JP2692956B2 - Rechargeable battery - Google Patents

Rechargeable battery

Info

Publication number
JP2692956B2
JP2692956B2 JP1146251A JP14625189A JP2692956B2 JP 2692956 B2 JP2692956 B2 JP 2692956B2 JP 1146251 A JP1146251 A JP 1146251A JP 14625189 A JP14625189 A JP 14625189A JP 2692956 B2 JP2692956 B2 JP 2692956B2
Authority
JP
Japan
Prior art keywords
battery
charge
batteries
solvent
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1146251A
Other languages
Japanese (ja)
Other versions
JPH0311563A (en
Inventor
修弘 古川
晃治 西尾
宣之 好永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1146251A priority Critical patent/JP2692956B2/en
Publication of JPH0311563A publication Critical patent/JPH0311563A/en
Application granted granted Critical
Publication of JP2692956B2 publication Critical patent/JP2692956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正極と、負極と、電解液とを備え、導電性
ポリマーを上記正極のみ、或いは正,負両極に用いた二
次電池に関するものである。
TECHNICAL FIELD The present invention relates to a secondary battery including a positive electrode, a negative electrode, and an electrolytic solution, and using a conductive polymer only in the positive electrode or in both positive and negative electrodes. is there.

従来の技術 近年、例えば特開昭56-136469号公報にみられるよう
に、導電性ポリマーを電極に用いた二次電池が提案され
ている。
2. Description of the Related Art In recent years, as seen in, for example, JP-A-56-136469, a secondary battery using a conductive polymer for an electrode has been proposed.

この種の二次電池の電極に使用される導電性ポリマー
は、通常は導電性がわずかであるが、各種のドーパント
をドーピング、アンドーピングすることが可能であり、
ドーピングにより導電性が飛躍的に上昇する。そして、
ClO4 -やBF4 -などのアニオンをドーピングした導電性ポ
リマーは正極材料として、またLi+やNa+などのカチオン
をドーピングした導電性ポリマーは負極材料として各々
使用され、ドーピング及びアンドーピングを電気化学的
に可逆的に行なうことによって充放電可能な電池が構成
される。
The conductive polymer used for the electrode of this type of secondary battery is usually slightly conductive, but can be doped with various dopants and undoped.
Doping significantly increases conductivity. And
ClO 4 - or BF 4 - anion doped conductive polymer, such as a positive electrode material and a conductive polymer doped with cations such as Li + and Na + are respectively used as a negative electrode material, an electrical doping and undoping A battery that can be charged and discharged is constructed by performing the chemical reversible operation.

このような導電性ポリマーは一般的に酸化剤による化
学的重合あるいは電解重合などによって作られ、例えば
ポリアセチレン、ポリピロール、ポリチオフェン、ポリ
アニリン、ポリパラフェニレン等が従来から知られてい
る。そして、このポリマーが粉状で得られる場合は電極
形状に応じた形状に加圧成形して、またフィルム状の場
合はそのまま電極寸法に打ち抜いたり、或いは粉砕して
粉状とする等して使用されている。これらの導電性ポリ
マーを使用した電池は、軽量で高エネルギー密度である
ばかりか無公害であるといった特長のある電池として期
待されている。とりわけ、上記ポリピロールやポリアニ
リンは特性が良好で、これらを用いた二次電池は実用化
電池として有望視されている。
Such a conductive polymer is generally produced by chemical polymerization or electrolytic polymerization using an oxidizing agent, and for example, polyacetylene, polypyrrole, polythiophene, polyaniline, polyparaphenylene and the like are conventionally known. When the polymer is obtained in powder form, it is pressed and molded into a shape corresponding to the electrode shape, and when it is in the form of a film, it is used as it is by punching it into the electrode dimensions or pulverizing it into a powder form. Have been. Batteries using these conductive polymers are expected as batteries having features such as light weight, high energy density and no pollution. In particular, the above-mentioned polypyrrole and polyaniline have good properties, and secondary batteries using these are considered promising as batteries for practical use.

ところで、この種の二次電池の電解液としては通常、
リチウム電池等の既存の非水電池に使用されているのと
同様なプロピレンカーボネートなどの非プロトン系の有
機溶媒に、過塩素酸リチウムやホウフッ化リチウムの如
きリチウム塩などのアルカリ金属塩を溶解したものが用
いられている。
By the way, as an electrolytic solution of this type of secondary battery, usually,
Alkali metal salts such as lithium salts such as lithium perchlorate and lithium borofluoride were dissolved in aprotic organic solvents such as propylene carbonate similar to those used in existing nonaqueous batteries such as lithium batteries. Things are used.

発明が解決しようとする課題 しかしながら、これら導電性ポリマーを電極に使用し
た二次電池は一般に既存の非水電池などに較べてその電
極電位がかなり高い。したがって、上記従来の電解液を
用いて電池を構成し、これを充放電した場合には、充電
進行と共に電池電圧が高くなりすぎてしまう結果、電解
液やドーパント、更には導電性ポリマーが分解する等の
副反応が起こり、充放電効率の低下や保存特性の劣化を
招くという課題がある。この傾向は特に充放電容量が大
きい場合には顕著となり、サイクル経過に伴う放電効率
の低下の度合いが大きく、それ故サイクル寿命が短くな
るという課題もある。
Problems to be Solved by the Invention However, secondary batteries using these conductive polymers for electrodes generally have considerably higher electrode potentials than existing non-aqueous batteries and the like. Therefore, when a battery is formed using the above-mentioned conventional electrolytic solution, and when the battery is charged and discharged, the battery voltage becomes too high with the progress of charging, so that the electrolytic solution, the dopant, and the conductive polymer are decomposed. However, there is a problem that a side reaction such as the above occurs, which causes a decrease in charge / discharge efficiency and a deterioration in storage characteristics. This tendency becomes remarkable especially when the charge / discharge capacity is large, and there is a problem that the degree of decrease in discharge efficiency with the progress of cycles is large and therefore the cycle life is shortened.

本発明は従来のこのような課題を解決して、充放電効
率が低下したり、保存特性が劣化することを防止して、
二次電池のサイクル特性を飛躍的に向上させ、これによ
って、高信頼性且つ高性能の二次電池の提供を目的とす
るものである。
The present invention solves such a conventional problem and reduces the charge / discharge efficiency or prevents the storage characteristics from deteriorating.
It is an object of the present invention to dramatically improve the cycle characteristics of a secondary battery, thereby providing a highly reliable and high-performance secondary battery.

課題を解決するための手段 本発明の二次電池は上記課題を解決するために、正極
と、負極と、電解液とを備え導電性ポリマーを前記正極
のみ、或は正負両極に用いた二次電池において、前記電
解液の溶媒が下記の一般式(1)で表されるスルホラン
系化合物と、ジメトキシメタン、ジエトキシエタン、ブ
トキシプロポキシメタンおよびエトキシメトキシエタン
の中から選ばれた少なくとも一種以上の直鎖ジエーテル
系化合物との混合溶媒からなることを特徴とする二次電
池である。
Means for Solving the Problems In order to solve the above problems, the secondary battery of the present invention is a secondary battery using a conductive polymer including a positive electrode, a negative electrode, and an electrolytic solution only for the positive electrode or for both positive and negative electrodes. In the battery, the solvent of the electrolytic solution is a sulfolane compound represented by the following general formula (1) and at least one or more direct solvents selected from dimethoxymethane, diethoxyethane, butoxypropoxymethane and ethoxymethoxyethane. A secondary battery comprising a mixed solvent with a chain diether compound.

作用 一般に、導電性ポリマーを電極に用いた二次電池で
は、ドーパントとして用いられるアニオンはアンドーピ
ング状態ではこれらが溶解している溶媒と溶媒和して存
在する一方、ドーピング反応が生じるときにはこの溶媒
和が外れてアニオン自体が導電性ポリマー中にドーピン
グされる。この際、溶媒和の外れ易さ及びドーピングの
し易さはアニオンが溶媒和している溶媒とドーピングさ
れる導電性ポリマーとの相互作用により大きく影響され
る。
In general, in a secondary battery using a conductive polymer as an electrode, anions used as dopants are present in the undoped state in a solvated state with the solvent in which they are dissolved. Is removed and the anion itself is doped into the conductive polymer. At this time, the ease of solvation and doping is greatly affected by the interaction between the solvent in which the anion is solvated and the conductive polymer to be doped.

しかるに、上記構成の如く電解液の溶媒が上記一般式
で示す直鎖ジエーテル系合物とスルホラン系化合物との
混合溶媒から構成されていれば、アニオンと直鎖ジエー
テル系合物との溶媒和が、直鎖ジエーテル系合物と導電
性ポリマーとの相互作用により外れ易くなって、導電性
ポリマー中へアニオンがドーピングし易くなる。これに
より、充電時における電圧の上昇を低く押さえることが
できるので、電池缶や集電体の腐食を防止することがで
きると共に、電解液やドーパント或いは導電性ポリマー
の分解等が抑制される。加えて、上記混合溶媒を電解液
の溶媒として用いれば、従来のプロピレンカーボネート
のみを溶媒とする電解液と比べて、電導度が高くなると
共に、粘度が低くなる。これらのことから、電池の充放
電特性やサイクル特性を向上させることができる。ここ
で、電解液の溶媒の直鎖ジエーテル系化合物とスルホラ
ン系化合物との混合比を、10:90〜90:10に規定すること
により、充電終止電圧を低下する効果および充放電サイ
クル特性を向上する効果は顕著なものとなる。
However, if the solvent of the electrolytic solution is composed of a mixed solvent of a linear diether compound and a sulfolane compound represented by the above general formula as in the above constitution, the solvation of the anion and the linear diether compound is By the interaction between the linear diether compound and the conductive polymer, the linear polymer easily comes off and the conductive polymer is easily doped with anions. As a result, the voltage increase during charging can be suppressed to a low level, so that corrosion of the battery can and the current collector can be prevented, and decomposition of the electrolytic solution, the dopant, or the conductive polymer can be suppressed. In addition, when the above mixed solvent is used as the solvent of the electrolytic solution, the electric conductivity is higher and the viscosity is lower than that of the conventional electrolytic solution containing only propylene carbonate as the solvent. For these reasons, the charge / discharge characteristics and cycle characteristics of the battery can be improved. Here, by defining the mixing ratio of the linear diether compound and the sulfolane compound of the solvent of the electrolytic solution to 10:90 to 90:10, the effect of lowering the charge end voltage and the charge / discharge cycle characteristics are improved. The effect of doing this becomes remarkable.

第1実施例 〔実施例I〕 本発明の第1実施例を、第1図に示す偏平型非水系二
次電池に基づいて、以下に説明する。
First Example [Example I] A first example of the present invention will be described below based on a flat nonaqueous secondary battery shown in FIG.

リチウム金属から成る負極2は負極集電体7の内面に
圧着されており、この負極集電体7はステンレスから成
る断面略コ字状の負極缶5の内底面に固着されている。
上記負極缶5の周端はポリプロピレン製の絶縁パッキン
グ8の内部に固定されており、絶縁パッキング8の外周
にはステンレスから成り上記負極缶5とは反対方向に断
面略コ字状を成す正極缶4が固定されている。この正極
缶4の内底面には正極集電体6が固定されており、この
正極集電体6の内面には正極1が固定さている。この正
極1と前記負極2との間にはセパレータ3が介装されて
いる。
The negative electrode 2 made of lithium metal is pressed on the inner surface of a negative electrode current collector 7, and the negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section.
A peripheral end of the negative electrode can 5 is fixed inside a polypropylene insulating packing 8, and a positive electrode can made of stainless steel is formed around the outer periphery of the insulating packing 8 and has a substantially U-shaped cross section in a direction opposite to the negative electrode can 5. 4 is fixed. The positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and the positive electrode 1 is fixed to the inner surface of the positive electrode current collector 6. A separator 3 is interposed between the positive electrode 1 and the negative electrode 2.

ところで、前記正極1は電解重合によって合成したポ
リアニリン粉末を円板状に加圧成形することにより作成
し、前記負極2はリチウム圧延板を所定寸法に打抜くこ
とにより作成した。また、電解液としては、有機溶媒に
ホウフッ化リチウム(LiBF4)を1M溶解させた溶液を用
い、上記有機溶媒としてはジメトキシメタン(CH3OCH2O
CH3)と下記式に示すスルホランとを50:50の体積比率で
混合したものを用いた。
By the way, the positive electrode 1 was made by pressing a polyaniline powder synthesized by electrolytic polymerization into a disc shape, and the negative electrode 2 was made by stamping a rolled lithium plate into a predetermined size. As the electrolytic solution, a solution of lithium borofluoride (LiBF 4 ) dissolved in 1M in an organic solvent was used, and as the organic solvent, dimethoxymethane (CH 3 OCH 2 O) was used.
CH 3 ) and sulfolane represented by the following formula were mixed in a volume ratio of 50:50.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.

〔実施例II〜実施例VI〕 下記第1表に示すように、有機溶媒としてジメトキシ
メタンとスルホランとをそれぞれ95:5、90:10、70:30、
10:90、5:95の体積比率で混合する他は上記実施例Iと
同様にして電池を作製した。
[Examples II to VI] As shown in Table 1 below, dimethoxymethane and sulfolane were used as organic solvents at 95: 5, 90:10, and 70:30, respectively.
A battery was made in the same manner as in Example I except that the mixing was performed at a volume ratio of 10:90 and 5:95.

このようにして作製した電池を、以下順に(A2)電
池、(A3)電池、(A4)電池、(A5)電池、(A6)電池
と称する。
The batteries fabricated in this manner are hereinafter referred to as (A 2 ) battery, (A 3 ) battery, (A 4 ) battery, (A 5 ) battery, and (A 6 ) battery in this order.

〔比較例I〕 有機溶媒としてγ−ブチロラクトンとプロピレンカー
ボネートとを50:50の割合で混合した混合溶媒を用いた
以外は、上記実施例Iと同様にして電池を作製した。
Comparative Example I A battery was fabricated in the same manner as in Example I, except that a mixed solvent of γ-butyrolactone and propylene carbonate in a ratio of 50:50 was used as the organic solvent.

このようにして作製した電池を、以下(Y)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (Y) battery.

〔比較例II〕(Comparative Example II)

有機溶媒としてプロピレンカーボネートを用いた以外
は、上記実施例Iと同様にして電池を作製した。
A battery was fabricated in the same manner as in Example I, except that propylene carbonate was used as the organic solvent.

このようにして作製した電池を、以下(Z)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as a battery (Z).

〔実験〕[Experiment]

上記本発明の(A1)電池〜(A6)電池及び比較例の
(Y)電池,(Z)電池について、1mAの電流で10時間
充電を行ない、また1mAの電流で電池電圧が2.5Vになる
まで放電するという充放電サイクルを繰り返し行った。
The (A 1 ) battery to (A 6 ) battery of the present invention and the (Y) battery and (Z) battery of the comparative example were charged at a current of 1 mA for 10 hours, and the battery voltage was 2.5 V at a current of 1 mA. The charging / discharging cycle of discharging until it reached to was repeated.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第1表
に併せて示す。
Then, the end-of-charge voltage and the charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 1 above.

第1表より明らかなように、比較例の(Y)電池、
(Z)電池では充電終止電圧が各々4.55V、4.60Vであっ
て非常に高い。これに対して、本発明の(A2)電池及び
(A6)電池では充電終止電圧が各々4.40V、4.39Vであっ
て低下していることが認められ、更に本発明の(A1)電
池及び(A3)電池〜(A5)電池では充電終止電圧が各々
3.78V、3.77V、3.76V、3.77Vであって更に低下している
ことが認められる。
As is clear from Table 1, the (Y) battery of Comparative Example,
(Z) The end-of-charge voltage of the battery is 4.55V and 4.60V, which are extremely high. On the other hand, in the (A 2 ) battery and the (A 6 ) battery of the present invention, it was observed that the end-of-charge voltages were 4.40 V and 4.39 V, respectively, and it was confirmed that the (A 1 ) of the present invention further decreased. Batteries and (A 3 ) to (A 5 ) batteries have different end-of-charge voltages.
3.78V, 3.77V, 3.76V, 3.77V, which are further decreased.

また、比較例の(Y)電池、(Z)電池では充放電効
率が各々75%、65%であり著しく低下している。これに
対して、本発明(A2)電池及び(A6)電池では充放電効
率が各々80%、77%であって向上していることが認めら
れ、更に本発明の(A1)電池及び(A3)電池〜(A5)電
池では充放電効率が全て100%であって更に向上してい
ることが認められる。
In addition, in the batteries (Y) and (Z) of the comparative examples, the charging and discharging efficiencies were 75% and 65%, respectively, which were significantly reduced. In contrast, the present invention (A 2) cell and (A 6) charge-discharge efficiency of each 80% by battery, it is recognized that improved a 77%, further (A 1) cells of the present invention It is recognized that the charge and discharge efficiencies of all the batteries (A 3 ) to (A 5 ) are 100%, which is further improved.

これらのことから、本発明の(A1)電池〜(A6)電池
は比較例の(Y)電池及び(Z)電池と比べて性能が向
上したことが伺える。
From these facts, it can be seen that the batteries (A 1 ) to (A 6 ) of the present invention have improved performance as compared with the batteries (Y) and (Z) of the comparative examples.

特に(A1)電池及び(A3)電池〜(A5)電池は飛躍的
に性能が向上していることが伺える。したがって、有機
溶媒であるジメトキシメタンとスルホランとの混合体積
比率は90:10〜10:90の範囲であることが望ましい。
In particular, it can be seen that the performance of the (A 1 ) battery and the (A 3 ) battery to (A 5 ) battery has been dramatically improved. Therefore, the mixing volume ratio of the organic solvent dimethoxymethane and sulfolane is preferably in the range of 90:10 to 10:90.

第2実施例 〔実施例I〕 有機溶媒としてジエトキシエタン〔C2H5O(CH2)2OC
2H5〕とスルホランとを50:50の体積比率で混合した溶媒
を用いる他は前記第1実施例の実施例Iと同様にして電
池を作製した。
Second Example [Example I] Diethoxyethane [C 2 H 5 O (CH 2 ) 2 OC as an organic solvent]
[2 H 5 ] and sulfolane were mixed in a volume ratio of 50:50 to prepare a battery in the same manner as in Example I of the first example except that a solvent was used.

このようにして作製した電池を、以下(B1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (B 1 ) battery.

〔実施例II〜実施例VI〕(Examples II to VI)

下記第2表に示すように、有機溶媒としてジエトキシ
エタンとスルホランとをそれぞれ95:5、90:10、70:30、
10:90、5:95の体積比率で混合した溶媒を用いる他は上
記実施例Iと同様にして電池を作製した。
As shown in Table 2 below, diethoxyethane and sulfolane were used as an organic solvent at 95: 5, 90:10, and 70:30, respectively.
A battery was made in the same manner as in Example I except that the solvent mixed in the volume ratio of 10:90 and 5:95 was used.

このようにして作製した電池を、以下順に(B2)電
池、(B3)電池、(B4)電池、(B5)電池、(B6)電池
と称する。
The batteries produced in this manner are hereinafter referred to as (B 2 ) battery, (B 3 ) battery, (B 4 ) battery, (B 5 ) battery, and (B 6 ) battery.

〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。
Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.

〔実験〕 上記本発明の(B1)電池〜(B6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。
[Experiment] With respect to the (B 1 ) battery to (B 6 ) battery of the present invention and the (Y) battery and (Z) battery of the comparative example, a charge / discharge cycle was repeated under the same conditions as in the experiment of the first embodiment. went.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第2表
に併せて示す。
Then, the end-of-charge voltage and charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 2 above.

第2表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(B2)電池及び(B6)電池
では充電終止電圧が各々4.38V、4.40Vであって低下して
いることが認められ、更に本発明の(B1)電池及び
(B3)電池〜(B5)電池では充電終止電圧が各々3.75
V、3.76V、3.77V、3.78Vであって更に低下していること
が認められる。
As is clear from Table 2, the (Y) battery of Comparative Example,
(Z) In the battery, the end-of-charge voltage is very high as described above. On the other hand, in the (B 2 ) battery and the (B 6 ) battery of the present invention, it was observed that the end-of-charge voltages were 4.38V and 4.40V, respectively, and it was confirmed that the (B 1 ) For batteries and (B 3 ) to (B 5 ) batteries, the end-of-charge voltage is 3.75 each.
V, 3.76V, 3.77V, 3.78V, which are further reduced.

また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(B2)電池及び(B6)電池では充放電効率が
各々81%、79%であって向上していることが認められ、
更に本発明の(B1)電池及び(B3)電池〜(B5)電池で
は充放電効率が全て100%であって更に向上しているこ
とが認められる。
Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, the charge and discharge efficiencies of the batteries (B 2 ) and (B 6 ) according to the present invention were 81% and 79%, respectively, which were improved,
Further, in the (B 1 ) battery and the (B 3 ) battery to the (B 5 ) battery of the present invention, it is recognized that the charge / discharge efficiency is 100%, which is further improved.

これらのことから、本発明の(B1)電池〜(B6)電池
は比較例の(Y)電池及び(Z)電池と比べて性能が向
上したことが伺える。
From these, it can be seen that the (B 1 ) battery to (B 6 ) battery of the present invention have improved performance as compared with the (Y) battery and the (Z) battery of Comparative Examples.

特に(B1)電池及び(B3)電池〜(B5)電池は飛躍的に
性能が向上していることが伺える。したがって、有機溶
媒であるジエトキシエタンとスルホランとの混合体積比
率は90:10〜10:90の範囲であることが望ましい。
In particular, it can be seen that the performance of the (B 1 ) battery and (B 3 ) battery to (B 5 ) battery has improved dramatically. Therefore, the mixing volume ratio of the organic solvent diethoxyethane and sulfolane is preferably in the range of 90:10 to 10:90.

第3実施例 〔実施例I〕 有機溶媒としてブトキシプロポキシメタン〔C4H9OCH2
OC3H7〕とスルホランとを50:50の体積比率で混合した溶
媒を用いる他は前記第1実施例の実施例Iと同様にして
電池を作製した。
Third Example [Example I] Butoxypropoxymethane [C 4 H 9 OCH 2 as an organic solvent]
OC 3 H 7 ] and sulfolane were mixed in a volume ratio of 50:50 to prepare a battery in the same manner as in Example I of the first example except that a solvent was used.

このようにして作製した電池を、以下(C1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as a (C 1 ) battery.

〔実施例II〜実施例VI〕(Examples II to VI)

下記第3表に示すように、有機溶媒としてブトキシプ
ロポキシメタンとスルホランとをそれぞれ95:5、90:1
0、70:30、10:90、5:95の体積比率で混合した溶媒を用
いる他は上記実施例Iと同様にして電池を作製した。
As shown in Table 3 below, butoxypropoxymethane and sulfolane were used as organic solvents at 95: 5 and 90: 1, respectively.
A battery was produced in the same manner as in Example I except that a solvent mixed in a volume ratio of 0, 70:30, 10:90, and 5:95 was used.

このようにして作製した電池を、以下順に(C2)電
池、(C3)電池、(C4)電池、(C5)電池、(C6)電池
と称する。
The batteries thus manufactured are hereinafter referred to as (C 2 ) battery, (C 3 ) battery, (C 4 ) battery, (C 5 ) battery, and (C 6 ) battery.

〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。
Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.

〔実験〕[Experiment]

上記本発明の(C1)電池〜(C6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。
With respect to the (C 1 ) battery to the (C 6 ) battery of the present invention and the (Y) battery and (Z) battery of the comparative example, a charge / discharge cycle was repeated under the same conditions as the experiment of the first embodiment.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第3表
に併せて示す。
Then, the end-of-charge voltage and charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 3 above.

第3表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(C2)電池及び(C6)電池
では充電終止電圧が各々4.42V、4.43Vであって低下して
いることが認められ、更に本発明の(C1)電池及び
(C3)電池〜(C5)電池では充電終止電圧が各々3.79
V、3.78V、3.78V、3.79Vであって更に低下していること
が認められる。
As is clear from Table 3, the (Y) battery of the comparative example,
(Z) In the battery, the end-of-charge voltage is very high as described above. On the other hand, in the (C 2 ) battery and the (C 6 ) battery of the present invention, it was observed that the end-of-charge voltages were 4.42 V and 4.43 V, respectively, and it was confirmed that the (C 1 ) For batteries and (C 3 ) to (C 5 ) batteries, the end-of-charge voltage is 3.79 each.
V, 3.78V, 3.78V, and 3.79V, which are further reduced.

また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(C2)電池及び(C6)電池では充放電効率が
各々78%、76%であって向上していることが認められ、
更に本発明の(C1)電池及び(C3)電池〜(C5)電池で
は充放電効率が全て100%であって更に向上しているこ
とが認められる。
Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, in the present invention (C 2 ) battery and (C 6 ) battery, it was observed that the charge and discharge efficiencies were 78% and 76%, respectively.
Further, in the (C 1 ) battery and the (C 3 ) battery to the (C 5 ) battery of the present invention, it is recognized that the charge / discharge efficiency is 100% and further improved.

これらのことから、本発明の(C1)電池〜(C6)電池
は比較例の(Y)電池及び(Z)電池と比べて性能が向
上したことが伺える。
From these, it can be seen that the (C 1 ) battery to the (C 6 ) battery of the present invention have improved performance as compared with the (Y) battery and the (Z) battery of Comparative Examples.

特に(C1)電池及び(C3)電池〜(C5)電池は飛躍的
に性能が向上していることが伺える。したがって、有機
溶媒であるブトキシプロポキシメタンとスルホランとの
混合体積比率は90:10〜10:90の範囲であることが望まし
い。
In particular, it can be seen that the performance of the (C 1 ) battery and (C 3 ) battery to (C 5 ) battery has improved dramatically. Therefore, the mixing volume ratio of butoxypropoxymethane, which is an organic solvent, and sulfolane is preferably in the range of 90:10 to 10:90.

第4実施例 〔実施例I〕 有機溶媒としてエトキシメトキシエタン〔C2H5O(CH2)
2OCH3〕とスルホランとを50:50の体積比率で混合した溶
媒を用いる他は前記第1実施例の実施例Iと同様にして
電池を作製した。
Fourth Example [Example I] Ethoxymethoxyethane [C 2 H 5 O (CH 2 )] as an organic solvent
2 OCH 3 ] and sulfolane were mixed in a volume ratio of 50:50 to prepare a battery in the same manner as in Example I of the first example except that a solvent was used.

このようにして作製した電池を、以下(D1)電池と称
する。
The battery thus manufactured is hereinafter referred to as a (D 1 ) battery.

〔実施例II〜実施例VI〕(Examples II to VI)

下記第4表に示すように、有機溶媒としてエトキシメ
トキシエタンとスルホランとをそれぞれ95:5、90:10、7
0:30、10:90、5:95の体積比率で混合した溶媒を用いる
他は上記実施例Iと同様にして電池を作製した。
As shown in Table 4 below, ethoxymethoxyethane and sulfolane were used as organic solvents at 95: 5, 90:10, and 7 respectively.
A battery was prepared in the same manner as in Example I except that the solvent mixed in the volume ratio of 0:30, 10:90 and 5:95 was used.

このようにして作製した電池を、以下順に(D2)電
池、(D3)電池、(D4)電池、(D5)電池、(D6)電池
と称する。
The batteries produced in this manner are hereinafter referred to as (D 2 ) battery, (D 3 ) battery, (D 4 ) battery, (D 5 ) battery, and (D 6 ) battery.

〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。
Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.

〔実験〕[Experiment]

上記本発明の(D1)電池〜(D6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。
The above (D 1 ) battery to (D 6 ) battery of the present invention and the (Y) battery and (Z) battery of the comparative example were repeatedly charged and discharged under the same conditions as in the experiment of the first embodiment.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第4表
に併せて示す。
Then, the end-of-charge voltage and charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 4 above.

第4表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(D2)電池及び(D6)電池
では充電終止電圧が各々4.37V、4.39Vであって低下して
いることが認められ、更に本発明の(D1)電池及び
(D3)電池〜(D5)電池では充電終止電圧が各々3.77
V、3.77V、3.76V、3.78Vであって更に低下していること
が認められる。
As is clear from Table 4, the (Y) battery of Comparative Example,
(Z) In the battery, the end-of-charge voltage is very high as described above. On the other hand, in the (D 2 ) battery and the (D 6 ) battery of the present invention, it was observed that the end-of-charge voltage was 4.37V and 4.39V, respectively, and it was confirmed that the (D 1 ) of the present invention was lowered. Batteries and (D 3 ) to (D 5 ) batteries each have an end-of-charge voltage of 3.77.
V, 3.77V, 3.76V, 3.78V, which are further reduced.

また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(D2)電池及び(D6)電池では充放電効率が
各々82%、80%であって向上していることが認められ、
更に本発明の(D1)電池及び(D3)電池〜(D5)電池で
は充放電効率が全て100%であって更に向上しているこ
とが認められる。
Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, the charge and discharge efficiencies of the battery (D 2 ) and the battery (D 6 ) of the present invention were 82% and 80%, respectively, which were improved,
Further, in the (D 1 ) battery and the (D 3 ) battery to the (D 5 ) battery of the present invention, it is recognized that the charge / discharge efficiency is 100%, which is further improved.

これらのことから、本発明の(D1)電池〜(D6)電池
は比較例の(Y)電池及び(Z)電池と比べて性能が向
上したことが伺える。
From these, it can be seen that the performance of the (D 1 ) battery to the (D 6 ) battery of the present invention is improved as compared with the (Y) battery and the (Z) battery of Comparative Examples.

特に(D1)電池及び(D3)電池〜(D5)電池は飛躍的
に性能が向上していることが伺える。したがって、有機
溶媒であるエトキシメトキシエタンとスルホランとの混
合体積比率は90:10〜10:90の範囲であることが望まし
い。
In particular, it can be seen that the performance of the (D 1 ) battery and the (D 3 ) battery to (D 5 ) battery has dramatically improved. Therefore, the mixing volume ratio of ethoxymethoxyethane as an organic solvent and sulfolane is preferably in the range of 90:10 to 10:90.

第5実施例 〔実施例I〕 有機溶媒としてエトキシメトキシエタンと下記式に示
す3−メチルスルホランとを50:50の体積比率で混合し
た溶媒を用いる他は前記第1実施例の実施例Iと同様に
して電池を作製した。
Fifth Example [Example I] Example I of the first example except that a solvent obtained by mixing ethoxymethoxyethane and 3-methylsulfolane represented by the following formula in a volume ratio of 50:50 was used as the organic solvent. A battery was prepared in the same manner.

このようにして作製した電池を、以下(E1)電池と称
する。
The battery thus manufactured is hereinafter referred to as (E 1 ) battery.

〔実施例II〜実施例VI〕 下記第5表に示すように、有機溶媒としてエトキシメ
トキシエタンと3−メチルスルホランとをそれぞれ95:
5、90:10、70:30、10:90、5:95の体積比率で混合した溶
媒を用いる他は上記実施例Iと同様にして電池を作製し
た。
Examples II to VI As shown in Table 5 below, ethoxymethoxyethane and 3-methylsulfolane were 95:
A battery was prepared in the same manner as in Example I except that a solvent mixed in a volume ratio of 5, 90:10, 70:30, 10:90, and 5:95 was used.

このようにして作製した電池を、以下順に(E2)電
池、(E3)電池、(E4)電池、(E5)電池、(E6)電池
と称する。
The batteries thus manufactured are hereinafter referred to as (E 2 ) battery, (E 3 ) battery, (E 4 ) battery, (E 5 ) battery, and (E 6 ) battery.

〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。
Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.

〔実験〕[Experiment]

上記本発明の(E1)電池〜(E6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。
The (E 1 ) battery to (E 6 ) battery of the present invention and the (Y) battery and (Z) battery of the comparative example were repeatedly charged and discharged under the same conditions as in the experiment of the first embodiment.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第5表
に併せて示す。
Then, the end-of-charge voltage and charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 5 above.

第5表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(E2)電池及び(E6)電池
では充電終止電圧が各々4.38V、4.40Vであって低下して
いることが認められ、更に本発明の(E1)電池及び
(E3)電池〜(E5)電池では充電終止電圧が各々3.77
V、3.78V、3.77V、3.78Vであって更に低下していること
が認められる。
As is clear from Table 5, the (Y) battery of the comparative example,
(Z) In the battery, the end-of-charge voltage is very high as described above. On the other hand, in the (E 2 ) battery and the (E 6 ) battery of the present invention, it was observed that the end-of-charge voltages were 4.38 V and 4.40 V, respectively, and thus decreased, and the (E 1 ) of the present invention For batteries and (E 3 ) to (E 5 ) batteries, the end-of-charge voltage is 3.77 each.
V, 3.78V, 3.77V, and 3.78V, which are further reduced.

また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(E2)電池及び(E6)電池では充放電効率が
各々80%、79%であって向上していることが認められ、
更に本発明の(E1)電池及び(E3)電池〜(E5)電池で
は充放電効率が全て100%であって更に向上しているこ
とが認められる。
Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, the charge and discharge efficiencies of the battery (E 2 ) and the battery (E 6 ) according to the present invention were 80% and 79%, respectively, which were improved,
Furthermore, in the (E 1 ) battery and the (E 3 ) battery to the (E 5 ) battery of the present invention, it is recognized that the charge / discharge efficiency is 100%, which is further improved.

これらのことから、本発明の(E1)電池〜(E6)電池
は比較例の(Y)電池及び(Z)電池と比べて性能が向
上したことが伺える。
From these, it can be seen that the batteries (E 1 ) to (E 6 ) of the present invention have improved performance as compared with the batteries (Y) and (Z) of Comparative Examples.

特に(E1)電池及び(E3)電池〜(E5)電池は飛躍的
に性能が向上していることが伺える。したがって、有機
溶媒であるエトキシメトキシエタンと3−メチルスルホ
ランとの混合体積比率は90:10〜10:90の範囲であること
が望ましい。
In particular, it can be seen that the performance of the (E 1 ) battery and the (E 3 ) battery to (E 5 ) battery has improved dramatically. Therefore, the mixing volume ratio of ethoxymethoxyethane and 3-methylsulfolane, which are organic solvents, is preferably in the range of 90:10 to 10:90.

第6実施例 〔実施例I〕 有機溶媒としてエトキシメトキシエタンと下記式に示
す3−エチルスルホランとを50:50の体積比率で混合し
た溶媒を用いる他は前記第1実施例の実施例Iと同様に
して電池を作製した。
Sixth Example [Example I] Example I of the first example except that a solvent obtained by mixing ethoxymethoxyethane and 3-ethylsulfolane represented by the following formula in a volume ratio of 50:50 was used as the organic solvent. A battery was prepared in the same manner.

このようにして作製した電池を、以下(F1)電池と称
する。
The battery thus manufactured is hereinafter referred to as a (F 1 ) battery.

〔実施例II〜実施例VI〕 下記第6表に示すように、有機溶媒としてエトキシメ
トキシエタンと3−エチルスルホランとをそれぞれ95:
5、90:10、70:30、10:90、5:95の体積比率で混合した溶
媒を用いる他は上記実施例Iと同様にして電池を作製し
た。
[Examples II to VI] As shown in Table 6 below, 95: ethoxymethoxyethane and 3-ethylsulfolane were used as organic solvents, respectively.
A battery was prepared in the same manner as in Example I except that a solvent mixed in a volume ratio of 5, 90:10, 70:30, 10:90, and 5:95 was used.

このようにして作製した電池を、以下順に(F2)電
池、(F3)電池、(F4)電池、(F5)電池、(F6)電池
と称する。
The batteries thus produced are hereinafter referred to as (F 2 ) battery, (F 3 ) battery, (F 4 ) battery, (F 5 ) battery, and (F 6 ) battery.

〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。
Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.

〔実験〕[Experiment]

上記本発明の(F1)電池〜(F6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。
With respect to the (F 1 ) battery to (F 6 ) battery of the present invention and the (Y) battery and (Z) battery of the comparative example, a charge / discharge cycle was repeated under the same conditions as in the experiment of the first embodiment.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第6表
に併せて示す。
Then, the end-of-charge voltage and charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 6 above.

第6表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(F2)電池及び(F6)電池
では充電終止電圧が各々4.42V、4.43Vであって低下して
いることが認められ、更に本発明の(F1)電池及び
(F3)電池〜(F5)電池では充電終止電圧が各々3.77
V、3.79V、3.78V、3.78Vであって更に低下していること
が認められる。
As is clear from Table 6, the (Y) battery of the comparative example,
(Z) In the battery, the end-of-charge voltage is very high as described above. On the other hand, in the (F 2 ) battery and the (F 6 ) battery of the present invention, it was observed that the end-of-charge voltages were 4.42 V and 4.43 V, respectively, and it was confirmed that the (F 1 ) For batteries and (F 3 ) to (F 5 ) batteries, the end-of-charge voltage is 3.77 each.
V, 3.79V, 3.78V, 3.78V, which are further reduced.

また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(F2)電池及び(F6)電池では充放電効率が
各々80%、78%であって向上していることが認められ、
更に本発明の(F1)電池及び(F3)電池〜(F5)電池で
は充放電効率が全て100%であって更に向上しているこ
とが認められる。
Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, the charge and discharge efficiencies of the (F 2 ) battery and the (F 6 ) battery of the present invention were 80% and 78%, respectively, which were improved,
Further, in the (F 1 ) battery and the (F 3 ) battery to the (F 5 ) battery of the present invention, it is recognized that the charge / discharge efficiency is 100%, which is further improved.

これらのことから、本発明の(F1)電池〜(F6)電池
は比較例の(Y)電池及び(Z)電池と比べて性能が向
上したことが伺える。
From these, it can be seen that the (F 1 ) battery to (F 6 ) battery of the present invention have improved performance as compared with the (Y) battery and the (Z) battery of Comparative Examples.

特に(F1)電池及び(F3)電池〜(F5)電池は飛躍的
に性能が向上していることが伺える。したがって、有機
溶媒であるエトキシメトキシエタンと3−エチルスルホ
ランとの混合体積比率は90:10〜10:90の範囲であること
が望ましい。
Especially, it can be seen that the performance of (F 1 ) battery and (F 3 ) battery to (F 5 ) battery has improved dramatically. Therefore, the mixing volume ratio of ethoxymethoxyethane and 3-ethylsulfolane, which are organic solvents, is preferably in the range of 90:10 to 10:90.

第7実施例 〔実施例I〕 有機溶媒としてエトキシメトキシエタンと下記式に示
す3−プロピルスルホランとを50:50の体積比率で混合
した溶媒を用いる他は前記第1実施例の実施例Iと同様
にして電池を作製した。
Seventh Example [Example I] Example I of the first example except that a solvent obtained by mixing ethoxymethoxyethane and 3-propylsulfolane represented by the following formula in a volume ratio of 50:50 was used as an organic solvent. A battery was prepared in the same manner.

このようにして作製した電池を、以下(G1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as a (G 1 ) battery.

〔実施例II〜実施例VI〕 下記第7表に示すように、有機溶媒としてエトキシメ
トキシエタンと3−プロピルスルホランとをそれぞれ9
5:5、90:10、70:30、10:90、5:95の体積比率で混合した
溶媒を用いる他は上記実施例Iと同様にして電池を作製
した。
[Examples II to VI] As shown in Table 7 below, ethoxymethoxyethane and 3-propylsulfolane were each used as an organic solvent at 9% each.
A battery was produced in the same manner as in Example I except that a solvent mixed in a volume ratio of 5: 5, 90:10, 70:30, 10:90, and 5:95 was used.

このようにして作製した電池を、以下順に(G2)電池、
(G3)電池、(G4)電池、(G5)電池、(G6)電池と称
する。
The batteries produced in this way were replaced by the following (G 2 ) batteries,
These are called (G 3 ) battery, (G 4 ) battery, (G 5 ) battery, and (G 6 ) battery.

〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。
Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.

〔実験〕[Experiment]

上記本発明の(G1)電池〜(G6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。
With respect to the (G 1 ) battery to the (G 6 ) battery of the present invention and the (Y) battery and (Z) battery of the comparative example, a charge / discharge cycle was repeated under the same conditions as the experiment of the first embodiment.

そして、各電池の100サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第7表
に併せて示す。
Then, the end-of-charge voltage and the charge / discharge efficiency at the 100th cycle of each battery were examined, and the results are also shown in Table 7 above.

第7表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(G2)電池及び(G6)電池
では充電終止電圧が各々4.41V、4.42Vであって低下して
いることが認められ、更に本発明の(G1)電池及び
(G3)電池〜(G5)電池では充電終止電圧が各々3.77
V、3.79V、3.78V、3.78Vであって更に低下していること
が認められる。
As is clear from Table 7, the (Y) battery of the comparative example,
(Z) In the battery, the end-of-charge voltage is very high as described above. On the other hand, in the (G 2 ) battery and the (G 6 ) battery of the present invention, it was observed that the end-of-charge voltages were 4.41 V and 4.42 V, respectively, and it was confirmed that the (G 1 ) batteries and (G 3) batteries ~ (G 5) 3.77 charge voltage are each a battery
V, 3.79V, 3.78V, 3.78V, which are further reduced.

また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(G2)電池及び(G6)電池では充放電効率が
各々80%、77%であって向上していることが認められ、
更に本発明の(G1)電池及び(G3)電池〜(G5)電池で
は充放電効率が全て100%であって更に向上しているこ
とが認められる。
Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, the charge and discharge efficiencies of the present invention (G 2 ) battery and (G 6 ) battery were 80% and 77%, respectively, and thus improved,
Further, in the (G 1 ) battery and the (G 3 ) battery to the (G 5 ) battery of the present invention, it is recognized that the charge / discharge efficiency is 100% and further improved.

これらのことから、本発明の(G1)電池〜(G6)電池
は比較例の(Y)電池及び(Z)電池と比べて性能が向
上したことが伺える。
From these, it can be seen that the (G 1 ) battery to the (G 6 ) battery of the present invention have improved performance as compared with the (Y) battery and the (Z) battery of Comparative Examples.

特に(G1)電池及び(G3)電池〜(G5)電池は飛躍的
に性能が向上していることが伺える。したがって、有機
溶媒であるエトキシメトキシエタンと3−プロピルスル
ホランとの混合体積比率は90:10〜10:90の範囲であるこ
とが望ましい。
Especially, it can be seen that the performance of (G 1 ) battery and (G 3 ) battery to (G 5 ) battery has improved dramatically. Therefore, the mixing volume ratio of ethoxymethoxyethane and 3-propylsulfolane, which are organic solvents, is preferably in the range of 90:10 to 10:90.

上記第1実施例乃至第7実施例の如く、本発明の
(A1)電池〜(A6)電池、(B1)電池〜(B6)電池、
(C1)電池〜(C6)電池、(D1)電池〜(D6)電池、
(E1)電池〜(E6)電池、(F1)電池〜(F6)電池、
(G1)電池〜(G6)電池は、比較例の(Y)電池及び
(Z)電池と比べて性能が向上したのは、以下に示す理
由によるものと考えられる。
As in the first to seventh embodiments, the (A 1 ) battery to the (A 6 ) battery, the (B 1 ) battery to the (B 6 ) battery of the present invention,
(C 1 ) battery to (C 6 ) battery, (D 1 ) battery to (D 6 ) battery,
(E 1 ) battery to (E 6 ) battery, (F 1 ) battery to (F 6 ) battery,
It is considered that the performances of the (G 1 ) battery to the (G 6 ) battery were improved as compared with the (Y) battery and the (Z) battery of Comparative Examples, for the following reason.

即ち、本発明の如く直鎖ジエーテル系合物とスルホラ
ン系化合物の混合溶媒を電解液の溶媒として用いると、
アニオンと直鎖ジエーテル系合物との溶媒和が、直鎖ジ
エーテル系合物と導電性ポリマーとの相互作用により外
れ易くなって、導電性ポリマー中へアニオンがドーピン
グし易くなることによるものと考えられる。
That is, when the mixed solvent of the linear diether compound and the sulfolane compound is used as the solvent of the electrolytic solution as in the present invention,
It is thought that the solvation of the anion and the linear diether compound is easily released by the interaction between the linear diether compound and the conductive polymer, and the anion is easily doped into the conductive polymer. To be

また、上記の混合溶媒を電解液の溶媒として用いれ
ば、従来のプロピレンカーボネートのみを溶媒とする電
解液と比べて、電導度が高くなると共に、粘度が低くな
るので、このことも電池の性能向上に寄与するものと考
えられる。
Further, when the above mixed solvent is used as the solvent of the electrolytic solution, compared with the conventional electrolytic solution using only propylene carbonate as the solvent, the conductivity becomes higher and the viscosity becomes lower, which also improves the performance of the battery. It is thought to contribute to.

尚、上記第1実施例〜第7実施例においては導電性ポ
リマーから成る電極を正極のみに用いているが、正極・
負極の両極に用いた場合であっても、上記と同様の効果
が得られる。
In the first to seventh embodiments, the electrode made of the conductive polymer is used only for the positive electrode.
Even when used for both electrodes of the negative electrode, the same effects as above can be obtained.

また、上記第1〜第7実施例においては負極にリチウ
ム金属を用いたが、アルミニウム,ビスマス,鉛,錫,
カドミウム,インジウム,亜鉛より成る群から選ばれる
少なくとも1つとリチウムとの合金、マンガン,クロ
ム,鉄,珪素,銅,ジルコニウム,タングステン,モリ
ブデンより成る群より選ばれる少なくとも1種の金属を
含むリチウム−アルミニウム合金或いは導電性ポリマー
を用いた場合も同様の効果を奏することは勿論である。
Further, although lithium metal is used for the negative electrode in the first to seventh embodiments, aluminum, bismuth, lead, tin,
Lithium-aluminum containing at least one metal selected from the group consisting of manganese, chromium, iron, silicon, copper, zirconium, tungsten, and molybdenum, and an alloy of at least one selected from the group consisting of cadmium, indium, and zinc with lithium. Needless to say, the same effect can be obtained when an alloy or a conductive polymer is used.

更に、上記第1〜第7実施例においては電解液の電解
質として、ホウフッ化リチウムを用いたがこれに限定す
るものではなく、過塩素酸リチウム(LiClO4)、6フッ
化リン酸リチウム(LiPF6)、6フッ化ヒ酸リチウム(L
iAsF6)、4塩化アルミニウムリチウム(LiAlCl4)等で
あってもよい。
Furthermore, although lithium borofluoride was used as the electrolyte of the electrolytic solution in the above-mentioned first to seventh examples, it is not limited to this, and lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (LiPF 4 ) are used. 6 ), lithium hexafluoroarsenate (L
It may be iAsF 6 ), lithium aluminum tetrachloride (LiAlCl 4 ), or the like.

発明の効果 以上説明したように本発明によれば、充電時における
電圧の上昇を低く押さえることができるので、電池缶や
集電体の腐食を防止することができると共に、電解液や
ドーパント或いは導電性ポリマーの分解等が抑制され
る。加えて、上記の混合溶媒を電解液の溶媒として用い
れば、従来のプロピレンカーボネートのみを溶媒とする
電解液と比べて、電導度が高くなると共に、粘度が低く
なる。これらのことから、電池の充放電特性やサイクル
特性を向上させることができ、高信頼性且つ高性能の二
次電池を作製しうるという効果を奏する。
Effect of the Invention As described above, according to the present invention, a rise in voltage during charging can be suppressed low, so that corrosion of a battery can and a current collector can be prevented, and an electrolyte, a dopant or a conductive material can be prevented. Decomposition and the like of the reactive polymer are suppressed. In addition, when the above-mentioned mixed solvent is used as a solvent for the electrolytic solution, the conductivity is increased and the viscosity is decreased as compared with a conventional electrolytic solution using only propylene carbonate as a solvent. From these, the charge / discharge characteristics and the cycle characteristics of the battery can be improved, and an effect that a highly reliable and high performance secondary battery can be manufactured can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例の電池の構造を示す断面図である。 1……正極、2……負極、3……セパレータ。 FIG. 1 is a sectional view showing the structure of the battery of the embodiment. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、負極と、電解液とを備え、導電性
ポリマーを上記正極のみ、或いは正、負両極に用いた二
次電池において、 前記電解液の溶媒が下記の一般式(1)で表されるスル
ホラン系化合物と、 ジメトキシメタン、ジエトキシエタン、ブトキシプロポ
キシメタンおよびエトキシメトキシエタンの中から選ば
れた少なくとも一種以上の直鎖ジエーテル系化合物との
混合溶媒からなることを特徴とする二次電池。 〔但し、Rは水素原子又は炭素数1〜3の低級アルキル
基である。〕
1. A secondary battery comprising a positive electrode, a negative electrode and an electrolytic solution, wherein a conductive polymer is used only in the positive electrode or in both positive and negative electrodes, wherein the solvent of the electrolytic solution is represented by the following general formula (1): ), And a mixed solvent of a sulfolane compound represented by the formula (1) and at least one linear diether compound selected from the group consisting of dimethoxymethane, diethoxyethane, butoxypropoxymethane and ethoxymethoxyethane. Secondary battery. [However, R is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms. ]
【請求項2】前記電解液の混合溶媒における、直鎖ジエ
ーテル系化合物とスルホラン系化合物との混合比率は、
10:90〜90:10であることを特徴とする請求項1記載の二
次電池。
2. The mixing ratio of the linear diether compound and the sulfolane compound in the mixed solvent of the electrolytic solution is
The secondary battery according to claim 1, wherein the secondary battery has a charging time of 10:90 to 90:10.
JP1146251A 1989-06-08 1989-06-08 Rechargeable battery Expired - Fee Related JP2692956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146251A JP2692956B2 (en) 1989-06-08 1989-06-08 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146251A JP2692956B2 (en) 1989-06-08 1989-06-08 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH0311563A JPH0311563A (en) 1991-01-18
JP2692956B2 true JP2692956B2 (en) 1997-12-17

Family

ID=15403517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146251A Expired - Fee Related JP2692956B2 (en) 1989-06-08 1989-06-08 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2692956B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942784A (en) * 1982-09-03 1984-03-09 Showa Denko Kk Battery
JPS6433857A (en) * 1987-07-29 1989-02-03 Hitachi Ltd Secondary battery

Also Published As

Publication number Publication date
JPH0311563A (en) 1991-01-18

Similar Documents

Publication Publication Date Title
US4668596A (en) Negative electrodes for non-aqueous secondary batteries composed on conjugated polymer and alkali metal alloying or inserting material
JP3416016B2 (en) Ion conductor for lithium secondary battery and lithium secondary battery using the same
US6855457B2 (en) Nonaqueous electrolyte secondary battery with a molten salt electrolyte
EP0575191B1 (en) Non-aqueous electrolyte solvent and battery containing this electrolyte
US6479192B1 (en) Non-aqueous electrolyte for electrochemical systems and lithium secondary battery comprising the same
WO2007012174A1 (en) Plastic crystal electrolyte in lithium-based electrochemical devices
US10050274B2 (en) Power storage device
US6984471B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
EP0548449B1 (en) Nonaqueous electrolyte secondary batteries
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
US4840858A (en) Secondary cell
JP3986216B2 (en) Non-aqueous electrolyte and secondary battery using the same
US20220029199A1 (en) Non-aqueous electrolyte solution for battery and lithium secondary battery
JP3010783B2 (en) Non-aqueous electrolyte secondary battery
KR101044561B1 (en) Anode material and battery using the same
JP4901089B2 (en) Nonaqueous electrolyte secondary battery
WO2005027254A1 (en) Nonaqueous electrolyte containing capacity enhancing additive of lithium ion cell and lithium ion cell employing it
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
US20040081891A1 (en) Nonaqueous electrolyte secondary cell
JP2680631B2 (en) Rechargeable battery
JP2765974B2 (en) Rechargeable battery
JP2692956B2 (en) Rechargeable battery
JP2765994B2 (en) Rechargeable battery
US5342711A (en) Rechargeable battery with nonaqueous electrolyte

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees