JP2680631B2 - Rechargeable battery - Google Patents
Rechargeable batteryInfo
- Publication number
- JP2680631B2 JP2680631B2 JP63250427A JP25042788A JP2680631B2 JP 2680631 B2 JP2680631 B2 JP 2680631B2 JP 63250427 A JP63250427 A JP 63250427A JP 25042788 A JP25042788 A JP 25042788A JP 2680631 B2 JP2680631 B2 JP 2680631B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- electrolytic solution
- charge
- methyltetrahydrofuran
- comparative example
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 この発明は、導電性ポリマーから成る正極と、負極
と、電解液とを備えた二次電池に関する。TECHNICAL FIELD The present invention relates to a secondary battery including a positive electrode made of a conductive polymer, a negative electrode, and an electrolytic solution.
従来の技術 近年、例えば特開昭56-136469号公報にみられるよう
に、導電性ポリマーを電極に用いた二次電池が提案され
ている。2. Description of the Related Art In recent years, as seen in, for example, JP-A-56-136469, a secondary battery using a conductive polymer for an electrode has been proposed.
この種の二次電池の電極に使用される導電性ポリマー
は、通常は導電性がわずかであるが、各種のドーパント
をドーピング、アンドーピングすることが可能であり、
ドーピングにより導電性が飛躍的に上昇する。そして、
ClO4 -やBF4 -などのアニオンをドーピングした導電性ポ
リマーは正極材料として、またLi+やNa+などのカチオン
をドーピングした導電性ポリマーは負極材料として各々
使用され、ドーピング及びアンドーピングを電気化学的
に可逆的に行なうことによって充放電可能な電池が構成
される。The conductive polymer used for the electrode of this type of secondary battery is usually slightly conductive, but can be doped with various dopants and undoped.
Doping significantly increases conductivity. And
ClO 4 - or BF 4 - anion doped conductive polymer, such as a positive electrode material and a conductive polymer doped with cations such as Li + and Na + are respectively used as a negative electrode material, an electrical doping and undoping A battery that can be charged and discharged is constructed by performing the chemical reversible operation.
このような導電性ポリマーは一般的に酸化剤による化
学的重合あるいは電解重合などによって作られ、例えば
ポリアセチレン、ポリピロール、ポリチオフェン、ポリ
アニリン、ポリパラフェニレン等が従来から知られてい
る。そして、このポリマーが粉状で得られる場合は電極
形状に応じた形状に加圧成形して、またフィルム状の場
合はそのまま電極寸法に打ち抜いたり、或いは粉状とす
る等して使用されている。これらの導電性ポリマーを使
用した電池は軽量で高エネルギー密度であるばかりか、
無公害であるといった特長のある電池として期待されて
いる。とりわけ、上記ポリピロールやポリアニリンは特
性が良好で、これらを用いた二次電池は実用化電池とし
て有望視されている。Such a conductive polymer is generally produced by chemical polymerization or electrolytic polymerization using an oxidizing agent, and for example, polyacetylene, polypyrrole, polythiophene, polyaniline, polyparaphenylene and the like are conventionally known. When this polymer is obtained in powder form, it is pressure-molded into a shape corresponding to the electrode shape, and when it is in film form, it is punched out to the electrode size as it is, or it is used in powder form. . Batteries using these conductive polymers are not only lightweight and have high energy density,
It is expected as a battery with the characteristic of being non-polluting. In particular, the above-mentioned polypyrrole and polyaniline have good properties, and secondary batteries using these are considered promising as batteries for practical use.
ところで、この種の二次電池の電解液としては通常、
リチウム電池などの既存の非水電池に使用されているの
と同様なプロピレンカーボネートなどの非プロトン系の
有機溶媒に過塩素酸リチウムやホウフッ化リチウムの如
きリチウム塩などのアルカリ金属塩を溶解したものが用
いられている。By the way, as an electrolytic solution of this type of secondary battery, usually,
Alkali metal salt such as lithium salt such as lithium perchlorate or lithium borofluoride dissolved in aprotic organic solvent such as propylene carbonate similar to that used for existing non-aqueous battery such as lithium battery Is used.
発明が解決しようとする課題 しかしながら、これら導電性ポリマーを電極に使用し
た二次電池は一般に既存の非水電池などに較べてその電
極電位がかなり高いことから、上記従来の電解液を用い
て電池を構成し、これを充電した場合、充電進行と共に
電池電圧が高くなりすぎてしまう。このため、電解液や
ドーパント、更には導電性ポリマーが分解する等の副反
応が起こり、充放電効率の低下や保存特性の劣化を招く
という課題がある。この傾向は特に充電容量が大きい場
合は顕著となり、サイクル特性の低下の度合いが大き
く、それ故サイクル寿命が短くなるという課題もある。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, since a secondary battery using these conductive polymers for electrodes generally has a considerably higher electrode potential than existing non-aqueous batteries and the like, a battery using the above-mentioned conventional electrolytic solution is used. When this is configured and the battery is charged, the battery voltage becomes too high as the charging progresses. Therefore, there is a problem that side reactions such as decomposition of the electrolytic solution, the dopant, and further the conductive polymer occur, leading to a decrease in charge / discharge efficiency and deterioration of storage characteristics. This tendency becomes remarkable especially when the charge capacity is large, and there is a problem that the degree of deterioration of cycle characteristics is large and therefore the cycle life is shortened.
本発明は従来のこのような問題点を解決して、充放電
効率が低下したり、保存特性が劣化することを防止し
て、二次電池のサイクル特性を飛躍的に向上させ、これ
によって、高信頼性且つ高性能の二次電池の提供を目的
とするものである。The present invention solves the above-mentioned conventional problems and prevents the charge / discharge efficiency from being deteriorated or the storage characteristics from being deteriorated, thereby dramatically improving the cycle characteristics of the secondary battery. It is intended to provide a highly reliable and high performance secondary battery.
課題を解決するための手段 本発明の二次電池は上記問題点を解決するために、導
電性ポリマーから成る正極と、負極と、電解液とを備え
た二次電池において、前記電解液の溶媒が下記の一般式
で表される環状炭酸エステル系化合物と2−メチルテト
ラヒドロフランとの混合溶媒から成ることを特徴とす
る。Means for Solving the Problems The secondary battery of the present invention is, in order to solve the above problems, a secondary battery comprising a positive electrode made of a conductive polymer, a negative electrode, and an electrolytic solution, wherein a solvent of the electrolytic solution is used. Is composed of a mixed solvent of a cyclic carbonate compound represented by the following general formula and 2-methyltetrahydrofuran.
(式中R1は炭素原子数1〜3の低級アルキル基、R2は水
素原子又はメチル基である。但し、R2が水素原子の場合
にはR1はメチル基以外の基であり、R1が炭素原子数3の
低級アルキル基の場合にはR2は水素原子である。) 作用 上記の如く電解液の有機溶媒として上記の一般式で示
す環状炭酸エステル系化合物と2−メチルテトラヒドロ
フランとの混合溶媒を用いれば、この混合溶媒は従来用
いられていたプロピレンカーボネート等と比較して分解
電圧が高いので、充電時に充電容量を増加することによ
って充電電圧が上昇し、充電終止電圧がある程度上昇し
た場合であっても、電解液が分解するのを抑制すること
ができる。したがって、充放電を繰り返し行った場合で
も、電解液の性能が劣化するのを防止することができる
ので、充放電効率の低下や保存特性が劣化するのを防止
することができ、これによってサイクル特性を向上させ
ることができる。 (In the formula, R 1 is a lower alkyl group having 1 to 3 carbon atoms, R 2 is a hydrogen atom or a methyl group. Provided that when R 2 is a hydrogen atom, R 1 is a group other than a methyl group, When R 1 is a lower alkyl group having 3 carbon atoms, R 2 is a hydrogen atom.) Action As described above, the cyclic carbonate compound represented by the above general formula and 2-methyltetrahydrofuran are used as the organic solvent of the electrolytic solution. If a mixed solvent of and is used, this mixed solvent has a higher decomposition voltage than conventionally used propylene carbonate and the like, so that the charging voltage is increased by increasing the charging capacity at the time of charging, and the charge end voltage is to some extent. Even when the temperature rises, it is possible to suppress the decomposition of the electrolytic solution. Therefore, even when the charge and discharge are repeated, it is possible to prevent the performance of the electrolytic solution from being deteriorated, and thus it is possible to prevent the deterioration of the charge and discharge efficiency and the storage characteristics, which results in cycle characteristics. Can be improved.
第1実施例 本発明の第1実施例を、第1図に示す偏平型非水系二
次電池に基づいて、以下に説明する。First Embodiment A first embodiment of the present invention will be described below based on the flat nonaqueous secondary battery shown in FIG.
リチウム金属から成る負極2は負極集電体7の内面に
圧着されており、この負極集電体7はステンレスから成
る断面略コ字状の負極缶5の内底面に固着されている。
上記負極缶5の周端はポリプロピレン製の絶縁パッキン
グ8の内部に固定されており、絶縁パッキング8の外周
にはステンレスから成り上記負極缶5とは反対方向に断
面略コ字状を成す正極缶4が固定されている。この正極
缶4の内底面には正極集電体6が固定されており、この
正極集電体6の内面には正極1が固定さている。この正
極1と前記負極2との間にはセパレータ3が介装されて
いる。The negative electrode 2 made of lithium metal is pressed on the inner surface of a negative electrode current collector 7, and the negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section.
A peripheral end of the negative electrode can 5 is fixed inside a polypropylene insulating packing 8, and a positive electrode can made of stainless steel is formed around the outer periphery of the insulating packing 8 and has a substantially U-shaped cross section in a direction opposite to the negative electrode can 5. 4 is fixed. The positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and the positive electrode 1 is fixed to the inner surface of the positive electrode current collector 6. A separator 3 is interposed between the positive electrode 1 and the negative electrode 2.
ところで、前記正極1は電解重合によって合成したポ
リピロール粉末を円板状に加圧成形することにより作成
し、前記負極2はリチウム圧延板を所定寸法に打抜くこ
とにより作成した。また、電解液としては有機溶媒に過
塩素酸リチウム(LiClO4)を1M溶解させた溶液を用い、
上記有機溶媒としては下記に示す1,2−ブチレンカーボ
ネートと2−メチルテトラヒドロフランとを50:50の体
積比率で混合したものを用いた。By the way, the positive electrode 1 was prepared by press-molding a polypyrrole powder synthesized by electrolytic polymerization into a disk shape, and the negative electrode 2 was prepared by punching a rolled lithium plate into a predetermined size. Further, as the electrolytic solution, a solution prepared by dissolving 1M of lithium perchlorate (LiClO 4 ) in an organic solvent is used,
As the organic solvent, a mixture of 1,2-butylene carbonate and 2-methyltetrahydrofuran shown below at a volume ratio of 50:50 was used.
このようにして作製した電池を、以下(A1)電池と称
する。 The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.
下記第1表に示すように、有機溶媒として1,2−ブチ
レンカーボネートと2−メチルテトラヒドロフランとを
それぞれ95:5、90:10、70:30、40:60、20:80、10:90の
体積比率で混合する他は上記実施例Iと同様にして電池
を作製した。As shown in Table 1 below, 1,2-butylene carbonate and 2-methyltetrahydrofuran were used as organic solvents at 95: 5, 90:10, 70:30, 40:60, 20:80 and 10:90, respectively. A battery was made in the same manner as in Example I except that the mixing was performed in the volume ratio.
このようにして作製した電池を、以下順に(A2)電池
〜(A7)電池と称する。The batteries produced in this manner are hereinafter referred to as (A 2 ) battery to (A 7 ) battery.
〔比較例I〕 有機溶媒としてエチレンカーボネートと2−メチルテ
トラヒドロフランとを50:50の割合で混合した混合溶媒
を用いる他は、上記実施例Iと同様にして電池を作製し
た。 [Comparative Example I] A battery was produced in the same manner as in Example I except that a mixed solvent obtained by mixing ethylene carbonate and 2-methyltetrahydrofuran at a ratio of 50:50 was used as the organic solvent.
このようにして作製した電池を、以下(U)電池と称
する。The battery thus manufactured is hereinafter referred to as (U) battery.
有機溶媒としてプロピレンカーボネートと2−メチル
テトラヒドロフランとを50:50の割合で混合した混合溶
媒を用いる他は、上記実施例Iと同様にして電池を作製
した。A battery was produced in the same manner as in Example I except that a mixed solvent obtained by mixing propylene carbonate and 2-methyltetrahydrofuran at a ratio of 50:50 was used as the organic solvent.
このようにして作製した電池を、以下(V)電池と称
する。The battery thus manufactured is hereinafter referred to as a (V) battery.
有機溶媒としてプロピレンカーボネートを用いる他
は、上記実施例Iと同様にして電池を作製した。A battery was produced in the same manner as in Example I except that propylene carbonate was used as the organic solvent.
このようにして作製した電池を、以下(W)電池と称
する。The battery fabricated in this manner is hereinafter referred to as a (W) battery.
上記本発明の(A1)電池〜(A7)電池及び比較例の
(U)電池〜(W)電池について、1mAの電流で10時間
充電を行ない、また1mAの電流で電池電圧が2.5Vになる
まで放電するという充放電サイクルを繰り返し行った。The (A 1 ) battery to (A 7 ) battery of the present invention and the (U) battery to (W) battery of the comparative example were charged at a current of 1 mA for 10 hours and a battery voltage of 2.5 V at a current of 1 mA. The charging / discharging cycle of discharging until it reached to was repeated.
そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第1表
に併せて示す。Then, the end-of-charge voltage and the charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 1 above.
第1表より明らかなように、比較例の(V)電池、
(W)電池では充電終止電圧が各々4.45V、4.51Vであっ
て非常に高く、また比較例の(U)電池でも4.39Vと高
い。これに対して、本発明の(A2)電池及び(A7)電池
では充電終止電圧が各々4.30V、4.34Vであって低下して
いることが認められ、更に本発明の(A1)電池及び
(A3)電池〜(A6)電池では充電終止電圧が各々4.16
V、4.17V、4.15V、4.15V、4.17Vであって更に低下して
いることが認められる。As is clear from Table 1, the (V) battery of Comparative Example,
The (W) battery has extremely high end-of-charge voltages of 4.45V and 4.51V, respectively, and the (U) battery of the comparative example has a high end voltage of 4.39V. In contrast, the present invention (A 2) cell and (A 7) charge voltage are each a cell 4.30 V, it is observed that drops a 4.34V, further of the present invention (A 1) batteries and (A 3) batteries ~ (A 6) charge voltage are each a battery 4.16
V, 4.17V, 4.15V, 4.15V, 4.17V, which are further reduced.
また、比較例の(V)電池、(W)電池では充放電効
率が各々55%、49%であり著しく低下しており、また比
較例の(U)電池でも94%と低い。これに対して、本発
明(A2)電池及び(A7)電池では充放電効率が各々96
%、95%であって向上していることが認められ、更に本
発明の(A1)電池及び(A3)電池〜(A6)電池では充放
電効率が全て100%であって更に向上していることが認
められる。In addition, the charge and discharge efficiencies of the comparative example (V) battery and the comparative (W) battery were 55% and 49%, respectively, which were extremely low, and the comparative example (U) battery was also low at 94%. In contrast, the charge / discharge efficiency of the present invention (A 2 ) battery and (A 7 ) battery is 96
%, 95%, which is further improved, and in the (A 1 ) battery and (A 3 ) battery to (A 6 ) battery of the present invention, the charge / discharge efficiency is 100% and further improved. It is recognized that they are doing.
これらのことから、本発明の(A1)電池〜(A7)電池
は比較例の(U)電池〜(W)電池と比べて性能が向上
したことが伺える。From these facts, it can be seen that the batteries (A 1 ) to (A 7 ) of the present invention have improved performance as compared with the batteries (U) to (W) of the comparative examples.
特に(A1)電池及び(A3)電池〜(A6)電池は飛躍的
に性能が向上していることが伺える。したがって、有機
溶媒である1,2−ブチレンカーボネートと2−メチルテ
トラヒドロフランとの混合体積比率は90:10〜20:80の範
囲であることが望ましい。In particular, it can be seen that the performance of the (A 1 ) battery and the (A 3 ) battery to (A 6 ) battery has improved dramatically. Therefore, the mixing volume ratio of the organic solvent 1,2-butylene carbonate and 2-methyltetrahydrofuran is preferably in the range of 90:10 to 20:80.
第2実施例 〔実施例1〕 電解重合によって合成したポリアニリン粉末を円板状
に加圧成形したものを正極として用い、且つ有機溶媒と
しては下記式に示す1,2−ペンテンカーボネートと2−
メチルテトラヒドロフランとを50:50の体積比率で混合
した混合溶媒を用いる他は、上記第1実施例の実施例I
と同様にして電池を作製した。Second Example [Example 1] A disk-shaped polyaniline powder synthesized by electrolytic polymerization was pressed and used as a positive electrode, and as an organic solvent, 1,2-pentene carbonate and 2-
Example I of the above-mentioned first example except that a mixed solvent in which methyltetrahydrofuran was mixed at a volume ratio of 50:50 was used.
A battery was prepared in the same manner as in.
このようにして作製した電池を、以下(B1)電池と称
する。 The battery fabricated in this manner is hereinafter referred to as (B 1 ) battery.
下記第2表に示すように、有機溶媒として1,2−ペ
ンテンカーボネートと2−メチルテトラヒドロフランと
をそれぞれ95:5、90:10、70:30、40:60、20:80、10:90
の体積比率で混合する他は上記実施例Iと同様にして電
池を作製した。As shown in Table 2 below, 95: 5, 90:10, 70:30, 40:60, 20:80, and 10:90 of 1,2-pentene carbonate and 2-methyltetrahydrofuran were used as organic solvents, respectively.
A battery was produced in the same manner as in Example I except that the mixture was carried out at a volume ratio of.
このようにして作製した電池を、以下順に(B2)電池
〜(B7)電池と称する。The batteries produced in this manner are hereinafter referred to as (B 2 ) battery to (B 7 ) battery.
〔比較例I〕 有機溶媒としてエチレンカーボネートと2−メチルテ
トラヒドロフランとを50:50の割合で混合した混合溶媒
を用いる他は、上記実施例Iと同様にして電池を作製し
た。 [Comparative Example I] A battery was produced in the same manner as in Example I except that a mixed solvent obtained by mixing ethylene carbonate and 2-methyltetrahydrofuran at a ratio of 50:50 was used as the organic solvent.
このようにして作製した電池を、以下(X)電池と称
する。The battery fabricated in this manner is hereinafter referred to as (X) battery.
有機溶媒としてプロピレンカーボネートと2−メチル
テトラヒドロフランとを50:50の割合で混合した混合溶
媒を用いる他は、上記実施例Iと同様にして電池を作製
した。A battery was produced in the same manner as in Example I except that a mixed solvent obtained by mixing propylene carbonate and 2-methyltetrahydrofuran at a ratio of 50:50 was used as the organic solvent.
このようにして作製した電池を、以下(Y)電池と称
する。The battery fabricated in this manner is hereinafter referred to as (Y) battery.
有機溶媒としてプロピレンカーボネートを用いる他
は、上記実施例Iと同様にして電池を作製した。A battery was produced in the same manner as in Example I except that propylene carbonate was used as the organic solvent.
このようにして作製した電池を、以下(Z)電池と称
する。The battery fabricated in this manner is hereinafter referred to as a battery (Z).
上記本発明の(B1)電池〜(B7)電池及び比較例の
(X)電池〜(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。The (B 1 ) battery to (B 7 ) battery of the present invention and the (X) battery to (Z) battery of Comparative Example were repeatedly charged and discharged under the same conditions as the experiment of the first embodiment.
そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第2表
に併せて示す。Then, the end-of-charge voltage and charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 2 above.
第2表より明らかなように、比較例の(Y)電池、
(Z)電池では充電終止電圧が各々4.55V、4.59Vであっ
て非常に高く、また比較例の(X)電池でも4.45Vと高
い。これに対して、本発明の(B2)電池及び(B7)電池
では充電終止電圧が各々4.34V、4.35Vであって低下して
いることが認められ、更に本発明の(B1)電池及び
(B3)電池〜(B6)電池では充電終止電圧が各々4.25
V、4.26V、4.26V、4.25V、4.27Vであって更に低下して
いることが認められる。As is clear from Table 2, the (Y) battery of Comparative Example,
The (Z) battery has very high end-of-charge voltages of 4.55V and 4.59V, respectively, and the (X) battery of the comparative example has a high end voltage of 4.45V. On the other hand, in the (B 2 ) battery and the (B 7 ) battery of the present invention, it was observed that the end-of-charge voltages were 4.34 V and 4.35 V, respectively, and it was confirmed that the (B 1 ) Batteries and (B 3 ) to (B 6 ) batteries each have an end-of-charge voltage of 4.25.
V, 4.26V, 4.26V, 4.25V, 4.27V, which are further reduced.
また、比較例の(Y)電池、(Z)電池では充放電効
率が各々70%、60%であり著しく低下しており、また比
較例の(X)電池でも95%と低い。これに対して、本発
明(B2)電池及び(B7)電池では充放電効率が各々96
%、96%であって向上していることが認められ、更に本
発明の(B1)電池及び(B3)電池〜(B6)電池では充放
電効率が全て100%であって更に向上していることが認
められる。In addition, the charge and discharge efficiencies of the comparative example (Y) battery and the comparative example (Z) battery are 70% and 60%, respectively, which are extremely low, and the comparative example (X) battery is also as low as 95%. On the other hand, the charge and discharge efficiencies of the present invention (B 2 ) battery and (B 7 ) battery are each 96
%, 96%, which is further improved, and in the (B 1 ) battery and the (B 3 ) battery to the (B 6 ) battery of the present invention, the charge / discharge efficiency is 100% and further improved. It is recognized that they are doing.
これらのことから、本発明の(B1)電池〜(B7)電池
は比較例の(X)電池〜(Z)電池と比べて性能が向上
したことが伺える。From these, it can be seen that the (B 1 ) battery to (B 7 ) battery of the present invention have improved performance as compared with the (X) battery to (Z) battery of Comparative Examples.
特に(B1)電池及び(B3)電池〜(B6)電池は飛躍的
に性能が向上していることが伺える。したがって、有機
溶媒である1,2−ペンテンカーボネートと2−メチルテ
トラヒドロフランとの混合体積比率は90:10〜20:80の範
囲であることが望ましい。In particular, it can be seen that the performance of the (B 1 ) battery and (B 3 ) battery to (B 6 ) battery has improved dramatically. Therefore, the mixing volume ratio of the organic solvent 1,2-pentene carbonate and 2-methyltetrahydrofuran is preferably in the range of 90:10 to 20:80.
このように上記本発明の(A1)電池〜(A7)電池、及
び(B1)電池〜(B7)電池の性能が向上したのは、以下
に示す理由によるものと考えられる。The reason why the performances of the (A 1 ) battery to (A 7 ) battery and the (B 1 ) battery to (B 7 ) battery of the present invention are improved in this manner is considered to be as follows.
即ち、(A1)電池〜(A7)電池、及び(B1)電池〜
(B7)電池の電解液に含まれる環状炭酸エステル系化合
物と2−メチルテトラヒドロフランとの混合溶媒は、
(U)電池、(V)電池、(X)電池、(Y)電池の電
解液に含まれる環状炭酸エステル系化合物と2−メチル
テトラヒドロフランとの混合溶媒及び(W)電池、
(Z)電池の電解液に含まれるプロピレンカーボネート
のみの溶媒と比べて分解電位が高いため、電解液の分解
が生じ難くなったことによるものと考えられる。That is, (A 1 ) battery to (A 7 ) battery, and (B 1 ) battery to
(B 7 ) The mixed solvent of the cyclic carbonate compound and 2-methyltetrahydrofuran contained in the electrolytic solution of the battery is
(U) battery, (V) battery, (X) battery, (Y) mixed solvent of cyclic carbonate compound and 2-methyltetrahydrofuran contained in electrolyte solution of battery, and (W) battery,
(Z) It is considered that the decomposition potential was higher than that of the solvent containing only propylene carbonate contained in the electrolytic solution of the battery, and thus the decomposition of the electrolytic solution was less likely to occur.
尚、上記第1実施例及び第2実施例においては、環状
炭酸エステル系化合物として1,2−ブチレンカーボネー
ト、1,2−ペンテンカーボネートを用いているが、これ
らに限定するものではなく、下記式に示す2,3−ブチレ
ンカーボネート、2,3−ペンテンカーボネート等であっ
てもよい。In the first and second examples, 1,2-butylene carbonate and 1,2-pentene carbonate are used as the cyclic carbonic acid ester-based compound, but the present invention is not limited to these and the following formula It may be 2,3-butylene carbonate, 2,3-pentene carbonate, etc.
また、上記第1実施例及び第2実施例においては負極
にリチウム金属を用いたが、アルミニウム,ビスマス,
鉛,錫,カドミウム,インジウム,亜鉛より成る群から
選ばれる少なくとも1つとリチウムとの合金、マンガ
ン,クロム,鉄,珪素,銅,ジルコニウム,タングステ
ン,モリブデンより成る群より選ばれる少なくとも1種
の金属を含むリチウム−アルミニウム合金或いは導電性
ポリマーを用いた場合も同様の効果を奏することは勿論
である。 Further, in the first and second embodiments, lithium metal is used for the negative electrode, but aluminum, bismuth,
An alloy of at least one selected from the group consisting of lead, tin, cadmium, indium and zinc and lithium, and at least one metal selected from the group consisting of manganese, chromium, iron, silicon, copper, zirconium, tungsten and molybdenum. Needless to say, the same effect can be obtained when a lithium-aluminum alloy containing a conductive polymer or a conductive polymer is used.
更に、上記第1実施例及び第2実施例においては電解
液の電解質として、過塩素酸リチウムを用いたがこれに
限定するものではなく、ホウフッ化リチウム(LiB
F4)、6フッ化リン酸リチウム(LiPF6)、6フッ化ヒ
酸リチウム(LiAsF6)、4塩化アルミニウムリチウム
(LiAlCl4)等であってもよい。Furthermore, although lithium perchlorate was used as the electrolyte of the electrolytic solution in the first and second examples, the present invention is not limited to this, and lithium borofluoride (LiB
F 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium aluminum chloride (LiAlCl 4 ), and the like may be used.
発明の効果 以上説明したように本発明によれば、電解液の分解電
圧が高いので、充電時に充電容量を増加することによっ
て充電電圧が上昇し、充電終止電圧がある程度上昇した
場合であっても、電解液が分解するのを抑制することが
できる。したがって、充放電を繰り返し行った場合で
も、電解液の性能が劣化するのを防止することができる
ので、充放電効率の低下や保存特性が劣化するのを防止
することができる。この結果、電池のサイクル特性を向
上させることができ、高信頼性且つ高性能の二次電池を
提供することができるという効果を奏する。As described above, according to the present invention, since the decomposition voltage of the electrolytic solution is high, the charging voltage is increased by increasing the charging capacity during charging, and even when the end-of-charge voltage is increased to some extent. The decomposition of the electrolytic solution can be suppressed. Therefore, even when charging and discharging are repeated, it is possible to prevent the performance of the electrolytic solution from deteriorating, so that it is possible to prevent deterioration of charging and discharging efficiency and deterioration of storage characteristics. As a result, the cycle characteristics of the battery can be improved, and a highly reliable and high-performance secondary battery can be provided.
第1図は本発明の実施例の電池の構造を示す断面図であ
る。 1……正極、2……負極、3……セパレータ。FIG. 1 is a sectional view showing the structure of a battery according to an embodiment of the present invention. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.
Claims (1)
電解液とを備えた二次電池において、 前記電解液の溶媒が下記の一般式で表される環状炭酸エ
ステル系化合物と2−メチルテトラヒドロフランとの混
合溶媒から成ることを特徴とする二次電池。 (式中R1は炭素原子数1〜3の低級アルキル基、R2は水
素原子又はメチル基である。但し、R2が水素原子の場合
にはR1はメチル基以外の基であり、R1が炭素原子数3の
低級アルキル基の場合にはR2は水素原子である。)1. A positive electrode comprising a conductive polymer, a negative electrode,
A secondary battery comprising an electrolytic solution, wherein the solvent of the electrolytic solution is a mixed solvent of a cyclic carbonic acid ester compound represented by the following general formula and 2-methyltetrahydrofuran. (In the formula, R 1 is a lower alkyl group having 1 to 3 carbon atoms, R 2 is a hydrogen atom or a methyl group. Provided that when R 2 is a hydrogen atom, R 1 is a group other than a methyl group, When R 1 is a lower alkyl group having 3 carbon atoms, R 2 is a hydrogen atom.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63250427A JP2680631B2 (en) | 1988-10-04 | 1988-10-04 | Rechargeable battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63250427A JP2680631B2 (en) | 1988-10-04 | 1988-10-04 | Rechargeable battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0298069A JPH0298069A (en) | 1990-04-10 |
JP2680631B2 true JP2680631B2 (en) | 1997-11-19 |
Family
ID=17207725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63250427A Expired - Fee Related JP2680631B2 (en) | 1988-10-04 | 1988-10-04 | Rechargeable battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2680631B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6264737B1 (en) * | 1998-07-08 | 2001-07-24 | Arco Chemical Technolgy, L.P. | Supported carbonic acid esters useful as set accelerators and thixotropic agents in cement |
KR100371396B1 (en) * | 1998-10-23 | 2003-03-17 | 주식회사 엘지화학 | Electrolyte for lithium secondary battery and lithium secondary battery manufactured using the same |
JP5549516B2 (en) * | 2010-10-06 | 2014-07-16 | 日本電気株式会社 | Secondary battery and electrolyte and membrane used therefor |
-
1988
- 1988-10-04 JP JP63250427A patent/JP2680631B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0298069A (en) | 1990-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3079343B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JP2997741B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
EP0575191B1 (en) | Non-aqueous electrolyte solvent and battery containing this electrolyte | |
JP3287376B2 (en) | Lithium secondary battery and method of manufacturing the same | |
JPH06302320A (en) | Nonaqueous electrolyte secondary battery | |
US4840858A (en) | Secondary cell | |
JP4901089B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2887632B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2680631B2 (en) | Rechargeable battery | |
JPH0696759A (en) | Nonaqueous electrolytic secondary battery and manufacture of active material used therefor | |
JPH06275265A (en) | Nonaqueous electrolyte secondary battery | |
JPH0757780A (en) | Non-aqueous electrolyte secondary battery and manufacture thereof | |
JP3439002B2 (en) | Non-aqueous electrolyte battery | |
JP2765974B2 (en) | Rechargeable battery | |
JP3209319B2 (en) | Secondary battery with non-aqueous solvent electrolyte | |
JP2632021B2 (en) | Rechargeable battery | |
JP2692956B2 (en) | Rechargeable battery | |
JPH08162154A (en) | Secondary battery having nonaqueous solvent electrolyt | |
JP2765994B2 (en) | Rechargeable battery | |
JPH05182665A (en) | Nonaqueous secondary battery | |
JPH08190932A (en) | Secondary battery having nonaqueous solvent electrolyte | |
JP2611265B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3443290B2 (en) | Non-aqueous electrolyte battery | |
JPH06275269A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JP2567644B2 (en) | Secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |