JPH02192668A - Secondary cell - Google Patents

Secondary cell

Info

Publication number
JPH02192668A
JPH02192668A JP1257260A JP25726089A JPH02192668A JP H02192668 A JPH02192668 A JP H02192668A JP 1257260 A JP1257260 A JP 1257260A JP 25726089 A JP25726089 A JP 25726089A JP H02192668 A JPH02192668 A JP H02192668A
Authority
JP
Japan
Prior art keywords
battery
charge
batteries
voltage
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1257260A
Other languages
Japanese (ja)
Other versions
JP2765994B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Koji Nishio
晃治 西尾
Noriyuki Yoshinaga
好永 宣之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1257260A priority Critical patent/JP2765994B2/en
Publication of JPH02192668A publication Critical patent/JPH02192668A/en
Application granted granted Critical
Publication of JP2765994B2 publication Critical patent/JP2765994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent the corrosion of the cell can or the collector of a cell by composing the solvent of the electrolyte with a mixture of a specified normal chain diether compound and a specified ring carbonic ester compound. CONSTITUTION:The solvent of the electrolyte consists of a mixture of a normal chain diether compound indicated in the formula I and a ring carbonic ester compound indicated in the formula II. In this formulae I and II, l indicates 1 or 2, m, n, indicate an integral number more than 1 and less than 4 respectively, R1 indicates a lower alkyl radical or 1-3 in hydrogen atom or carbon number, and R2 indicates a hydrogen atom or a methyl radical. And the vol.% of the mixture of the normal chain diether compound and the ring carbonic ester compound is specified to be 90:10-10:90. Thereby the voltage elevation at the charging time can be suppressed low to prevent the corrosion of the cell can or the collector.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は導電性ポリマーを少(とも一方の電極に用いる
二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a secondary battery using a conductive polymer in at least one electrode.

(ロ)従来の技術 近年、例えば特OFN昭56−136469号公報にみ
られるように、導電性ポリマーを電極に用いた二次電池
が提案されている。
(B) Prior Art In recent years, secondary batteries using conductive polymers as electrodes have been proposed, as seen in, for example, Japanese Patent Application Publication No. 136469/1983.

この種の二次電池の電極に使用される導電性ポリマーは
、通常、導電性は僅かであるが、各種のドーパントをド
ーピング、アンド−ピングすることが可能であり、ドー
ピングにより等電性が飛躍的に上昇する。そして、CX
04−やBF4−などのアニオンをドーピングした導電
性ポリ?−は正極材料として、またLi“やNa+など
のカチオンをドーピングしたaCt性ポリマーは負極材
料とじて各々使用され、ドーピング及びアンド−ピング
を電気化学的に可逆的に行なうことによって充放電可能
な電池が構成される。
The conductive polymer used for the electrodes of this type of secondary battery usually has a slight conductivity, but it is possible to dope and dope various dopants, and doping dramatically increases the isoelectricity. to rise. And CX
Conductive polyester doped with anions such as 04- and BF4-? - is used as a positive electrode material, and aCt polymer doped with cations such as Li" and Na+ is used as a negative electrode material, and the battery can be charged and discharged by electrochemically reversibly performing doping and undoping. is configured.

この様な導電性ポリマーは、一般に、酸化剤による化学
的重合、あるいは電解重合などによって作られ、例えば
ポリアセチレン、ポリピロール、ポリチオフェン、ポリ
アニリン、ポリバラフェニレン等が従来から知られてい
る。そしてこのポリマーが粉状で得られる場合は電極形
状に応じた形状に加圧成形して、またフィルム状の場合
はそのまま電極寸法に打抜いたり、あるいは粉砕して粉
状とする等して使用されている。これらの導電性ポリマ
ーを使用した電池は、軽量で高エネルギー密度であるば
かりか無公害であるといった特長のある電池として期待
されている。とりわけ、上記のポリピロールやポリアニ
リンは特性が良好で、これらを用いた二次電池は実用化
電池として有望視されている。
Such conductive polymers are generally made by chemical polymerization using an oxidizing agent or electrolytic polymerization, and examples of such conductive polymers include polyacetylene, polypyrrole, polythiophene, polyaniline, polyvaraphenylene, and the like. If this polymer is obtained in powder form, it is pressure-molded into a shape that matches the electrode shape, and if it is in film form, it is used by punching it into the electrode size or by crushing it into powder form. has been done. Batteries using these conductive polymers are expected to be lightweight, have high energy density, and are non-polluting. In particular, the above-mentioned polypyrrole and polyaniline have good properties, and secondary batteries using these are considered promising as practical batteries.

この種の二次電池の電解液としては、通常、リチウム電
池などの既存の非水電池に使用されているのと同様な、
プロピレンカーボネートなどの非プロトン系の有機溶媒
に、過塩素酸リチウムやホウフッ化リチウムのようなリ
チウム塩などのアルカリ金属塩を溶質として溶解したも
のが用いられている。
The electrolyte for this type of secondary battery is usually the same as that used in existing non-aqueous batteries such as lithium batteries.
An alkali metal salt such as a lithium salt such as lithium perchlorate or lithium fluoroborate is dissolved as a solute in an aprotic organic solvent such as propylene carbonate.

(ハ)発明が解決しようとする課題 しかしながら、これら導電性ポリマーを電極に使用した
二次電池は、一般に既存の非水電池などに較べてその電
極電位がかなり高い。したがって、上記従来の電解液を
用いて電池を構成し、これを充放電した場合には、充電
進行と共に電池電圧が高くなりすぎてしまう結果、電解
液やドーパント、更には導電性ポリマーが分解する等の
副反応が起こり、充放電効率の低下や保存特性の劣化を
招くという課題がある。この傾向は特に充放電容量が大
きい場合にはa著となり、サイクル経過に伴う充放電効
率の低下の度合いが大きく、それ故サイクル寿命が短く
なるという課題もある。
(c) Problems to be Solved by the Invention However, secondary batteries using these conductive polymers as electrodes generally have a considerably higher electrode potential than existing non-aqueous batteries. Therefore, when a battery is constructed using the above-mentioned conventional electrolyte and charged and discharged, the battery voltage becomes too high as charging progresses, resulting in decomposition of the electrolyte, dopant, and even conductive polymer. There are problems in that side reactions such as these occur, leading to a decrease in charge/discharge efficiency and deterioration of storage characteristics. This tendency is especially noticeable when the charge/discharge capacity is large, and there is also the problem that the degree of decrease in charge/discharge efficiency is large as the cycle progresses, and therefore the cycle life is shortened.

本発明は従来のこのような課題を解決して、充放電効率
が低下したり、保存特性が劣化することを防止して、二
次電池のサイクル特性を飛躍的に向上させ、これによっ
て、高信頼性且つ高性能の二次電池の提供を目的とする
ものである。
The present invention solves these conventional problems and dramatically improves the cycle characteristics of secondary batteries by preventing a decrease in charge/discharge efficiency and deterioration of storage characteristics. The purpose is to provide a reliable and high-performance secondary battery.

(ニ)課題を解決するための手段 本発明は、正極と、負極と、電解液とを備え、導電性ポ
リマーを上記正極のみ、或いは正、負両極に用いた二次
電池であって、 前記電解液の溶媒が、下記の一般式(a)で表わされる
直鎖ジエーテル系化合物と、下記の一般式(b)で表わ
される環状炭酸エステル系化合物との混合溶媒からなる
ことを特徴とするものである。
(d) Means for Solving the Problems The present invention provides a secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, and using a conductive polymer only in the positive electrode or in both the positive and negative electrodes, comprising: The electrolytic solution is characterized in that the solvent thereof is a mixed solvent of a linear diether compound represented by the following general formula (a) and a cyclic carbonate ester compound represented by the following general formula (b). It is.

但し、 C@Ht+s+IQ  (CH1) to CmHt*
++”’(a )(式中、2は1または2、m、nは1
以上4以下の整数。) (式中、R3は水素原子または炭素数1〜3低級アルキ
ル基、R1は水素原子またはメチル基、)そして、ここ
で直鎖ジエーテル系化合物と環状炭酸エステル系化合物
との混合体積比率が、90:10〜10:90とするの
が好ましい。
However, C@Ht+s+IQ (CH1) to CmHt*
++"'(a) (where 2 is 1 or 2, m and n are 1
An integer greater than or equal to 4 and less than or equal to 4. ) (In the formula, R3 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms, and R1 is a hydrogen atom or a methyl group.) And here, the mixing volume ratio of the linear diether compound and the cyclic carbonate compound is, The ratio is preferably 90:10 to 10:90.

(ホ)作用 本発明の如く有機溶媒を電解液として電池を構成した場
合、従来のようにプロピレンカーボネートのみを電解液
溶媒として用いた場合に較べて、充電時における電圧の
上昇を低く抑えることができ、この結果、電池缶や集電
体の腐食が防げ、また電解液やドーパントあるいは導電
性ポリマーの分解などが制御されて、電池の充放電特性
並びにサイクル特性が向上する。
(E) Effect When a battery is constructed using an organic solvent as an electrolyte as in the present invention, the rise in voltage during charging can be suppressed to a lower level than when only propylene carbonate is used as an electrolyte solvent as in the past. As a result, corrosion of the battery can and current collector can be prevented, and decomposition of the electrolyte, dopant, or conductive polymer can be controlled, and the charging/discharging characteristics and cycle characteristics of the battery can be improved.

このように混合溶媒を電解液溶媒として用いた場合の特
性が良好になる理由は、次のように考えられる。即ち、
この種の電池においてドーパントとして用いられるアニ
オンは、アンド−ピング状態ではこれらが溶解している
溶媒と溶媒和して存在する一方、ドーピング反応が起こ
る時にはこの溶媒和が外れてアニオン自体が導電性ポリ
マー中ヘト−ピングされる。この時、溶媒和の外れ易さ
並びにドーピングのし易さは、アニオンが溶媒和してい
る溶媒とアニオンがドーピングされる導電性ポリマーと
の相互作用によって大きく影響される。
The reason why the characteristics are improved when a mixed solvent is used as an electrolyte solvent is considered to be as follows. That is,
The anions used as dopants in this type of battery exist as solvates with the solvent in which they are dissolved in the undoping state, but when a doping reaction occurs, this solvation is removed and the anions themselves become conductive polymers. It is medium-heated. At this time, the ease of desolvation and the ease of doping are greatly influenced by the interaction between the solvent in which the anion is solvated and the conductive polymer to which the anion is doped.

そして、前述せる直鎖ジエーテル系化合物と環状炭酸エ
ステル系化合物の混合溶媒を使用した場合、アニオンと
直鎖ジエーテルとの溶媒和が、直鎖ジエーテルと導電性
ポリマーとの相互作用により外れ易くなるものと考えら
れる。
Furthermore, when using a mixed solvent of a linear diether compound and a cyclic carbonate compound as described above, the solvation of the anion and the linear diether tends to come off due to the interaction between the linear diether and the conductive polymer. it is conceivable that.

また、本発明の混合溶媒を用いた電解液が、従来のプロ
ピレンカーボネートを用いた電解液に較べ、電導度が高
く、粘度が低いことも特性向上の要因と考えられる。
Further, the fact that the electrolytic solution using the mixed solvent of the present invention has higher conductivity and lower viscosity than the conventional electrolytic solution using propylene carbonate is also considered to be a factor in improving the characteristics.

尚、前記式(a)で示される直鎖ジエーテル系化合物と
しては、ジメトキシメタン、ジェトキシエタン、ブトキ
シプロポキシメタン、エトキシメトキシエタン、ジェト
キシメタン、前記式(b)で示される環状炭酸エステル
としては、プロピレンカーボネート、エチレンカーボネ
ート、1,2−ブチレンカーボネート、2,3−ブチレ
ンカーボネート、2,3−ペンテンカーボネート等を使
用しうる。
The linear diether compounds represented by the formula (a) include dimethoxymethane, jetoxyethane, butoxypropoxymethane, ethoxymethoxyethane, and jetoxymethane, and the cyclic carbonate represented by the formula (b) includes propylene. Carbonate, ethylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 2,3-pentene carbonate, etc. can be used.

そして、本発明の二次電池の電解質としては、ホウフッ
化リチウム(L+BF+)、過塩素酸リチウム(LrC
9O+)、6フツ化リン酸リチウム(L i P Fs
) 、6フツ化ヒ酸リチウム(L i A。
As the electrolyte for the secondary battery of the present invention, lithium borofluoride (L+BF+), lithium perchlorate (LrC
9O+), lithium hexafluoride phosphate (L i P Fs
), lithium hexafluoride arsenate (L i A.

F4)、4塩化アルミニウム・リチウム(LiAx C
14)等を用いることができる。
F4), lithium aluminum tetrachloride (LiAx C
14) etc. can be used.

(へ)実施例 以下の実施例では、用いた直鎖ジエーテル系化合物と環
状炭酸エステルとの組合せ、及びその添加量を、種々変
化させて検討を行った。
(f) Examples In the following examples, studies were conducted by varying the combination of the linear diether compound and cyclic carbonate ester and the amount added thereof.

実験Iでは、環状炭酸エステルとしてプロピレンカーボ
ネートを用いた例、 実験2では、環状炭酸エステルとしてエチレンカーボネ
ートを用いた例、 実験3では、環状炭酸エステルとして1.2−ブチレン
カーボネートを用いた例、 実験4では、環状炭酸エステルとして2,3ブチレンカ
ーボネートを用いた例、 実験5では、環状炭酸エステルとして1.2−ペンテン
カーボネートを用いた例、 実験6では、環状炭酸エステルとして2,3−ペンテン
カーボネートを用いた例、 をそれぞれ示す。
In Experiment I, propylene carbonate was used as the cyclic carbonate; in Experiment 2, ethylene carbonate was used as the cyclic carbonate; in Experiment 3, 1,2-butylene carbonate was used as the cyclic carbonate; In Experiment 4, 2,3-butylene carbonate was used as the cyclic carbonate. In Experiment 5, 1,2-pentene carbonate was used as the cyclic carbonate. In Experiment 6, 2,3-pentene carbonate was used as the cyclic carbonate. An example using , and are shown respectively.

◎ 実験1・・・環状炭酸エステルとしてプロピレンカ
ーボネート使用 第1実施例 [実施例I] 本発明の実施例を、第1図に示す偏平型非水系二次電池
に基づいて、以下に説明する。
◎ Experiment 1: First example using propylene carbonate as cyclic carbonate ester [Example I] An example of the present invention will be described below based on a flat non-aqueous secondary battery shown in FIG.

Jチウム金属から成る負極2は負極集電体7の内面に圧
着されており、この負極集電体7はステンレスから成る
断面略コ字状の負極針5の内底面に固着されている。上
記負極針5の周端はポリプロピレン製の絶縁バッキング
8の内部に固定されており、絶縁バッキング8の外周に
はステンレスから成り上記負極針5とは反対方向に断面
略コ字状を成す正極缶4が固定されている。この正極缶
4の内底面には正極集電体6が固定されており、この正
極集電体6の内面には正極lが固定されている。この正
極1と前記負極2との間には、セパレータ3が介装され
ている。
The negative electrode 2 made of J-thium metal is pressed onto the inner surface of a negative electrode current collector 7, and this negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode needle 5 made of stainless steel and having a substantially U-shaped cross section. The peripheral end of the negative electrode needle 5 is fixed inside an insulating backing 8 made of polypropylene, and on the outer periphery of the insulating backing 8 is a positive electrode can made of stainless steel and having a substantially U-shaped cross section in the opposite direction to the negative electrode needle 5. 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and a positive electrode l is fixed to the inner surface of this positive electrode current collector 6. A separator 3 is interposed between the positive electrode 1 and the negative electrode 2.

ところで、前記正極1は電解重合によって合成したポリ
アニリン粉末を円板状に加圧成形することにより作成し
、前記負極2はリチウム圧延板を所定寸法に打抜くこと
により作成した。また、電解液としては有機溶媒にホウ
フッ化リチウム(LiBF、)を1M溶解させた溶液を
用い、上記有機溶媒としてはジメトキシメタン(C,H
,QCH* OC−Hs )とプロピレンカーボネート
とを50:50の体積比率で混合したものを用いた。
By the way, the positive electrode 1 was created by pressure-molding polyaniline powder synthesized by electrolytic polymerization into a disk shape, and the negative electrode 2 was created by punching a lithium rolled plate into a predetermined size. In addition, as the electrolytic solution, a solution in which 1M lithium borofluoride (LiBF) was dissolved in an organic solvent was used, and the organic solvent was dimethoxymethane (C, H
, QCH*OC-Hs) and propylene carbonate at a volume ratio of 50:50.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery thus produced is hereinafter referred to as (A1) battery.

[実施例II〜実施例■] 下記第1表に示すように、有機溶媒としてジメトキシメ
タンとプロピレンカーボネートとを、それぞれ95:5
.90 : 10.70 : 30、lO:90.5:
95の体積比率で混合する他は上記実施例Iと同様にし
て電池を作製した。
[Example II to Example ■] As shown in Table 1 below, dimethoxymethane and propylene carbonate were used as organic solvents in a ratio of 95:5, respectively.
.. 90: 10.70: 30, lO: 90.5:
A battery was produced in the same manner as in Example I above, except that the mixture was mixed at a volume ratio of 95%.

このようにして作製した電池を、以下類に(A、)電池
、(八1)電池、(Aイ)電池、(A、)電池、(A、
)電池と称する。
The batteries thus produced are classified into the following categories: (A,) battery, (81) battery, (Ai) battery, (A,) battery, (A,
) is called a battery.

以下余白 [比較例■] 有機溶媒としてγ−ブチロラクトンとプロピレンカーボ
ネートとを50750の割合で混合した混合溶媒を用い
た以外は、上記実施例Iと同様にして電池を作製した。
Margin below [Comparative Example ■] A battery was produced in the same manner as in Example I above, except that a mixed solvent of γ-butyrolactone and propylene carbonate in a ratio of 50,750 was used as the organic solvent.

このようにして作製した電池を、以下(Y )を池と称
する。
The battery thus produced is hereinafter referred to as a pond (Y).

[比較例II] 有機溶媒としてプロピレンカーボネートを用いた以外は
、上記実施例Iと同様にして電池を作製した。
[Comparative Example II] A battery was produced in the same manner as in Example I above, except that propylene carbonate was used as the organic solvent.

このようにして作製した電池を、以下(Z)it池と称
する。
The battery thus produced is hereinafter referred to as a (Z)it battery.

U実 験コ 上記本発明の(A1)電池〜(A6)電池及び比較例の
(Y)電池、(Z)電池について、1mAの電流で10
時間充電を行ない、また1mAの電流で電池電圧が2.
5Vになるまで放電するという充放電サイクルを繰り返
し行った。
U Experiment Regarding the (A1) to (A6) batteries of the present invention and the (Y) battery and (Z) battery of the comparative example, a current of 1 mA was used for 10
After charging for an hour, the battery voltage reached 2.0 mA with a current of 1 mA.
A charge/discharge cycle of discharging until the voltage reached 5V was repeated.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第1表
に併せて示す。
Then, the end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle were investigated, and the results are also shown in Table 1 above.

第1表より明らかなように、比較例の(Y)電池、(Z
)電池では充電終止電圧が各々4,55■、4.60V
であって非常に高い。これに対して、本発明の(A、)
電池及び(A6)電池では充電終止電圧が各々4.38
V、4.40Vであって低下していることが認められ、
更に本発明の(AI)電池及び(A、)電池〜(A5)
電池では充電終止電圧が各’?3.76V、3.76V
、3.77■、3.78Vであって更に低下しているこ
とが認められる。
As is clear from Table 1, the comparative example (Y) battery and (Z
) For batteries, the end-of-charge voltage is 4, 55V, and 4.60V, respectively.
And very expensive. In contrast, (A,) of the present invention
The battery and (A6) battery each have a charge end voltage of 4.38.
It was observed that the voltage was 4.40V and had decreased.
Furthermore, the (AI) battery and (A,) battery of the present invention ~ (A5)
What is the end-of-charge voltage for batteries? 3.76V, 3.76V
, 3.77■, and 3.78V, which shows a further decrease.

また、比較例の(Y )を池、(Z)TL池では充放電
効率が各々75%、65%であり著しく低下している。
Furthermore, the charge/discharge efficiency of the (Y) and (Z)TL cells of Comparative Examples was 75% and 65%, respectively, which was a significant decrease.

これに対して、本発明(A、)を池及び(A6)電池で
は、充放電効率が各々83%、80%であって向上して
いることが認められ、更に本発明の(A、)電池及び(
A、)電池〜(A5)電池では充放電効率が全て100
%であって更に向上していることが認められる。
On the other hand, it was observed that the charging/discharging efficiency of the battery of the present invention (A,) and the battery of (A6) was 83% and 80%, respectively, which was improved. Batteries and (
A.) Batteries to (A5) Batteries all have charge/discharge efficiencies of 100.
%, which shows a further improvement.

これらのことから、本発明の(AI)を池〜(As)を
池は比較例の(Y)電池及び(z)電池と比べて性能が
向上したことが伺える。
From these results, it can be seen that the performance of the (AI) to (As) batteries of the present invention was improved compared to the (Y) battery and (z) battery of the comparative example.

特に(A1)電池及び(A、)電池〜(A、)電池は飛
躍的に性能が向上していることか伺える。
In particular, it can be seen that the performance of the (A1) battery and (A,) battery to (A,) battery has been dramatically improved.

したがって、有機溶媒であるジメトキシメタンとプロピ
レンカーボネートとの混合体積比率は、90:lO〜1
0:90の範囲であることが望ましい。
Therefore, the mixing volume ratio of the organic solvent dimethoxymethane and propylene carbonate is 90:1O to 1
A range of 0:90 is desirable.

!−針’xi廻 [実施例■] 有機溶媒としてジェトキシエタン[c*HsO(CH−
)t oct Hs] とプロピレンカーボネートとを
50 : 50の体積比率で混合した溶媒を用いる他は
前記同様にして電池を作製した。
! - Needle 'xi rotation [Example ■] Jetoxyethane [c*HsO(CH-
) t oct Hs] and propylene carbonate at a volume ratio of 50:50.

このようにして作製した電池を、以下(B、)電池と称
する。
The battery thus produced is hereinafter referred to as a (B,) battery.

[実施例IT〜実施例■] 下記第2表に示すように、有機溶媒としてジエトキエタ
ンとプロピレンカーボネートとを、それぞれ95:5.
90:10.70:30.10:90.5:95の体積
比率で混合した溶媒を用いる他は同様にして電池を作製
した。
[Example IT to Example ■] As shown in Table 2 below, diethoxyethane and propylene carbonate were used as organic solvents in a ratio of 95:5, respectively.
A battery was produced in the same manner except that solvents mixed at a volume ratio of 90:10.70:30.10:90.5:95 were used.

このようにして作製した電池を、以下類に(B、)を池
、(B、)電池、(B、)電池、CB、)電池、(B、
)電池と称する。
The batteries produced in this way are classified into the following categories: (B,), (B,) battery, (B,) battery, CB,) battery, (B,)
) is called a battery.

以下余白 [比較例1.II] 比較例としては前記第1表の比較例■、IIに示す(Y
)電池及び(Z)it池を用いた。
Below is the margin [Comparative Example 1. II] Comparative examples are shown in Comparative Examples ■ and II in Table 1 above (Y
) batteries and (Z)it ponds were used.

[実 験] 上記本発明の(B、)TL池〜(B、)電池及び比較例
の(Y)電池、(Z)電池について、前記同様の条件で
充放電サイクルを繰り返し行った。
[Experiment] Charging and discharging cycles were repeated under the same conditions as described above for the (B,) TL cell to (B,) battery of the present invention and the (Y) battery and (Z) battery of the comparative example.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第2表
に併せて示す。
Then, the end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle were investigated, and the results are also shown in Table 2 above.

第2表より明らかなように、比較例の(Y )’を池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(B8)電池及び(B6)
電池では、充電終止電圧が各々436V、4.39Vで
あって低下していることが認められ、更に本発明の(B
l)を池及び(B、)電池〜(Bl)it池では充電終
止電圧が各々3.77v、3.76V、3.76V、3
.77Vであって更に低下していることが認められる。
As is clear from Table 2, (Y)' in the comparative example is
As mentioned above, the (Z) battery has a very high charge end voltage. On the other hand, the (B8) battery and (B6) of the present invention
It was observed that the end-of-charge voltage of the battery was 436 V and 4.39 V, respectively, which were lower, and furthermore, the (B) of the present invention
The end-of-charge voltage is 3.77 V, 3.76 V, 3.76 V, and 3 for the L) battery and the (B,) battery, respectively.
.. It is recognized that the voltage is 77V, which has further decreased.

また、比較例ノ(Y)7rL池、(Z)TL池では、充
放電動車が前記のように著しく低下している。これに対
して、本発明(B、)電池及び(B、)電池では充放電
効率が各々82%、80%であって向上していることが
認められ、更に本発明の(B、)電池及び(B、)電池
〜(B、)電池では充放電効率が全て100%であって
更に向上していることが認められる。
In addition, in Comparative Examples (Y) 7rL pond and (Z) TL pond, the charging/discharging electric vehicle performance was significantly reduced as described above. On the other hand, it was recognized that the charging and discharging efficiency of the battery (B,) of the present invention and the battery (B,) of the present invention was 82% and 80%, respectively, which was improved, and the battery (B,) of the present invention And (B,) battery ~ (B,) battery, the charging and discharging efficiency is all 100%, and it is recognized that it is further improved.

これらのことから、本発明の(B、)を池〜(B、)を
池は、比較例の(Y)電池及び(Z)電池と比べて、性
能が向上したことが伺える。
From these results, it can be seen that the performance of the batteries (B,) to (B,) of the present invention was improved compared to the (Y) battery and (Z) battery of the comparative example.

特に(B1)電池及び(B、)71を池〜(B、)電池
は、飛躍的に性能が向上していることが伺える。したが
って、有機溶媒であるジェトキシエタンとプロピレンカ
ーボネートとの混合体積比率は90:10〜10:90
の範囲であることが望ましい。
In particular, it can be seen that the performance of the (B1) battery and (B,) 71 to (B,) battery has been dramatically improved. Therefore, the mixing volume ratio of the organic solvent jetoxyethane and propylene carbonate is 90:10 to 10:90.
It is desirable that it be within the range of .

第3実施例 [実施例I] 有機溶媒としてブトキシプロポキシメタン[C,I−I
、OCH,QC,H,] とプロピレンカーボネートと
を50:50の体積比率で混合した溶媒を用いる他は前
記第1実施例の実施例■と同様にして電池を作製した。
Third Example [Example I] Butoxypropoxymethane [C,I-I
, OCH, QC, H,] and propylene carbonate at a volume ratio of 50:50, but a battery was produced in the same manner as in Example 2 of the first example.

このようにして作製した電池を、以下(C1)電池と称
する。
The battery thus produced is hereinafter referred to as a (C1) battery.

[実施例[1〜実施例■] 下記第3表に示すように、有機溶媒としてブトキシプロ
ポキシメタンとプロピレンカーボネートとを、それぞれ
95:5.90:10.70:30.10:90.5:
95の体積比率で混合した溶媒を用いる他は同様にして
電池を作製した。
[Example 1 to Example ■] As shown in Table 3 below, butoxypropoxymethane and propylene carbonate were used as organic solvents at 95:5.90:10.70:30.10:90.5, respectively.
A battery was produced in the same manner except that a solvent mixed at a volume ratio of 95% was used.

このようにして作製した電池を、以下順に(Ct) ?
rL池、(C3)電池、(C,)を池、(Cs)?1を
池、(C6)電池と称する。
The batteries produced in this way were measured in the following order (Ct)?
rL pond, (C3) battery, (C,) pond, (Cs)? 1 is called a pond, and (C6) is called a battery.

以下余白 [比較例■、II] 比較例としては前記第1表の(Y)を池及び(Z)電池
を用いた。
The following margins [Comparative Examples ■, II] As comparative examples, (Y) and (Z) batteries in Table 1 were used.

[実 験コ 上記本発明の(C,)’を池〜(C,)?!を池及び比
較例の(Y)電池、(Z)電池について、前記同様の条
件で充放電サイクルを繰り返し行った。
[Experiment Ko (C,)' of the above-mentioned invention ~ (C,)? ! Charge/discharge cycles were repeated under the same conditions as described above for the (Y) battery and (Z) battery of Comparative Example.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第3表
に併せて示す。
The end-of-charge voltage and charging/discharging efficiency of each battery at the 100th cycle were investigated, and the results are also shown in Table 3 above.

第3表より明らかなように、比較例の(Y)電池、(Z
 )it池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(C,)を池及び(C6)
電池では、充電終止電圧が各々4゜40V、4.42V
であって低下していることが認められ、更に本発明の(
C,)を池及び(C1)電池〜(C3)電池では充電終
止電圧が各々3,78V、3.79V、3.77V、3
.79Vであって更に低下していることが認められる。
As is clear from Table 3, the (Y) battery and (Z
) In IT batteries, the end-of-charge voltage is extremely high as described above. On the other hand, in the present invention, (C,) is a pond and (C6)
For batteries, the end-of-charge voltage is 4°40V and 4.42V, respectively.
However, it was observed that the present invention (
The end-of-charge voltages for the battery C,) and the batteries (C1) to (C3) are 3.78V, 3.79V, 3.77V, and 3, respectively.
.. It is recognized that the voltage is 79V, which is further decreased.

また、比較例の(Y)電池、(Z)電池では、充放電動
車が前記のように著しく低下している。これに対して、
本発明(C1)電池及び(C1)電池では充放電効率が
各々80%、79%であって向上していることが認めら
れ、更に本発明の(C1)電池及び(C1)電池〜(C
,)を池では充放電効率が全て100%であって更に向
上していることが認められる。
Furthermore, in the comparative examples (Y) battery and (Z) battery, the charging/discharging electric vehicle performance was significantly decreased as described above. On the contrary,
It was recognized that the charge/discharge efficiency of the battery (C1) and the battery (C1) of the present invention was 80% and 79%, respectively, which were improved, and furthermore, the battery (C1) and the battery (C1) of the present invention were improved.
, ), the charging and discharging efficiencies were all 100%, indicating further improvement.

これらのことから、本発明の(C,)電池〜(C,)を
池は、比較例の(Y)電池及び(Z)電池と比べて、性
能が向上したことが伺える。
From these results, it can be seen that the performance of the (C,) battery to (C,) pond of the present invention was improved compared to the (Y) battery and (Z) battery of the comparative example.

特に(C,)電池及び(C3)電池〜((、) 1池は
、飛躍的に性能が向上していることが伺える。
In particular, it can be seen that the performance of the (C,) battery and (C3) battery ~ ((,) 1 battery has been dramatically improved.

したがって、有機溶媒であるブトキシプロポキシメタン
とプロピレンカーボネートとの混合体積比率は90:1
0〜1190の範囲であることが望ましい。
Therefore, the mixing volume ratio of butoxypropoxymethane and propylene carbonate, which are organic solvents, is 90:1.
A range of 0 to 1190 is desirable.

策−虹xi倒 [実施例Iコ 有機溶媒としてエトキシメトキシエタン[C=Hs O
(CH−) tOCHs] とプロピレンカーボネート
とを50 : 50の体積比率で混合した溶媒を用いる
他は同様にして電池を作製した。
[Example I] Ethoxymethoxyethane [C=HsO] as the organic solvent
(CH-) tOCHs] and propylene carbonate at a volume ratio of 50:50, but a battery was produced in the same manner.

このようにして作製した電池を、以下(Dl)電池と称
する。
The battery thus produced is hereinafter referred to as a (Dl) battery.

[実施例II〜実施例■] 下記第4表に示すように、有機溶媒としてエトキシメト
キシエタンとプロピレンカーボネートとを、それぞれ9
5:5.90 : 10.70:30.10:90.5
:95の体積比率で混合した溶媒を用いる他は同様にし
て電池を作製した。
[Example II to Example ■] As shown in Table 4 below, ethoxymethoxyethane and propylene carbonate were each used as an organic solvent at 9%
5:5.90: 10.70:30.10:90.5
A battery was produced in the same manner except that a solvent mixed at a volume ratio of :95 was used.

このようにして作製した電池を、以下順に(D、)電池
、(D、)電池、(D、)電池、(D、)電池、(D、
)電池と称する。
The batteries produced in this way are listed below in the following order: (D,) battery, (D,) battery, (D,) battery, (D,) battery, (D,
) is called a battery.

以下余白 [比較例I、IIコ 比較例としては前記第1表に示す(Y)電池及び(Z)
電池を用いた。
The following margins [Comparative Examples I and II Comparative Examples include (Y) battery and (Z) battery shown in Table 1 above.
Batteries were used.

[実 験] 上記本発明の(D、)電池〜(D、)電池及び比較例の
(Y )it池、(Z)電池について、前記同様の条件
で充放電サイクルを繰り返し行った。
[Experiment] Charging and discharging cycles were repeated under the same conditions as described above for the above-mentioned batteries (D,) to (D,) of the present invention and the (Y) battery and (Z) battery of the comparative example.

令して、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第4表
に併せて示す。
Recently, the end-of-charge voltage and charging/discharging efficiency of each battery at the 100th cycle were investigated, and the results are also shown in Table 4 above.

第4表より明らかなように、比較例の(Y )を池、(
Z)電池では、前記のように充電終止電圧が非常に高い
。これに対して、本発明の(D、)電池及び(D、)i
t池では充電終止電圧が各々4.36V、4.38Vで
あって低下していることが認められ、更に本発明の(D
、)電池及び(I)l) z池〜(Ds)電池では充電
終止電圧が各々3.76V、3.77V、3.76V、
3.78Vであって更に低下していることが認められる
As is clear from Table 4, (Y) of the comparative example is pond, (
Z) As mentioned above, the end-of-charge voltage of batteries is extremely high. On the other hand, the (D,) battery of the present invention and (D,)i
It was observed that the end-of-charge voltage of the T battery was 4.36 V and 4.38 V, respectively.
, ) battery and (I) l) Z battery to (Ds) battery, the charge end voltage is 3.76V, 3.77V, 3.76V, respectively.
It is recognized that the voltage is 3.78V, which is further decreased.

また、比較例の(Y)電池、(Z)電池では、充放電動
車が前記のように著しく低下している。これに対して、
本発明(D、)を池及び(D、)71!池では充放電効
率が各々84%、82%であって向上していることが認
められ、更に本発明の(Dl)電池及び(D、)電池〜
(D、)電池では充放電効率が全て100%であって更
に向上していることが認められる。
Furthermore, in the comparative examples (Y) battery and (Z) battery, the charging/discharging electric vehicle performance was significantly decreased as described above. On the contrary,
The present invention (D,) and (D,)71! It was recognized that the charging and discharging efficiency of the batteries was 84% and 82%, respectively, which was improved, and the (Dl) battery and (D,) battery of the present invention
(D,) The charging and discharging efficiencies of the batteries were all 100%, indicating further improvement.

これらのことから、本発明の(D、)を池〜(D6)電
池は、比較例の(Y)i池及び(Z)電池と比べて、性
能が向上したことが伺える。
From these results, it can be seen that the (D,) wo-ike to (D6) batteries of the present invention have improved performance compared to the (Y)i-ike and (Z) batteries of the comparative examples.

特に(Dl)電池及び(D、)電池〜(D、)電池は、
飛躍的に性能が向上していることが伺える。したがって
、有機溶媒であるエトキシメトキシエタンとプロピレン
カーボネートとの混合体積比率は90:10〜10:9
0の範囲であることが望ましい。
In particular, the (Dl) battery and the (D,) battery to (D,) battery are
It can be seen that the performance has improved dramatically. Therefore, the mixing volume ratio of the organic solvent ethoxymethoxyethane and propylene carbonate is 90:10 to 10:9.
A range of 0 is desirable.

この実験1における前記第1実施例乃至第4実施例の如
く、本発明の(A1)〜(A、)電池、(B、)電池〜
(B6)電池、(C,)を池〜(C1)電池、l、)を
池〜(D6)TL池は、比較例の(Y)を池及び(Z 
)電池と比べて、性能が向上したのは、以下に示す理由
によるものと考えられる。
As in the first to fourth embodiments in Experiment 1, (A1) to (A,) battery, (B,) battery to
(B6) Battery, (C,) Pond ~ (C1) Battery, l, ) Pond ~ (D6) TL Pond is Comparative Example (Y) Pond and (Z
) The improved performance compared to batteries is thought to be due to the following reasons.

即ち、実験1の如く直鎖ジエーテル系化合物とプロピレ
ンカーボネートの混合溶媒を電解液の溶媒として用いる
と、アニオンと直鎖ジエーテル系−化合物との溶媒和が
、直鎖ジエーテル系化合物と導電性ポリマーとの相互作
用により外れ易くなって、導電性ポリマー中ヘアニオン
がドーピングし易くなることによるものと考えられる。
That is, when a mixed solvent of a linear diether compound and propylene carbonate is used as a solvent for the electrolytic solution as in Experiment 1, the solvation of the anion and the linear diether compound is caused by the solvation of the linear diether compound and the conductive polymer. This is thought to be due to the fact that the conductive polymer becomes easily detached due to the interaction between the two, and hair anions are easily doped into the conductive polymer.

また、上記の混合溶媒を電解液の溶媒として用いれば、
従来のプロピレンカーボネートのみを溶媒とする電解液
と比べて、電導度が高くなると共に、粘度が低くなるの
で、このことも電池の性能向上に寄与するものと考えら
れる。
Also, if the above mixed solvent is used as a solvent for the electrolyte,
Compared to conventional electrolytic solutions using only propylene carbonate as a solvent, the conductivity is higher and the viscosity is lower, which is thought to contribute to improved battery performance.

◎ 実験2・・・環状炭酸エステルとしてエチレンカー
ボネート使用 第1実施例 [実施例■] 前記実験1の第1実施例の実施例■と同様にして電池を
得、電解液として次述せる有機溶媒にホウフッ化リチウ
ムを1 mat/L溶解させたものを用な。有機溶媒と
しては、ジェトキシメタン(C、H,OCH,QC,H
5)とエチレンカーボネーしたものを用いている。
◎ Experiment 2: First example using ethylene carbonate as the cyclic carbonate ester [Example ■] A battery was obtained in the same manner as Example ■ of the first example of Experiment 1, and the following organic solvent was used as the electrolyte. Use 1 mat/L of lithium fluoroborate dissolved in it. As an organic solvent, jetoxymethane (C, H, OCH, QC, H
5) and ethylene carbonate are used.

上記の如く作製された電池を、以下(E、)電池と称す
る。
The battery produced as described above is hereinafter referred to as (E,) battery.

[実施例11〜実施例■] 下記第5表に示すように、有機溶媒としてジェトキシメ
タンとエチレンカーボネートを、それぞれ95:5.9
0:10.70:30.10:90.5:95の体積比
率で混合する他は前記実施例■と同様にして電池を作製
した。
[Example 11 to Example ■] As shown in Table 5 below, jetoxymethane and ethylene carbonate were used as organic solvents in a ratio of 95:5.9, respectively.
A battery was prepared in the same manner as in Example 2 above, except that they were mixed at a volume ratio of 0:10.70:30.10:90.5:95.

このようにして作製した電池を以下類に(E)電池、(
E、)電池、(E3)電池、(E、)電池、(E、)電
池と称する。
The batteries produced in this way are categorized as (E) batteries, (
They are referred to as E,) battery, (E3) battery, (E,) battery, and (E,) battery.

[比較例■コ 有機溶媒としてγ−ブチロラクトンとプロピレンカーボ
ネートの50 : 50混合溶媒を用いた以外は、前記
実施例■と同様にして電池を作製した。
Comparative Example (2) A battery was prepared in the same manner as in Example (2) except that a 50:50 mixed solvent of γ-butyrolactone and propylene carbonate was used as the organic solvent.

以下、このようにして作製された電池を(y )電池と
称する。
Hereinafter, the battery produced in this manner will be referred to as a (y) battery.

[比較例II] 有機溶媒としてプロピレンカーボネートを用いた以外は
、前記実施例Iと同様にして電池を作製した。
[Comparative Example II] A battery was produced in the same manner as in Example I above, except that propylene carbonate was used as the organic solvent.

以下、このようにして作製された電池を(Z)電池と称
する。
Hereinafter, the battery produced in this manner will be referred to as a (Z) battery.

各電池について、1mAの電流で10時間充電を行ない
、また、1mAの電流で電池電圧が2.5vになるまで
放電するという充放電サイクルを繰り返し行なった。そ
して、各電池の100サイクル目における充電終止電圧
と充放電効率を第5表に示す。
Each battery was repeatedly charged and discharged using a 1 mA current for 10 hours and then 1 mA current until the battery voltage reached 2.5V. The end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle are shown in Table 5.

第5表より、比較例の(Y )’u池、(Z)電池はそ
れぞれ充電終止電圧4 、55 V、4.60V、充放
電効率75%、65%と劣化してきている。更に(El
)電池、(F6)電池は、それぞれ充電終止電圧4.4
0V、4.41V、充放電効率80%、81%であるの
に対し、本発明の(E、)〜(E、)電池は、それぞれ
、充電終止電圧3.78V、3.78V、3.79V、
3.80V、充放電効率100%と特性が著しく良好で
ある。
From Table 5, the (Y)'u battery and the (Z) battery of the comparative example have deteriorated with charge end voltages of 4, 55 V, and 4.60 V, respectively, and charging and discharging efficiencies of 75% and 65%. Furthermore (El
) battery and (F6) battery each have a charge end voltage of 4.4.
0V, 4.41V, and charge/discharge efficiency of 80% and 81%, whereas batteries (E,) to (E,) of the present invention have charge end voltages of 3.78V, 3.78V, and 3.78V, respectively. 79V,
The characteristics are extremely good, with a voltage of 3.80V and a charge/discharge efficiency of 100%.

これらのことから有機溶媒であるジェトキシメタンとエ
チレンカーボネートとの混合体積比率は、90:10〜
10:90の範囲であることが望ましい。
Based on these facts, the mixing volume ratio of jetoxymethane and ethylene carbonate, which are organic solvents, is 90:10 to 90:10.
A range of 10:90 is desirable.

以下余白 第2実施例 [実施例1〜実施例■コ 下記の第6表に示すように、有機溶媒としてジェトキシ
エタン(C,H,O(CH,)、OC,F2)とエチレ
ンカーボネートとを、それぞれ95:5.90:10.
70 : 30.50 : 50.10°90.5:9
5の体積比率で混合する他は前記同様にして電池を作製
した。
Below is a blank space for Example 2 [Example 1 to Example ■C] As shown in Table 6 below, jetoxyethane (C, H, O(CH,), OC, F2) and ethylene carbonate were used as organic solvents. 95:5.90:10 respectively.
70: 30.50: 50.10°90.5:9
A battery was produced in the same manner as described above, except that the mixture was mixed at a volume ratio of 5.

このようにして作製された電池を、以下順に(Fl)電
池、(Fl)電池、(Fs)を池、(F4)電池、(F
、)電池、(F、)電池と称する。
The batteries produced in this way are as follows: (Fl) battery, (Fl) battery, (Fs) battery, (F4) battery, (F
, ) battery, (F,) battery.

また、比較例としては第6表に示す(Y)TL池、(Z
)TL池を用いた。
In addition, as comparative examples, (Y)TL pond and (Z
) A TL pond was used.

各電池を用い1mAの電流で10時間充電を行ない、ま
た1mAの電流で電池電圧が2.5Vになるまで放電す
るという充放電サイクルを繰り返し行なった。そして、
各電池の100サイクル目における充電終止電圧と充放
電効率を第6表に示す。
Each battery was charged with a current of 1 mA for 10 hours, and then discharged with a current of 1 mA until the battery voltage reached 2.5 V, and a charge/discharge cycle was repeated. and,
Table 6 shows the end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle.

第6表より、比較例の(Y)TL池、(Z)電池はそれ
ぞれ充電終止電圧4.55V、4.60V、充放電効率
75%、65%と劣化している。更に(F+)TL池、
(F6)電池はそれぞれ充電終止71E圧4.39V、
4.40V、充放電効率83%、82%であるのに対し
、特に本発明の(F2)〜(F、)電池は、それぞれ充
電終止電圧3.77V、3.77■、3.76V、3.
78V、充放電効率100%と特性が著しく良好である
From Table 6, the (Y)TL battery and the (Z) battery of the comparative example have degraded end-of-charge voltages of 4.55 V and 4.60 V, respectively, and charging and discharging efficiencies of 75% and 65%. Furthermore (F+) TL pond,
(F6) Each battery has a charging end 71E voltage of 4.39V,
4.40V and charge/discharge efficiency of 83% and 82%, whereas the batteries (F2) to (F,) of the present invention have charge end voltages of 3.77V, 3.77■, 3.76V, respectively. 3.
It has extremely good characteristics, with a voltage of 78V and a charge/discharge efficiency of 100%.

これらのことから有機溶媒であるジェトキシエタンとエ
チレンカーボネートとの混合体積比率は、90:10〜
1.0 : 90の範囲であることが望ましい。
From these facts, the mixing volume ratio of the organic solvent jetoxyethane and ethylene carbonate is 90:10 to 90:10.
A range of 1.0:90 is desirable.

以下余白 第3*m倒 [実施例■〜実施例■] 下記の第7表に示すように、有機溶媒としてブトキシプ
ロポキシメタン(C,H,OCH,0C3Ht)エチレ
ンカーボネートとを、それぞれ95:5.90:101
70:30.50:50.10:90.5:95の体積
比率で混合する他は前記同様にして電池を作製した。
The following margins are 3*m down [Example ■ to Example ■] As shown in Table 7 below, butoxypropoxymethane (C, H, OCH, 0C3Ht) and ethylene carbonate were mixed as organic solvents in a ratio of 95:5 to 95:5, respectively. .90:101
A battery was produced in the same manner as described above except that the mixtures were mixed at a volume ratio of 70:30.50:50.10:90.5:95.

このようにして作製された電池を以下類に、(G1)電
池、(G、)電池、(G、)電池、(G4)電池、(G
、)を池、(G、)電池と称する。
The batteries produced in this way are classified into the following categories: (G1) battery, (G,) battery, (G,) battery, (G4) battery, (G
, ) is called a pond and (G,) battery.

また、比較例としては第7表に示す(Y)電池、(Z)
電池を用いた。
In addition, as comparative examples, the (Y) battery and (Z) battery shown in Table 7 are
Batteries were used.

各電池を用い、1mAの電流で10時間充電を行ない、
また1+nAの電流で電池電圧が2.5Vになるまで放
電するという充放電サイクルを繰り返し行なった。そし
て、各電池の100サイクル目における充電終止電圧と
充放電効率を第7表に示す。
Each battery was charged for 10 hours with a current of 1 mA,
Further, charge/discharge cycles were repeated in which the battery was discharged with a current of 1+nA until the battery voltage reached 2.5V. Table 7 shows the end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle.

第7表より、比較例の(Y)電池、(Z )を池は、そ
れぞれ充電終止電圧4.55V、4.60V、充放電効
率75%、65%と劣化している。更に(G、)電池、
(G6)電池は、それぞれ充電終止電圧4.42V、4
.43V、充放電効率80%、79%であるのに対し、
特に本発明の(G、)〜(G、)を池は、それぞれ充電
終止電圧3.79V、3.78V、3.79V、3.8
0V、充放電効率1. O0%と特性が著しく良好であ
る。
From Table 7, the battery (Y) and the battery (Z) of the comparative example have degraded charge end voltages of 4.55 V and 4.60 V, and charge/discharge efficiencies of 75% and 65%, respectively. Furthermore (G,) battery,
(G6) The battery has a charge end voltage of 4.42V and 4.
.. 43V, charging/discharging efficiency is 80%, 79%,
In particular, the batteries (G,) to (G,) of the present invention have charge end voltages of 3.79V, 3.78V, 3.79V, and 3.8V, respectively.
0V, charge/discharge efficiency 1. The properties are extremely good with O0%.

これらのことから、有機溶媒であるジェトキシエタンと
エチレンカーボネートとの混合体積比率は、90:10
〜10:90の範囲であることが望ましい。
From these facts, the mixing volume ratio of the organic solvent jetoxyethane and ethylene carbonate is 90:10.
It is desirable that the ratio is in the range of ~10:90.

以下余白 第4実施例 [実施例I〜実施例■] 下記の第8表に示すように、有機溶媒としてエトキシメ
トキシエタン(C,H,O(CHり、OCH,)とエチ
レンカーボネートとをそれぞれ95:5.90:10.
70:30.50 : 50.10:90.5:95の
体積比率で混合する他は前記同様にして電池を作製した
Below is a blank space for Example 4 [Example I to Example ■] As shown in Table 8 below, ethoxymethoxyethane (C, H, O (CH, OCH,) and ethylene carbonate were used as organic solvents, respectively. 95:5.90:10.
A battery was produced in the same manner as above except that the mixtures were mixed at a volume ratio of 70:30.50:50.10:90.5:95.

このようにして作製された電池を、以下順に(Hl)電
池、(H2)電池、(H,)?It池、(H6)電池、
(H6)電池、(Hs)it池と称する。
The batteries produced in this way are listed in the following order: (Hl) battery, (H2) battery, (H,)? It pond, (H6) battery,
It is called (H6) battery and (Hs)it battery.

また、比較例としては第8表に示す(Y)電池、(Z)
電池を用いた。
In addition, as comparative examples, (Y) batteries and (Z) batteries shown in Table 8 are used.
Used batteries.

各電池を用い、1mAの電流で10時間充電を行ない、
また1mAの電流で電池電圧が2.5Vになるまで放電
するという充放電サイクルを繰り返し行なった。そして
各電池の100サイクル目における充電終止電圧と充放
電効率を第8表に示す。
Each battery was charged for 10 hours with a current of 1 mA,
Further, charging and discharging cycles were repeated in which the battery was discharged with a current of 1 mA until the battery voltage reached 2.5 V. The end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle are shown in Table 8.

第8表より、比較例の(Y)電池、(Z)電池は、それ
ぞれ充電終止電圧4.55V、4.60V、充放電効率
75%、65%と劣化している。更に(Hl)電池、(
H6)TL池は、それぞれ充電終止電圧4.38V、4
.39V、充放電効率84%、82%であるのに対し、
特に本発明の(H、)〜(H6)電池は、それぞれ充電
終止電圧3.77V、3.77V、3.76V、3.7
8V、充放電効率100%と特性が著しく良好である。
From Table 8, the (Y) battery and (Z) battery of the comparative example have degraded end-of-charge voltages of 4.55 V and 4.60 V, and charging and discharging efficiencies of 75% and 65%, respectively. Furthermore, (Hl) battery, (
H6) TL batteries have charge end voltages of 4.38V and 4.
.. 39V, charge/discharge efficiency of 84%, 82%,
In particular, the batteries (H, ) to (H6) of the present invention have charge end voltages of 3.77V, 3.77V, 3.76V, and 3.7V, respectively.
The characteristics are extremely good, with a voltage of 8V and a charge/discharge efficiency of 100%.

これらのことから、有機溶媒であるエトキシメトキシエ
タンとエチレンカーボネートとの混合体積比率は、90
:10〜10:90の範囲であることが望ましい。
From these facts, the mixing volume ratio of the organic solvent ethoxymethoxyethane and ethylene carbonate is 90
The ratio is preferably in the range of :10 to 10:90.

以下余白 ◎ 実験3・・・環状炭酸エステルとして1,2−ブチ
レンカーボネート使用 [実施例I〜実施例■] 下記の第9表に示すように、有機溶媒としてエトキシメ
トキシエタンと1,2−ブチレンカーとを、それぞれ9
5;5.90:10.70:30、so:so、10:
90.5:95の体積比率で混合する他は前記同様にし
て電池を作製した。
Space below ◎ Experiment 3: Using 1,2-butylene carbonate as the cyclic carbonate [Example I to Example ■] As shown in Table 9 below, ethoxymethoxyethane and 1,2-butylene were used as the organic solvents. 9 each.
5; 5.90: 10.70: 30, so: so, 10:
A battery was produced in the same manner as described above, except that they were mixed at a volume ratio of 90.5:95.

このようにして作製した電池を、以下順に(11)電池
、(I、)電池、(I、)電池、(■、)電池、(■、
)電池、(1,)電池と称する。
The batteries produced in this way are listed in the following order: (11) battery, (I,) battery, (I,) battery, (■,) battery, (■,
) battery, (1,) battery.

また、比較例としては、第9表に示す(Y)を池、(Z
)を池を用いた。
In addition, as a comparative example, (Y) shown in Table 9 is pond, (Z
) using a pond.

各電池を用い、1mAの電流で10時間充電を行ない、
また1mAの電流で電池電圧が2.5Vになるまで放電
するという充放電サイクルを繰り返し行なった。そして
、各電池の100サイクル目における充電終止電圧と充
放電効率を第9表に示す。
Each battery was charged for 10 hours with a current of 1 mA,
Further, charging and discharging cycles were repeated in which the battery was discharged with a current of 1 mA until the battery voltage reached 2.5 V. The end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle are shown in Table 9.

第9表より、比較例の(Y)電池、(Z)電池は、それ
ぞれ充電終止電圧4.55V、4.60V、充放電効率
75%、65%と劣化している。更に(I、)電池、(
1,)電池は、それぞれ充電終止電圧4.40V、4.
42V、充放電効率83%、80%であるのに対し、特
に本発明の(I、)〜(I、)電池は、それぞれ充電終
止電圧3,39V、3.38V、3.37V、3.39
V、充放電効率100%と特性が著しく良好である。
From Table 9, the (Y) battery and (Z) battery of the comparative example have degraded end-of-charge voltages of 4.55 V and 4.60 V, respectively, and charging and discharging efficiencies of 75% and 65%. Furthermore, (I,) battery, (
1,) The batteries have a charging end voltage of 4.40V, 4.
42V and charge/discharge efficiency of 83% and 80%, respectively, whereas the batteries (I,) to (I,) of the present invention have charge end voltages of 3.39V, 3.38V, 3.37V, and 3.3V, respectively. 39
V, the charging and discharging efficiency is 100%, and the characteristics are extremely good.

これらのことから、有機溶媒であるエトキシメトキシエ
ンと1,2−フ゛チレンカーボネートとの混合体積比率
は、90 : ]、 O〜10:90の範囲であること
が望ましい。
For these reasons, it is desirable that the mixing volume ratio of the organic solvent ethoxymethoxyene and 1,2-butylene carbonate be in the range of 90: ], 0 to 10:90.

以下余白 ◎ 実験4・・・環状炭酸エステルとして2,3−ブチ
レンカーボネート使用 [実施例I〜実施例■] 下記の第10表に示すように、有機溶媒としてエトキシ
メトキシエタンと2,3−ブチレンとを、それぞれ95
:5.90:10.70:30.50 : 50.1〇
二90.5:95の体積比率で混合する他は前記同様に
して電池を作製した。
Space below ◎ Experiment 4: Using 2,3-butylene carbonate as the cyclic carbonate [Example I to Example ■] As shown in Table 10 below, ethoxymethoxyethane and 2,3-butylene were used as the organic solvents. and 95 each
:5.90:10.70:30.50:50.102 A battery was produced in the same manner as above except that the mixture was mixed at a volume ratio of 90.5:95.

このようにして作製された電池を以下類に(Jl)電池
、(J、)TL池、(J、)電池、(J、)電池、(J
、)電池、(J、)電池と称する。
The batteries produced in this way are classified into the following categories: (Jl) battery, (J,) TL battery, (J,) battery, (J,) battery, (J
, ) battery, (J,) battery.

また、比較例としては第10表に示す(Y )電池、(
Z)電池を用いた。
In addition, as comparative examples, the (Y) battery shown in Table 10, (
Z) A battery was used.

各電池を用いて、1mAの電流で10時間充電を行ない
、また1mAの電流で電池電圧が2.5Vになるまで放
電するという充放電サイクルを繰り返し行なった。そし
て、各電池の100サイクル目における充電終止電圧と
充放電効率を第10表に示す。
Each battery was repeatedly charged and discharged using a 1 mA current for 10 hours and then 1 mA current until the battery voltage reached 2.5V. Table 10 shows the end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle.

第10表より、比較例の(Y)電池、(Z)電池は、そ
れぞれ充電終止電圧4.55V、4.60V、充放電効
率75%、65%と劣化している。
From Table 10, the (Y) battery and (Z) battery of the comparative example have degraded end-of-charge voltages of 4.55 V and 4.60 V, and charge/discharge efficiencies of 75% and 65%, respectively.

更に(J、)電池、(J6)電池は、それぞれ充電終止
電圧4.41V、4.43V、充放電効率81%、79
%であるのに対し、特に本発明の(J、)〜(J、)電
池は、それぞれ充電終止電圧3゜77V、3.78V、
3.78V、3.79V、充放電効率100%と特性が
著しく良好である。
Furthermore, the (J,) battery and (J6) battery have charge end voltages of 4.41V and 4.43V, respectively, and charge/discharge efficiency of 81% and 79
%, whereas the batteries (J,) to (J,) of the present invention have end-of-charge voltages of 3°77V, 3.78V, and 3.78V, respectively.
The characteristics are extremely good: 3.78V, 3.79V, and 100% charge/discharge efficiency.

これらのことから、有機溶媒であるエトキシメトキシエ
タンと2,3−ブチレンカーボネートとの混合体積比率
は、90 : 10〜10:90の範囲であることが望
ましい。
For these reasons, the mixing volume ratio of the organic solvent ethoxymethoxyethane and 2,3-butylene carbonate is preferably in the range of 90:10 to 10:90.

以下余白 ◎ 実験5・・・環状炭酸エステルとしてl、2−ペン
テンカーボネート使用 [実施例I〜実施例■] 下記の第11表に示すように、有機溶媒としてエトキシ
メトキシエタンと1,2−ペンテンとを、それぞれ95
:5.90:10.70:30.50 : 50.10
:90.5:95の体積比率で混合する他は前記同様に
して電池を作製した。
Blank space below ◎ Experiment 5: Using l,2-pentene carbonate as the cyclic carbonate [Example I to Example ■] As shown in Table 11 below, ethoxymethoxyethane and 1,2-pentene were used as organic solvents. and 95 each
:5.90:10.70:30.50 :50.10
A battery was produced in the same manner as described above except that the mixture was mixed at a volume ratio of :90.5:95.

このようにして作製された電池を、以下順に(K1)電
池、(K、)電池、(K、)電池、(K、)!池、(K
i)1池、(K、) TL池と称する。
The batteries produced in this way are listed in the following order: (K1) battery, (K,) battery, (K,) battery, (K,)! Pond, (K
i) 1 pond, (K,) is called TL pond.

また、比較例としては第11表に示す(YI[池、(Z
)電池を用いた。
In addition, as a comparative example, Table 11 shows (YI [ike, (Z
) using batteries.

各電池を用い、1mAの電流で10時間充電を行ない、
また1mAの電流で電池電圧が2.5Vになるまで放電
するという充放電サイクルを繰り返し行なった。そして
、各電池の100サイクル目における充電終止電圧と充
放電効率を第11表に示す。
Each battery was charged for 10 hours with a current of 1 mA,
Further, charging and discharging cycles were repeated in which the battery was discharged with a current of 1 mA until the battery voltage reached 2.5 V. Table 11 shows the end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle.

第11表より、比較例の(Y)電池、(Z)電池は、そ
れぞれ充電終止電圧4゜55V、4.60V、充放電効
率75%、65%と劣化している。
From Table 11, the (Y) battery and (Z) battery of the comparative example have degraded charge end voltages of 4.55 V and 4.60 V, respectively, and charging and discharging efficiencies of 75% and 65%.

更に(K1)電池、(K、)電池は、それぞれ充電終止
電圧4.43V、4.44V、充放電効率79%、78
%であるのに対し、特に本発明の(K、)〜(K、)電
池は、それぞれ充電終止電圧3゜79V、 3.79V
、3.78V、3.79V、充放電効率100%と特性
が著しく良好である。
Furthermore, the (K1) battery and (K,) battery have charge end voltages of 4.43V and 4.44V, respectively, and charging and discharging efficiencies of 79% and 78%.
%, whereas the (K,) to (K,) batteries of the present invention have charge end voltages of 3°79V and 3.79V, respectively.
, 3.78V, 3.79V, and the charging/discharging efficiency is 100%, which shows extremely good characteristics.

これらのことから、有機溶媒であるエトキシメトキシエ
タンと1,2−ペンテンカーボネートとの混合体積比率
は、90 : 10〜10:90の範囲であることが望
ましい。
For these reasons, the mixing volume ratio of the organic solvent ethoxymethoxyethane and 1,2-pentene carbonate is preferably in the range of 90:10 to 10:90.

以下余白 ◎ 実験6・・・環状炭酸エステルとして2,3−ペン
テンカーボネート使用 [実施例I〜実施例■] 下記の第12表に示すように、有機溶媒としてエトキシ
メトキシエタンと2,3−ペンテンとを、それぞれ95
:5.90:10.70:30.50:50.10:9
0.5:95の体積比率で混合する他は前記同様にして
電池を作製した。
Space below ◎ Experiment 6...Using 2,3-pentene carbonate as a cyclic carbonate [Example I to Example ■] As shown in Table 12 below, ethoxymethoxyethane and 2,3-pentene were used as organic solvents. and 95 each
:5.90:10.70:30.50:50.10:9
A battery was produced in the same manner as described above, except that the mixture was mixed at a volume ratio of 0.5:95.

このようにして作製された電池を、以下類に(L、)電
池、(L、)電池、(L、)電池、(L、) TLM、
(Ls)を池、(Lg)it池と称する。
The batteries produced in this way are classified into the following categories: (L,) battery, (L,) battery, (L,) battery, (L,) TLM,
(Ls) is called a pond, and (Lg) it is called a pond.

また、比較例としては第12表に示す(Y )を池、(
Z)電池を用いた。
In addition, as a comparative example, (Y) shown in Table 12 is used as a pond, (
Z) A battery was used.

各電池を用い、1mAの電流で10時間充電を行ない、
また1mAの電流で電池電圧が2.5Vになるまで放電
するという充放電サイクルを繰り返し行なった。そして
、各電池の100サイクル目における充電終止電圧と充
放電効率を第12表に示す。
Each battery was charged for 10 hours with a current of 1 mA,
Further, charging and discharging cycles were repeated in which the battery was discharged with a current of 1 mA until the battery voltage reached 2.5 V. Table 12 shows the end-of-charge voltage and charge-discharge efficiency of each battery at the 100th cycle.

第12表より、比較例の(Y)電池、(Z)電池は、そ
れぞれ充電終止電圧4.55V、4.60V、充放電効
率75%、65%と劣化している。
From Table 12, the (Y) battery and (Z) battery of the comparative example have degraded end-of-charge voltages of 4.55 V and 4.60 V, and charging and discharging efficiencies of 75% and 65%, respectively.

更に(Ll)電池、(L、)電池は、それぞれ充電終止
電圧4.43V、4.42’V、充放電効率80%、8
2%であるのに対し、特に本発明の(L、)〜(L、)
電池は、それぞれ充電終止電圧3゜79V、 3,78
V、3.79V、3.78V、充放電効率100%と特
性が著しく良好である。
Furthermore, the (Ll) battery and the (L,) battery have charge end voltages of 4.43 V and 4.42'V, respectively, and a charge/discharge efficiency of 80% and 8
2%, whereas in particular the present invention's (L,) to (L,)
The batteries have a charge end voltage of 3°79V and 3,78V respectively.
V, 3.79V, 3.78V, charging/discharging efficiency of 100%, and the characteristics are extremely good.

これらのことから、有機溶媒であるエトキシメトキシエ
タンと2,3−ペンテンカーボネートとの混合体積比率
は、90:10〜10:90の範囲であることが望まし
い。
For these reasons, it is desirable that the mixing volume ratio of the organic solvent ethoxymethoxyethane and 2,3-pentene carbonate is in the range of 90:10 to 10:90.

以下余白 このように、特に実験1〜6の電池において、充電時の
電圧が低下し性能が向上したのは、以下の理由によるも
のと考えられる。
The reason why the voltage during charging decreased and the performance improved, especially in the batteries of Experiments 1 to 6, is considered to be due to the following reasons.

即ち、前人(a)で示される直鎖ジエーテルと、前人(
b)で示される環状炭酸エステル系化合物の混合溶媒を
使用した場合、アニオンと直鎖ジエーテルとの溶媒和が
、直鎖ジエーテルと導電性ポリマーとの相互作用により
外れ易くなって導電性ボッマー中ヘアニオンがドーピン
グし易くなるものと考えられる。また、この混合溶媒を
用いた電解液が、従来のプロピレンカーボネートのみを
用いた電解液に較べ、電導液が高く、粘度が低いことも
特性向上の要因となったことに起因すると考えられる。
That is, the linear diether shown by the former (a) and the former (
When a mixed solvent of cyclic carbonate compounds as shown in b) is used, the solvation of the anion and the linear diether becomes easier due to the interaction between the linear diether and the conductive polymer, resulting in hair anions in the conductive Bommer. It is thought that doping becomes easier. It is also believed that the fact that the electrolytic solution using this mixed solvent has a higher conductivity and lower viscosity than the conventional electrolytic solution using only propylene carbonate is also a factor in improving the characteristics.

尚、上記実験1〜実験6においては、導電性ボッマーか
ら成る電極を正極のみに用いているが、正極、負極の両
極に用いた場合であっても、上記と同様の効果が得られ
る。
In Experiments 1 to 6 above, the electrode made of conductive Bommer was used only for the positive electrode, but the same effect as described above can be obtained even when it is used for both the positive electrode and the negative electrode.

また、前記実験1〜実験6においては、負極にリチウム
金属を用いたが、アルミニウム、ビスマス、鉛、錫、カ
ドミウム、インジウム、亜鉛より成る群から選ばれる少
なくとも1つとリチウムとの合金、マンガン、クロム、
鉄、珪素、銅、ジルコニウム、タングステン、モリブデ
ンより成る群より選ばれる少なくとも1種の金属を含む
リチウム−アルミニウム合金或いは導電性ポリマーを用
いた場合も同様の効果を奏することは勿論である。
In addition, in Experiments 1 to 6, lithium metal was used for the negative electrode, but alloys of lithium and at least one selected from the group consisting of aluminum, bismuth, lead, tin, cadmium, indium, and zinc, manganese, and chromium ,
Of course, the same effect can be obtained when using a lithium-aluminum alloy or a conductive polymer containing at least one metal selected from the group consisting of iron, silicon, copper, zirconium, tungsten, and molybdenum.

更に、上記実験1〜実験5においては電解液の電解質と
して、ホウフン化リチウムを用いたがこれに限定するも
のではなく、過塩素酸リチウム(L + CNO+) 
、6フツ化リン酸リチウム(LiPF、)、6フツ化ヒ
酸リチウム(LiAsF、)、4塩化アルミニウム・リ
チウム(LiAI!。
Furthermore, in the above experiments 1 to 5, lithium borofluoride was used as the electrolyte of the electrolytic solution, but it is not limited to this, and lithium perchlorate (L + CNO +)
, lithium hexafluorophosphate (LiPF, ), lithium hexafluoroarsenate (LiAsF, ), lithium aluminum tetrachloride (LiAI!.

C2,)等であってもよい。C2, ) etc. may be used.

(ト)発明の詳細 な説明したように本発明によれば、充電時における電圧
の上昇を低く押さえることができるので、電池缶や集電
体の腐食を防止することができると共に、電解液やドー
パント或いは導電性ポリマーの分解等が抑制される。加
えて、上記の混合溶媒を電解液の溶媒として用いれば、
従来のプロピレンカーボネートのみを溶媒とする電解液
と比べて、電導度が高くなると共に、粘度が低くなる。
(g) As described in detail, according to the present invention, the voltage increase during charging can be suppressed to a low level, so corrosion of the battery can and current collector can be prevented, and the electrolyte and Decomposition of the dopant or conductive polymer is suppressed. In addition, if the above mixed solvent is used as a solvent for the electrolyte,
Compared to conventional electrolytes using only propylene carbonate as a solvent, the conductivity is higher and the viscosity is lower.

これらのことから、電池の充放電特性やサイクル特性を
向上させることができ、高信頼性且つ高性能の二次電池
を作製しうるという効果を奏する。
For these reasons, the charging/discharging characteristics and cycle characteristics of the battery can be improved, and a highly reliable and high-performance secondary battery can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の電池の構造を示す断面図である。 1・・・正極、2・・・負極、3・・・セパレータ。 FIG. 1 is a sectional view showing the structure of a battery according to an example. 1...Positive electrode, 2...Negative electrode, 3...Separator.

Claims (1)

【特許請求の範囲】[Claims] (1)正極と、負極と、電解液とを備え、導電性ポリマ
ーを上記正極のみ、或いは正、負両極に用いた二次電池
において、 前記電解液の溶媒が、下記の一般式(a)で表わされる
直鎖ジエーテル系化合物と、下記の一般式(b)で表わ
される環状炭酸エステル系化合物との混合溶媒からなる
ことを特徴とする二次電池。 ▲数式、化学式、表等があります▼…(a) (式中、lは1または2、m、nは1以上4以下の整数
。) ▲数式、化学式、表等があります▼…(b) (式中、R_1は水素原子または炭素数1〜3の低級ア
ルキル基、R_2は水素原子またはメチル基。)(2)
前記直鎖ジエーテル系化合物と環状炭酸エステル系化合
物との混合体積比率が、90:10〜10:90である
ことを特徴とする請求項(1)記載の二次電池。
(1) In a secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, in which a conductive polymer is used only in the positive electrode or in both the positive and negative electrodes, the solvent of the electrolytic solution is expressed by the following general formula (a). A secondary battery comprising a mixed solvent of a linear diether compound represented by the formula (b) and a cyclic carbonate compound represented by the following general formula (b). ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(a) (In the formula, l is 1 or 2, m, n are integers from 1 to 4.) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(b) (In the formula, R_1 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms, and R_2 is a hydrogen atom or a methyl group.) (2)
The secondary battery according to claim 1, wherein the mixing volume ratio of the linear diether compound and the cyclic carbonate compound is 90:10 to 10:90.
JP1257260A 1988-10-03 1989-10-02 Rechargeable battery Expired - Fee Related JP2765994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1257260A JP2765994B2 (en) 1988-10-03 1989-10-02 Rechargeable battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-249550 1988-10-03
JP24955088 1988-10-03
JP1257260A JP2765994B2 (en) 1988-10-03 1989-10-02 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH02192668A true JPH02192668A (en) 1990-07-30
JP2765994B2 JP2765994B2 (en) 1998-06-18

Family

ID=26539358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1257260A Expired - Fee Related JP2765994B2 (en) 1988-10-03 1989-10-02 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2765994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025381A1 (en) * 1998-10-23 2000-05-04 Lg Chemical, Ltd. Non-aqueous electrolyte for electrochemical systems and lithium secondary battery comprising the same
CN109921094A (en) * 2019-01-30 2019-06-21 中国石油大学(华东) A kind of novel polymethoxy dialkyl ether lithium battery electrolytes and its application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231962A (en) * 1985-04-17 1987-02-10 Showa Denko Kk Secondary battery
JPS63105478A (en) * 1986-10-20 1988-05-10 Sanyo Electric Co Ltd Secondary battery
JPH01248471A (en) * 1988-03-30 1989-10-04 Showa Denko Kk Secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231962A (en) * 1985-04-17 1987-02-10 Showa Denko Kk Secondary battery
JPS63105478A (en) * 1986-10-20 1988-05-10 Sanyo Electric Co Ltd Secondary battery
JPH01248471A (en) * 1988-03-30 1989-10-04 Showa Denko Kk Secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025381A1 (en) * 1998-10-23 2000-05-04 Lg Chemical, Ltd. Non-aqueous electrolyte for electrochemical systems and lithium secondary battery comprising the same
CN109921094A (en) * 2019-01-30 2019-06-21 中国石油大学(华东) A kind of novel polymethoxy dialkyl ether lithium battery electrolytes and its application
CN109921094B (en) * 2019-01-30 2022-05-03 中国石油大学(华东) Novel polymethoxy dialkyl ether lithium battery electrolyte and application thereof

Also Published As

Publication number Publication date
JP2765994B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
EP1009055B1 (en) Nonaqueous electrolyte battery and charging method therefor
DE69628978T2 (en) Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
US4668596A (en) Negative electrodes for non-aqueous secondary batteries composed on conjugated polymer and alkali metal alloying or inserting material
EP1702374B1 (en) Ionic liquid-modified cathode and electrochemical device using the same
EP1815546B1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
US6855457B2 (en) Nonaqueous electrolyte secondary battery with a molten salt electrolyte
EP0575191B1 (en) Non-aqueous electrolyte solvent and battery containing this electrolyte
WO1996041387A1 (en) Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
EP2023427A1 (en) Storage device
US5389467A (en) Rechargeable galvanic lithium cell
JP2007281107A (en) Electricity storage device
CN1316790A (en) Nonaqueous electrochemical device and its electrolyte
JP5036214B2 (en) Charge / discharge control method for power storage device
JPH0520874B2 (en)
US4840858A (en) Secondary cell
US20220029199A1 (en) Non-aqueous electrolyte solution for battery and lithium secondary battery
EP0749173A1 (en) A lithium secondary battery
JPH02192668A (en) Secondary cell
US20200365941A1 (en) Electrolyte solution for lithium-iron-phosphate-based lithium secondary battery and lithium secondary battery comprising same
JP2680631B2 (en) Rechargeable battery
JP2765974B2 (en) Rechargeable battery
KR101511792B1 (en) Additives of electrode active materials for enhancement of battery capacity
JP2692956B2 (en) Rechargeable battery
KR100330151B1 (en) A electrolyte for a lithium secondary battery
JP2632021B2 (en) Rechargeable battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees