-11 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell
JPH02192668A (en) * 1988-10-03 1990-07-30 Sanyo Electric Co Ltd Secondary cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996665A (en) * 1982-11-25 1984-06-04 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithium battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996665A (en) * 1982-11-25 1984-06-04 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200562A (en) * 1988-02-05 1989-08-11 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell
JPH02192668A (en) * 1988-10-03 1990-07-30 Sanyo Electric Co Ltd Secondary cell

Similar Documents

Publication Publication Date Title
JP2001057214A (en) Battery having controlled electrode surface
EP1744388A1 (en) Redox active reversible electrode and secondary battery including the same
US7524583B2 (en) Non-aqueous electrolytic secondary battery
JP2007281107A (en) Electricity storage device
JP5036214B2 (en) Charge / discharge control method for power storage device
JPH0520874B2 (en)
JP2008159275A (en) Electrode active material and power storage device using the same
JPS634569A (en) Nonaqueous electrolyte secondary battery
JP3107300B2 (en) Lithium secondary battery
JPH02172163A (en) Nonaqueous electrolyte battery
JPS63105478A (en) Secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JP2021163558A (en) Electrode active material for secondary battery, and secondary battery using the same
JP2008078040A (en) Secondary battery
JP3691380B2 (en) Nonaqueous electrolyte secondary battery
JP2877784B2 (en) Copper-organic disulfide electrode and secondary battery using the same
JPS63105477A (en) Secondary battery
JPH05198316A (en) Nonaqueous electrolyte battery
JP3119945B2 (en) Lithium secondary battery
JPS63102174A (en) Secondary battery
JPS61232573A (en) Nonaqueous type secondary battery
JP2607571B2 (en) Novel conductive polymer and secondary battery using it as cathode material
JPH05258772A (en) Secondary battery with nonaqueous electrolyte
JPH0428159A (en) Secondary battery
JPH06283175A (en) Reversible electrode