JP2632021B2 - Rechargeable battery - Google Patents

Rechargeable battery

Info

Publication number
JP2632021B2
JP2632021B2 JP63253365A JP25336588A JP2632021B2 JP 2632021 B2 JP2632021 B2 JP 2632021B2 JP 63253365 A JP63253365 A JP 63253365A JP 25336588 A JP25336588 A JP 25336588A JP 2632021 B2 JP2632021 B2 JP 2632021B2
Authority
JP
Japan
Prior art keywords
battery
electrode
acid
batteries
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63253365A
Other languages
Japanese (ja)
Other versions
JPH02100265A (en
Inventor
修弘 古川
晃治 西尾
宣之 好永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP63253365A priority Critical patent/JP2632021B2/en
Publication of JPH02100265A publication Critical patent/JPH02100265A/en
Application granted granted Critical
Publication of JP2632021B2 publication Critical patent/JP2632021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正極と、負極と、電解液とを備えた二次電池
に関する。
Description: TECHNICAL FIELD The present invention relates to a secondary battery including a positive electrode, a negative electrode, and an electrolyte.

従来の技術 近年、例えば特開昭56−136469号公報にみられるよう
に、導電性ポリマーを電極に用いた二次電池が提案され
ている。
2. Description of the Related Art In recent years, a secondary battery using a conductive polymer for an electrode has been proposed as disclosed in, for example, JP-A-56-136469.

この種の二次電池の電極に使用される導電性ポリマー
は、通常は導電性がわずかであるが、各種のドーパント
をドーピング、アンドーピングすることが可能であり、
ドーピングにより導電性が飛躍的に上昇する。そして、
ClO4 -やBF4 -などのアニオンをドーピングした導電性ポ
リマーは正極材料として、またLi+やNa+などのカチオン
をドーピングした導電性ポリマーは負極材料として各々
使用され、ドーピング及びアンドーピングを電気化学的
に可逆的に行なうことによって充放電可能な電池が構成
される。
The conductive polymer used for the electrode of this type of secondary battery is usually slightly conductive, but can be doped with various dopants and undoped.
Doping significantly increases conductivity. And
ClO 4 - or BF 4 - anion doped conductive polymer, such as a positive electrode material and a conductive polymer doped with cations such as Li + and Na + are respectively used as a negative electrode material, an electrical doping and undoping A battery that can be charged and discharged is constructed by performing the chemical reversible operation.

このような導電性ポリマーは一般的に酸化剤による化
学的重合あるいは電解重合などによって作られ、例えば
ポリアセチレン、ポリピロール、ポリチオフェン、ポリ
アニリン、ポリパラフェニレン等が従来から知られてい
る。そして、このポリマーが粉状で得られる場合は電極
形状に応じた形状に加圧成形して、またフィルム状の場
合はそのまま電極寸法に打ち抜いたり、或いは粉砕して
粉状とする等して使用されている。これらの導電性ポリ
マーを使用した電池は、軽量で高エネルギー密度である
ばかりか無公害であるといった特長のある電池として期
待されている。とりわけ、上記ポリピロールやポリアニ
リンは特性が良好で、これらを用いた二次電池は実用化
電池として有望視されている。
Such a conductive polymer is generally produced by chemical polymerization or electrolytic polymerization using an oxidizing agent, and for example, polyacetylene, polypyrrole, polythiophene, polyaniline, polyparaphenylene and the like are conventionally known. When the polymer is obtained in powder form, it is pressed and molded into a shape corresponding to the electrode shape, and when it is in the form of a film, it is used as it is by punching it into the electrode dimensions or pulverizing it into a powder form. Have been. Batteries using these conductive polymers are expected as batteries having features such as light weight, high energy density and no pollution. In particular, the above-mentioned polypyrrole and polyaniline have good properties, and secondary batteries using these are considered promising as batteries for practical use.

ところで、この種の二次電池において、電気化学的に
重合(電解重合)した導電性ポリマーとしては、例えば
特開昭61−279073号公報や特開昭62−12073号公報に示
すように、電解重合の重合浴中の電解質にホウフッ化水
素酸(HBF4)或いはP−トルエンスルホン酸 を用いて合成したポリアニリン膜が知られている。
In this type of secondary battery, as a conductive polymer electrochemically polymerized (electropolymerized), for example, as disclosed in JP-A-61-27973 and JP-A-62-12073, Borohydrofluoric acid (HBF 4 ) or P-toluenesulfonic acid A polyaniline film synthesized by using is known.

発明が解決しようとする課題 しかしながら、これらポリアニリン膜を電極に使用し
た二次電池は、膜の強度が小さく、また膜の各部におけ
る性状が不均一であるため、充放電サイクル中に電極が
くずれたり、或いは電極反応が一部に集中する。このた
め、充電電圧が早期に上昇し易く、電池の充放電容量の
低下を招いて、電池のサイクル寿命が短くなるという課
題を有していた。
Problems to be Solved by the Invention However, in secondary batteries using these polyaniline films as electrodes, the strength of the films is small, and the properties of each part of the films are not uniform. Alternatively, the electrode reaction is partially concentrated. For this reason, there has been a problem that the charging voltage is apt to increase at an early stage, and the charge / discharge capacity of the battery is reduced, and the cycle life of the battery is shortened.

本発明は従来のこのような課題を解決して、電池の充
放電容量の低下を防止して、二次電池のサイクル特性を
飛躍的に向上させ、これによって、高性能の二次電池の
提供を目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, prevents a decrease in the charge / discharge capacity of a battery, dramatically improves the cycle characteristics of a secondary battery, and thereby provides a high-performance secondary battery. It is intended for.

課題を解決するための手段 本発明は上記課題を解決するために、正極と、負極
と、電解液とを備えた二次電池において、少なくとも一
方の電極に、アニリンの電解重合時における重合浴中の
電解質として、ホウフッ化水素酸とP−トルエンスルホ
ン酸との混合電解質を用いて合成したポリアニリン膜を
用いることを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention provides a secondary battery including a positive electrode, a negative electrode, and an electrolytic solution, wherein at least one of the electrodes is provided in a polymerization bath at the time of electrolytic polymerization of aniline. Is characterized by using a polyaniline film synthesized using a mixed electrolyte of borofluoric acid and P-toluenesulfonic acid.

作用 上記構成のポリアニリン膜であれば、電解質としてホ
ウフッ化水素酸又はP−トルエンスルホン酸単独のもの
を用いたポリアニリン膜と比べて、膜強度が向上すると
共に、膜の均一性も向上する。したがって、充放電サイ
クル中にポリアニリン膜を用いた電極がくずれたり、反
応が電極の一部に集中することがない。したがって、充
電電圧が早期に上昇することによる充放電容量の低下を
生じないので、電池のサイクル寿命を向上させることが
できる。
Action With the polyaniline film having the above structure, the film strength is improved and the uniformity of the film is also improved, as compared with a polyaniline film using borofluoric acid or P-toluenesulfonic acid alone as the electrolyte. Therefore, the electrode using the polyaniline film does not collapse during the charge / discharge cycle, and the reaction does not concentrate on a part of the electrode. Therefore, since the charge / discharge capacity does not decrease due to the early rise of the charge voltage, the cycle life of the battery can be improved.

実施例 〔実施例I〕 本発明の実施例を、第1図に示す偏平型比水系二次電
池に基づいて、以下に説明する。
Examples [Example I] An example of the present invention will be described below based on a flat type nonaqueous secondary battery shown in Fig. 1.

リチウム金属から成る負極2は負極集電体7の内面に
圧着されており、この負極集電体7はステンレスから成
る断面略コ字状の負極缶5の内底面に固着されている。
上記負極缶5の周端はポリプロピレン製の絶縁パッキン
グ8の内部に固定されており、絶縁パッキング8の外周
にはステンレスから成り上記負極缶5とは反対方向に断
面略コ字状を成す正極缶4が固定されている。この正極
缶4の内底面には正極集電体6が固定されており、この
正極集電体6の内面には正極1が固定されている。この
正極1と前記負極2との間にはセパレータ3が介装され
ている。
The negative electrode 2 made of lithium metal is pressed on the inner surface of a negative electrode current collector 7, and the negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section.
A peripheral end of the negative electrode can 5 is fixed inside a polypropylene insulating packing 8, and a positive electrode can made of stainless steel is formed around the outer periphery of the insulating packing 8 and has a substantially U-shaped cross section in a direction opposite to the negative electrode can 5. 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and the positive electrode 1 is fixed to the inner surface of the positive electrode current collector 6. A separator 3 is interposed between the positive electrode 1 and the negative electrode 2.

ところで、前記負極2はリチウム圧延板を所定寸法に
打抜くことにより作成し、電解液としては有機溶媒(プ
ロピレンカーボネート)に過塩素酸リチウム(LiClO4
を1M溶解させた溶液を用いた。
Incidentally, the negative electrode 2 is prepared by punching a lithium rolled plate into a predetermined size, and an organic solvent (propylene carbonate) is used as an electrolytic solution in lithium perchlorate (LiClO 4 ).
Was dissolved in 1M.

また、前記正極1は以下のようにして作製した。先ず
初めに、0.5mol/のアニリンと、電解質であるホウフ
ッ化水素酸及びP−トルエンスルホン酸とを蒸溜水に溶
解させて、電解重合に使用する電解液を調整した。この
際、ホウフッ化水素酸とP−トルエンスルホン酸との濃
度の合計は2mol/であり、且つホウフッ化水素酸とP
−トルエンスルホン酸との混合モル比率は80:20となる
ようにした。次に、上記電解液に2枚のSUS板を浸漬し
てそれぞれ陽極,陰極とし、重合電流密度1mA/cm2で電
解酸化を行って、陽極のSUS板にポリアニリンを電解重
合させた。次いで、このポリアニリン膜を所定の寸法に
打ち抜いて正極を作製した。
Further, the positive electrode 1 was produced as follows. First, 0.5 mol / aniline and borohydrofluoric acid and P-toluenesulfonic acid, which are electrolytes, were dissolved in distilled water to prepare an electrolytic solution used for electrolytic polymerization. At this time, the total concentration of borofluoric acid and P-toluenesulfonic acid was 2 mol /
-The mixture molar ratio with toluenesulfonic acid was adjusted to be 80:20. Next, two SUS plates were immersed in the above-mentioned electrolytic solution to form an anode and a cathode, respectively, and subjected to electrolytic oxidation at a polymerization current density of 1 mA / cm 2 , whereby polyaniline was electrolytically polymerized on the SUS plate of the anode. Next, this polyaniline film was punched into a predetermined size to produce a positive electrode.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.

〔実施例II〜実施例VI〕(Examples II to VI)

下記第1表に示すように、ホウフッ化水素酸とP−ト
ルエンスルホン酸とをそれぞれ90:10、80:20、60:40、3
0:70、10:90の体積比率で混合して電解液を調整する他
は上記実施例Iと同様にして電池を作製した。
As shown in Table 1 below, borofluoric acid and P-toluenesulfonic acid were mixed at 90:10, 80:20, 60:40, 3
A battery was fabricated in the same manner as in Example I, except that the electrolytes were adjusted by mixing at a volume ratio of 0:70, 10:90.

このようにして作製した電池を、以下順に(A2)電
池、(A3)電池、(A4)電池、(A5)電池、(A6)電池
と称する。
The batteries fabricated in this manner are hereinafter referred to as (A 2 ) battery, (A 3 ) battery, (A 4 ) battery, (A 5 ) battery, and (A 6 ) battery in this order.

〔比較例I〕 電解質としてホウフッ化水素酸のみを用いる他は、上
記実施例Iと同様にして電池を作製した。
Comparative Example I A battery was fabricated in the same manner as in Example I, except that only borofluoric acid was used as the electrolyte.

このようにして作製した電池を、以下(Y)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (Y) battery.

〔比較例II〕(Comparative Example II)

電解質としてP−トルエンスルホン酸のみを用いる他
は、上記実施例Iと同様にして電池を作製した。
A battery was fabricated in the same manner as in Example I, except that only P-toluenesulfonic acid was used as the electrolyte.

このようにして作製した電池を、以下(Z)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as a battery (Z).

〔実験〕[Experiment]

上記本発明の(A1)電池〜(A6)電池及び比較例の
(Y)電池,(Z)電池について0.5mAの電流で2時間
充電を行ない、また0.5mAの電流で電池電圧が2.5Vにな
るまで放電するという充放電サイクルを繰り返し行っ
た。
The batteries (A 1 ) to (A 6 ) of the present invention and the batteries (Y) and (Z) of Comparative Examples were charged at a current of 0.5 mA for 2 hours, and a battery voltage of 2.5 mA was supplied at a current of 0.5 mA. A charge / discharge cycle of discharging to V was repeatedly performed.

そして、各電池の200サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第1表
に併せて示す。
The end-of-charge voltage and charge / discharge efficiency at the 200th cycle of each battery were examined. The results are shown in Table 1 above.

第1表より明らかなように、比較例の(Y)電池、
(Z)電池では充電終止電圧が各々4.30V、4.29Vであっ
て非常に高い。これに対して、本発明の(A2)電池及び
(A6)電池では充電終止電圧が各々4.26V、4.25Vであっ
て低下していることが認められ、更に本発明の(A1)電
池及び(A3)電池〜(A5)電池では充電終止電圧が各々
3.75V、3.77V、3.77V、3.76Vであって更に低下している
ことが認められる。
As is clear from Table 1, the (Y) battery of Comparative Example,
(Z) The end-of-charge voltage of the battery is 4.30V and 4.29V, which are extremely high. In contrast, (A 2) cell and the present invention (A 6) charge voltage are each a battery 4.26V, were observed to have decreased to a 4.25 V, still of the present invention (A 1) For the battery and (A 3 ) battery to (A 5 ) battery,
It is 3.75V, 3.77V, 3.77V, 3.76V, and it is recognized that it is further reduced.

また、比較例の(Y)電池、(Z)電池では充放電効
率が各々80%、85%であり著しく低下している。これに
対して、本発明(A2)電池及び(A6)電池では充放電効
率が各々88%、90%であって向上していることが認めら
れ、更に本発明の(A1)電池及び(A3)電池〜(A5)電
池では充放電効率が全て100%であって更に向上してい
ることが認められる。
In the batteries (Y) and (Z) of the comparative examples, the charge and discharge efficiencies were 80% and 85%, respectively, which were significantly reduced. In contrast, the present invention (A 2) cell and (A 6) charge-discharge efficiency of each 88% in cells were observed to have improved as a 90%, more (A 1) cells of the present invention Also, in the batteries (A 3 ) to (A 5 ), the charging and discharging efficiencies were all 100%, indicating that the batteries were further improved.

これらのことから、本発明の(A1)電池〜(A6)電池
は比較例の(Y)電池及び(Z)電池と比べて性能が向
上したことが伺える。
From these facts, it can be seen that the batteries (A 1 ) to (A 6 ) of the present invention have improved performance as compared with the batteries (Y) and (Z) of the comparative examples.

特に(A1)電池及び(A3)電池〜(A5)電池は飛躍的
に性能が向上していることが伺える。したがって、電解
質であるホウフッ化水素酸とP−トルエンスルホン酸と
の混合体積比率は80:20〜30:70の範囲であることが望ま
しい。
In particular, it can be seen that the performance of the (A 1 ) battery and the (A 3 ) battery to (A 5 ) battery has been dramatically improved. Therefore, it is desirable that the mixing volume ratio of borofluoric acid and P-toluenesulfonic acid as the electrolyte is in the range of 80:20 to 30:70.

このように本発明の(A1)電池〜(A6)電池が比較例
(Y)電池及び(Z)電池と比べて特性が良好であるの
は、以下に示す理由によるものと考えられる。
The reason why the batteries (A 1 ) to (A 6 ) of the present invention have better characteristics than the batteries of the comparative examples (Y) and (Z) is considered to be as follows.

即ち、(A1)電池〜(A6)電池の如く電解重合時の重
合浴中の電解質としてホウフッ化水素酸とP−トルエン
スルホン酸とを混合したものを用いれば、(Y)電池及
び(Z)電池の如く電解質としてホウフッ化水素酸或い
はP−トルエンスルホン酸単独のものを用いた場合と比
べてポリアニリン膜の膜強度が向上すると共に、膜の均
一性も向上する。したがって、充放電サイクル中に電極
がくずれたり、反応が電極の一部に集中することがな
い。このため、充電電圧が早期に上昇することによる充
放電容量の低下が生じないという理由によるものと考え
られる。
That, (A 1) By using a mixture of a fluoroboric acid and P- toluenesulfonic acid as a battery ~ (A 6) electrolyte polymerization bath during electrolytic polymerization as batteries, (Y) cells and ( Z) The film strength of the polyaniline film is improved and the uniformity of the film is improved as compared with the case where borofluoric acid or P-toluenesulfonic acid alone is used as the electrolyte as in a battery. Therefore, the electrode does not collapse or the reaction does not concentrate on a part of the electrode during the charge / discharge cycle. For this reason, it is considered that the reason is that the charge / discharge capacity does not decrease due to the charge voltage rising early.

尚、上記実施例においては導電性ポリマーから成る電
極を正極のみに用いているが、負極のみ或いは正極・負
極の両極に用いた場合であっても、上記と同様の効果が
得られる。
In the above embodiment, the electrode made of a conductive polymer is used only for the positive electrode. However, the same effects as described above can be obtained even when the electrode is used only for the negative electrode or for both the positive electrode and the negative electrode.

また、上記実施例においては負極にリチウム金属を用
いたが、アルミニウム,ビスマス,鉛,錫,カドミウ
ム,インジウム,亜鉛より成る群から選ばれる少なくと
も1つとリチウムとの合金、マンガン,クロム,鉄,珪
素,銅,ジルコニウム,タングステン,モリブデンより
成る群より選ばれる少なくとも1種の金属を含むリチウ
ム−アルミニウム合金或いは導電性ポリマーを用いた場
合も同様の効果を奏することは勿論である。
In the above embodiment, lithium metal was used for the negative electrode. However, an alloy of lithium and at least one selected from the group consisting of aluminum, bismuth, lead, tin, cadmium, indium and zinc, manganese, chromium, iron and silicon Of course, the same effect can be obtained when a lithium-aluminum alloy or a conductive polymer containing at least one metal selected from the group consisting of copper, zirconium, tungsten and molybdenum is used.

更に、電解液の電解質としては過塩素酸リチウムに限
定するものではなく、ホウフッ化リチウム(LiBF4)、
6フッ化リン酸リチウム(LiPF6)、6フッ化ヒ酸リチ
ウム(LiAsF6)、4塩化アルミニウムリチウム(LiAlCl
4)等であってもよい。
Further, the electrolyte of the electrolytic solution is not limited to lithium perchlorate, but lithium borofluoride (LiBF 4 ),
Lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium aluminum tetrachloride (LiAlCl
4 ) etc.

加えて、上記電解質を溶解させる有機溶媒としてはプ
ロピレンカーボネートに限定するものではなく、スルホ
ラン、メチル置換スルホラン、テトラヒドロフラン、メ
チル置換テトラヒドロフラン、1,3−ジオキソラン、エ
チレンカーボネート、1,2−ブチレンカーボネート、2,3
−ブチレンカーボネート、1,2−ペンテンカーボネー
ト、2,3−ペンテンカーボネート、ジメチルスルホキシ
ド、1,1−ジメトキシエタン、1,2−ジメトキシエタン等
を単独で用いるか、或いはこれらを混合した混合溶媒を
用いてもよいことは勿論である。
In addition, the organic solvent for dissolving the electrolyte is not limited to propylene carbonate, but is sulfolane, methyl-substituted sulfolane, tetrahydrofuran, methyl-substituted tetrahydrofuran, 1,3-dioxolan, ethylene carbonate, 1,2-butylene carbonate, 2 , 3
-Butylene carbonate, 1,2-pentene carbonate, 2,3-pentene carbonate, dimethyl sulfoxide, 1,1-dimethoxyethane, 1,2-dimethoxyethane, etc. are used alone, or a mixed solvent thereof is used. Of course, it may be possible.

発明の効果 以上説明したように本発明によれば、ポリアニリン膜
の膜強度を向上させることができると共に、膜の均一性
が向上する。したがって、充放電サイクル中にポリアニ
リン膜を用いた電極がくずれたり、反応が電極の一部に
集中することがなく、充電電圧が早期に上昇して充放電
容量の低下を招くこともない。この結果、電池のサイク
ル寿命を著しく向上させることができ、二次電池の性能
を飛躍的に向上させることができる。
Effects of the Invention As described above, according to the present invention, the film strength of a polyaniline film can be improved, and the uniformity of the film can be improved. Therefore, the electrode using the polyaniline film does not collapse during the charge / discharge cycle, the reaction does not concentrate on a part of the electrode, and the charge voltage does not increase quickly and the charge / discharge capacity does not decrease. As a result, the cycle life of the battery can be significantly improved, and the performance of the secondary battery can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の電池の構造を示す断面図である。 1……正極、2……負極、3……セパレータ。 FIG. 1 is a sectional view showing the structure of the battery of the present invention. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、負極と、電解液とを備えた二次電
池において、 少なくとも一方の電極に、アニリンの電解重合時におけ
る重合浴中の電解質として、ホウフッ化水素酸とP−ト
ルエンスルホン酸との混合電解質を用いて合成したポリ
アニリン膜を用いることを特徴とする二次電池。
1. A secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein at least one electrode has borofluoric acid and P-toluene sulfone as electrolytes in a polymerization bath at the time of electrolytic polymerization of aniline. A secondary battery using a polyaniline film synthesized using a mixed electrolyte with an acid.
【請求項2】前記混合電解質は、 ホウフッ化水素酸とP−トルエンスルホン酸との合計モ
ル数に対するP−トルエンスルホン酸のモル数が、20%
〜70%であることを特徴とする請求項1記載の二次電
池。
2. The mixed electrolyte according to claim 1, wherein the mole number of P-toluenesulfonic acid is 20% based on the total mole number of hydrofluoric acid and P-toluenesulfonic acid.
The rechargeable battery according to claim 1, wherein the rechargeable battery is approximately 70%.
JP63253365A 1988-10-06 1988-10-06 Rechargeable battery Expired - Fee Related JP2632021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253365A JP2632021B2 (en) 1988-10-06 1988-10-06 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253365A JP2632021B2 (en) 1988-10-06 1988-10-06 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH02100265A JPH02100265A (en) 1990-04-12
JP2632021B2 true JP2632021B2 (en) 1997-07-16

Family

ID=17250335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253365A Expired - Fee Related JP2632021B2 (en) 1988-10-06 1988-10-06 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2632021B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438142C (en) * 2001-09-26 2008-11-26 三星Sdi株式会社 Electrode material, method for preparing electrode material, electrode and battery comprising said electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212073A (en) * 1985-07-10 1987-01-21 Showa Denko Kk Secondary battery
JPS6355861A (en) * 1986-08-26 1988-03-10 Showa Denko Kk Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212073A (en) * 1985-07-10 1987-01-21 Showa Denko Kk Secondary battery
JPS6355861A (en) * 1986-08-26 1988-03-10 Showa Denko Kk Secondary battery

Also Published As

Publication number Publication date
JPH02100265A (en) 1990-04-12

Similar Documents

Publication Publication Date Title
JP3416016B2 (en) Ion conductor for lithium secondary battery and lithium secondary battery using the same
Matsunaga et al. Development of polyaniline–lithium secondary battery
US7416813B2 (en) Lithium secondary battery
JP5217076B2 (en) Lithium ion battery
US6723473B1 (en) Nonaqueous electrolyte secondary cell
US6855457B2 (en) Nonaqueous electrolyte secondary battery with a molten salt electrolyte
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP3079382B2 (en) Non-aqueous secondary battery
US4840858A (en) Secondary cell
JP2632021B2 (en) Rechargeable battery
US20190386308A1 (en) Electrode and secondary battery using radical polymer
JP2000299127A (en) Nonaqueous electrolyte and secondary battery using it
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2965674B2 (en) Lithium secondary battery
JP2680631B2 (en) Rechargeable battery
JP2765974B2 (en) Rechargeable battery
JP2765994B2 (en) Rechargeable battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JP2692956B2 (en) Rechargeable battery
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
US20040248004A1 (en) Secondary battery
JP2528693B2 (en) Polymer battery
JP3443290B2 (en) Non-aqueous electrolyte battery
JP2886331B2 (en) Lithium secondary battery
JP2003086241A (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees