JP2765974B2 - Rechargeable battery - Google Patents
Rechargeable batteryInfo
- Publication number
- JP2765974B2 JP2765974B2 JP1209052A JP20905289A JP2765974B2 JP 2765974 B2 JP2765974 B2 JP 2765974B2 JP 1209052 A JP1209052 A JP 1209052A JP 20905289 A JP20905289 A JP 20905289A JP 2765974 B2 JP2765974 B2 JP 2765974B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- batteries
- charge
- solvent
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、正極と、負極と、電解液とを備え、導電性
ポリマーを上記正極のみ、或いは正,負両極に用いた二
次電池に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, and using a conductive polymer for the positive electrode only or for both positive and negative electrodes. is there.
従来の技術 近年、例えば特開昭56-136469号公報にみられるよう
に、導電性ポリマーを電極に用いた二次電池が提案され
ている。2. Description of the Related Art In recent years, as seen in, for example, JP-A-56-136469, a secondary battery using a conductive polymer for an electrode has been proposed.
この種の二次電池の電極に使用される導電性ポリマー
は、通常は導電性がわずかであるが、各種のドーパント
をドーピング、アンドーピングすることが可能であり、
ドーピングにより導電性が飛躍的に上昇する。そして、
ClO4 -やBF4 -などのアニオンをドーピングした導電性ポ
リマーは正極材料として、またLi+やNa+などのカチオン
をドーピングした導電性ポリマーは負極材料として各々
使用され、ドーピング及びアンドーピングを電気化学的
に可逆的に行なうことによって充放電可能な電池が構成
される。The conductive polymer used for the electrode of this type of secondary battery is usually slightly conductive, but can be doped with various dopants and undoped.
Doping significantly increases conductivity. And
ClO 4 - or BF 4 - anion doped conductive polymer, such as a positive electrode material and a conductive polymer doped with cations such as Li + and Na + are respectively used as a negative electrode material, an electrical doping and undoping A battery that can be charged and discharged is constructed by performing the chemical reversible operation.
このような導電性ポリマーは一般的に酸化剤による化
学的重合あるいは電解重合などによって作られ、例えば
ポリアセチレン、ポリピロール、ポリチオフェン、ポリ
アニリン、ポリパラフェニレン等が従来から知られてい
る。そして、このポリマーが粉状で得られる場合は電極
形状に応じた形状に加圧成形して、またフィルム状の場
合はそのまま電極寸法に打ち抜いたり、或いは粉砕して
粉状とする等して使用されている。これらの導電性ポリ
マーを使用した電池は、軽量で高エネルギー密度である
ばかりか無公害であるといった特長のある電池として期
待されている。とりわけ、上記ポリピロールやポリアニ
リンは特性が良好で、これらを用いた二次電池は実用化
電池として有望視されている。Such a conductive polymer is generally produced by chemical polymerization or electrolytic polymerization using an oxidizing agent, and for example, polyacetylene, polypyrrole, polythiophene, polyaniline, polyparaphenylene and the like are conventionally known. When the polymer is obtained in powder form, it is pressed and molded into a shape corresponding to the electrode shape, and when it is in the form of a film, it is used as it is by punching it into the electrode dimensions or pulverizing it into a powder form. Have been. Batteries using these conductive polymers are expected as batteries having features such as light weight, high energy density and no pollution. In particular, the above-mentioned polypyrrole and polyaniline have good properties, and secondary batteries using these are considered promising as batteries for practical use.
ところで、この種の二次電池の電解液としては通常、
リチウム電池等の既存の非水電池に使用されているのと
同様なプロピレンカーボネートなどの非プロトン系の有
機溶媒に、過塩素酸リチウムやホウフッ化リチウムの如
きリチウム塩などのアルカリ金属塩を溶解したものが用
いられている。By the way, as an electrolytic solution of this type of secondary battery, usually,
Alkali metal salts such as lithium salts such as lithium perchlorate and lithium borofluoride were dissolved in aprotic organic solvents such as propylene carbonate similar to those used in existing nonaqueous batteries such as lithium batteries. Things are used.
発明が解決しようとする課題 しかしながら、これら導電性ポリマーを電極に使用し
た二次電池は一般に既存の非水電池などに較べてその電
極電位がかなり高い。したがって、上記従来の電解液を
用いて電池を構成し、これを充放電した場合には、充電
進行と共に電池電圧が高くなりすぎてしまう結果、電解
液やドーパント、更には導電性ポリマーが分解する等の
副反応が起こり、充放電効率の低下や保存特性の劣化を
招くという課題がある。この傾向は特に充放電容量が大
きい場合には顕著となり、サイクル経過に伴う放電効率
の低下の度合いが大きく、それ故サイクル寿命が短くな
るという課題もある。Problems to be Solved by the Invention However, secondary batteries using these conductive polymers for electrodes generally have considerably higher electrode potentials than existing non-aqueous batteries and the like. Therefore, when a battery is formed using the above-mentioned conventional electrolytic solution, and when the battery is charged and discharged, the battery voltage becomes too high with the progress of charging, so that the electrolytic solution, the dopant, and the conductive polymer are decomposed. However, there is a problem that a side reaction such as the above occurs, which causes a decrease in charge / discharge efficiency and a deterioration in storage characteristics. This tendency is particularly remarkable when the charge / discharge capacity is large, and there is a problem that the degree of reduction in the discharge efficiency with the passage of the cycle is large and the cycle life is shortened.
本発明は従来のこのような課題を解決して、充放電率
が低下したり、保存特性が劣化することを防止して、二
次電池のサイクル特性を飛躍的に向上させ、これによっ
て、高信頼性且つ高性能の二次電池の提供を目的とする
ものである。The present invention solves such a conventional problem, and prevents the charge / discharge rate from being lowered or the storage characteristics from deteriorating, thereby dramatically improving the cycle characteristics of the secondary battery. It is an object of the present invention to provide a reliable and high-performance secondary battery.
課題を解決するための手段 本発明は上記目的を達成するために、正極と、負極
と、電解液とを備え、導電性ポリマーを上記正極のみ、
或いは正,負両極に用いた二次電池において、ジエトキ
シメタン、ジエトキシエタン、ブトキシプロポキシメタ
ン、エトキシメトキシエタンからなる群から選択された
直鎖ジエーテル系化合物と、ジメチルスルホキシドとの
混合溶媒を使用する。Means for Solving the Problems In order to achieve the above object, the present invention includes a positive electrode, a negative electrode, and an electrolytic solution, and a conductive polymer containing only the positive electrode,
Alternatively, in a secondary battery used for both positive and negative electrodes, a mixed solvent of dimethyl sulfoxide and a linear diether compound selected from the group consisting of diethoxymethane, diethoxyethane, butoxypropoxymethane, and ethoxymethoxyethane is used. I do.
作用 一般に、導電性ポリマーを電極に用いた二次電池で
は、ドーパントとして用いられるアニオンはアンドーピ
ング状態ではこれらが溶解している溶媒と溶媒和して存
在する一方、ドーピング反応が生じるときにはこの溶媒
和が外れてアニオン自体が導電性ポリマー中にドーピン
グされる。この際、溶媒和の外れ易さ及びドーピングの
し易さはアニオンが溶媒和している溶媒とドーピングさ
れる導電性ポリマーとの相互作用により大きく影響され
る。In general, in a secondary battery using a conductive polymer as an electrode, anions used as dopants are present in the undoped state in a solvated state with the solvent in which they are dissolved. Is removed and the anion itself is doped into the conductive polymer. At this time, the ease of solvation and doping is greatly affected by the interaction between the solvent in which the anion is solvated and the conductive polymer to be doped.
しかるに、上記構成の如く電解液の溶媒が、ジエトキ
シメタン、ジエトキシエタン、ブトキシプロポキシメタ
ン、エトキシメトキシエタンからなる群から選択された
直鎖ジエーテル系化合物と、ジメチルスルホキシドとの
混合溶媒から構成されていれば、アニオンと、上記特定
の直鎖ジエーテル系化合物との溶媒和が、上記特定の直
鎖ジエーテル系化合物と導電性ポリマーとの相互作用に
より外れ易くなって、導電性ポリマー中へアニオンがド
ーピングし易くなる。これにより、充電時における電圧
の上昇を低く押さえることができるので、電池缶や集電
体の腐食を防止することができると共に、電解液やドー
パント或いは導電性ポリマーの分解等が抑制される。加
えて、上記混合溶媒を電解液の溶媒として用いれば、従
来のプロピレンカーボネートのみを溶媒とする電解液と
比べて粘度が低くなって、電解液中でアニオンが移動し
易くなる。これらのことから、電池の充放電特性やサイ
クル特性を向上させることができる。However, as in the above configuration, the solvent of the electrolytic solution is composed of a mixed solvent of dimethyl sulfoxide and a linear diether compound selected from the group consisting of diethoxymethane, diethoxyethane, butoxypropoxymethane, and ethoxymethoxyethane. If so, the anion and the solvation of the specific linear diether compound are easily separated by the interaction between the specific linear diether compound and the conductive polymer, and the anion is introduced into the conductive polymer. Doping becomes easy. As a result, a rise in voltage during charging can be suppressed low, so that corrosion of the battery can and the current collector can be prevented, and decomposition of the electrolyte solution, the dopant, or the conductive polymer or the like is suppressed. In addition, when the mixed solvent is used as a solvent for the electrolytic solution, the viscosity is lower than that of a conventional electrolytic solution using only propylene carbonate as a solvent, and anions can easily move in the electrolytic solution. For these reasons, the charge / discharge characteristics and cycle characteristics of the battery can be improved.
第1実施例 〔実施例I〕 本発明の第1実施例を、第1図に示す偏平型非水系二
次電池に基づいて、以下に説明する。First Example [Example I] A first example of the present invention will be described below based on a flat nonaqueous secondary battery shown in FIG.
リチウム金属から成る負極2は負極集電体7の内面に
圧着されており、この負極集電体7はステンレスから成
る断面略コ字状の負極缶5の内底面に固着されている。
上記負極缶5の周端はポリプロピレン製の絶縁パッキン
グ8の内部に固定されており、絶縁パッキング8の外周
にはステンレスから成り上記負極缶5とは反対方向に断
面略コ字状を成す正極缶4が固定されている。この正極
缶4の内底面には正極集電体6が固定されており、この
正極集電体6の内面には正極1が固定されている。この
正極1と前記負極2との間にはセパレータ3が介装され
ている。The negative electrode 2 made of lithium metal is pressed on the inner surface of a negative electrode current collector 7, and the negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section.
A peripheral end of the negative electrode can 5 is fixed inside a polypropylene insulating packing 8, and a positive electrode can made of stainless steel is formed around the outer periphery of the insulating packing 8 and has a substantially U-shaped cross section in a direction opposite to the negative electrode can 5. 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and the positive electrode 1 is fixed to the inner surface of the positive electrode current collector 6. A separator 3 is interposed between the positive electrode 1 and the negative electrode 2.
ところで、前記正極1は電解重合によって合成したポ
リアニリン粉末を円板状に加圧成形することにより作成
し、前記負極2はリチウム圧延板を所定寸法に打抜くこ
とにより作成した。また、電解液としては、有機溶媒に
ホウフッ化リチウム(LiBF4)を1M溶解させた溶液を用
い、上記有機溶媒としてはジエトキシメタン(C2H5OC
H2OC2H5)とジメチルスルホキシド〔(CH3)2SO〕とを
50:50の体積比率で混合したものを用いた。By the way, the positive electrode 1 was made by pressing a polyaniline powder synthesized by electrolytic polymerization into a disc shape, and the negative electrode 2 was made by stamping a rolled lithium plate into a predetermined size. As the electrolytic solution, a solution in which lithium borofluoride (LiBF 4 ) was dissolved at 1 M in an organic solvent was used. As the organic solvent, diethoxymethane (C 2 H 5 OC) was used.
H 2 OC 2 H 5 ) and dimethyl sulfoxide [(CH 3 ) 2 SO]
What was mixed at a volume ratio of 50:50 was used.
このようにして作製した電池を、以下(A1)電池と
称する。The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.
下記第1表に示すように、有機溶媒としてジエトキシ
メタンとジメチルスルホキシドとをそれぞれ95:5、90:1
0、70:30、10:90、5:95の体積比率で混合する他は上記
実施例Iと同様にして電池を作製した。As shown in Table 1 below, diethoxymethane and dimethyl sulfoxide were used as organic solvents at 95: 5 and 90: 1, respectively.
A battery was prepared in the same manner as in Example I, except that mixing was performed at a volume ratio of 0, 70:30, 10:90, and 5:95.
このようにして作製した電池を、以下順に(A2)電
池、(A3)電池、(A4)電池、(A5)電池、(A6)
電池と称する。The battery fabricated in this manner is hereinafter sequentially (A 2) battery, (A 3) batteries, (A 4) battery, (A 5) battery, (A 6)
It is called a battery.
〔比較例I〕 有機溶媒としてγ−ブチロラクトンとプロピレンカー
ボネートとを50:50の割合で混合した混合溶媒を用いた
以外は、上記実施例Iと同様にして電池を作製した。 Comparative Example I A battery was fabricated in the same manner as in Example I, except that a mixed solvent of γ-butyrolactone and propylene carbonate in a ratio of 50:50 was used as the organic solvent.
このようにして作製した電池を、以下(Y)電池と称
する。The battery fabricated in this manner is hereinafter referred to as (Y) battery.
有機溶媒としてプロピレンカーボネートを用いた以外
は、上記実施例Iと同様にして電池を作製した。A battery was fabricated in the same manner as in Example I, except that propylene carbonate was used as the organic solvent.
このようにして作製した電池を、以下(Z)電池と称
する。The battery fabricated in this manner is hereinafter referred to as a battery (Z).
上記本発明の(A1)電池〜(A6)電池及び比較例の
(Y)電池,(Z)電池について、1mAの電流で10時間
充電を行ない、また1mAの電流で電池電圧が2.5Vになる
まで放電するという充放電サイクルを繰り返し行った。The batteries (A 1 ) to (A 6 ) of the present invention and the batteries (Y) and (Z) of the comparative examples were charged at a current of 1 mA for 10 hours, and a battery voltage of 2.5 V was applied at a current of 1 mA. The charge / discharge cycle of discharging until the temperature reached was repeated.
そして、各電池の200サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第1表
に併せて示す。The end-of-charge voltage and charge / discharge efficiency at the 200th cycle of each battery were examined. The results are shown in Table 1 above.
第1表より明らかなように、比較例の(Y)電池、
(Z)電池では充電終止電圧が各々4.55V、4.60Vであっ
て非常に高い。これに対して、本発明の(A2)電池及
び(A6)電池では充電終止電圧が各々4.39V、4.40Vで
あって低下していることが認められ、更に本発明の(A
1)電池及び(A3)電池〜(A5)電池では充電終止電
圧が3.76〜3.78Vであって更に低下していることが認め
られる。As is clear from Table 1, the (Y) battery of Comparative Example,
(Z) The end-of-charge voltage of the battery is 4.55V and 4.60V, which are extremely high. On the other hand, in the battery (A 2 ) and the battery (A 6 ) of the present invention, the end-of-charge voltage was 4.39 V and 4.40 V, respectively.
1 ) In the battery and the (A 3 ) battery to the (A 5 ) battery, the end-of-charge voltage is 3.76 to 3.78 V, and it can be seen that the voltage is further reduced.
また、比較例の(Y)電池、(Z)電池では充放電効
率が各々75%、65%であり著しく低下している。これに
対して、本発明(A2)電池及び(A6)電池では充放電
効率が各々86%、85%であって向上していることが認め
られ、更に本発明の(A1)電池及び(A3)電池〜(A
5)電池では充放電効率が97〜100%であって更に向上し
ていることが認められる。In addition, in the batteries (Y) and (Z) of the comparative examples, the charging and discharging efficiencies were 75% and 65%, respectively, which were significantly reduced. On the other hand, in the batteries (A 2 ) and (A 6 ) of the present invention, the charge / discharge efficiency was 86% and 85%, respectively, which was improved, and the batteries of the present invention (A 1 ) and (A 3) battery ~ (A
5 ) It is recognized that the charge / discharge efficiency of the battery is 97 to 100%, which is further improved.
これらのことから、本発明の(A1)電池〜(A6)電
池は比較例の(Y)電池及び(Z)電池と比べて性能が
向上したことが伺える。From these facts, it can be seen that the batteries (A 1 ) to (A 6 ) of the present invention have improved performance as compared with the batteries (Y) and (Z) of the comparative examples.
特に、(A1)電池及び(A3)電池〜(A5)電池は
飛躍的に性能が向上していることが伺える。したがっ
て、有機溶媒であるジエトキシメタンとジメチルスルホ
キシドとの混合体積比率は90:10〜10:90の範囲であるこ
とが望ましい。In particular, it can be seen that the performance of the (A 1 ) battery and the (A 3 ) battery to the (A 5 ) battery has been dramatically improved. Therefore, it is desirable that the mixing volume ratio of the organic solvent diethoxymethane and dimethyl sulfoxide is in the range of 90:10 to 10:90.
第2実施例 〔実施例I〕 有機溶媒としてジエトキシエタン〔C2H5O(CH2)2
OC2H5〕とジメチスルホキシドとを50:50の体積比率で
混合した溶媒を用いる他は前記第1実施例の実施例Iと
同様にして電池を作製した。Second Example [Example I] Diethoxyethane [C 2 H 5 O (CH 2 ) 2 ] as an organic solvent
A battery was manufactured in the same manner as in Example I of the first embodiment, except that a solvent in which OC 2 H 5 ] and dimethyl sulfoxide were mixed at a volume ratio of 50:50 was used.
このようにして作製した電池を、以下(B1)電池と
称する。The battery fabricated in this manner is hereinafter referred to as a (B 1 ) battery.
下記第2表に示すように、有機溶媒としてジエトキシ
エタンとジメチルスルホキシドとをそれぞれ95:5、90:1
0、70:30、10:90、5:95の体積比率で混合した溶媒を用
いる他は上記実施例Iと同様にして電池を作製した。As shown in Table 2 below, diethoxyethane and dimethylsulfoxide were used as organic solvents at 95: 5 and 90: 1, respectively.
A battery was produced in the same manner as in Example I except that a solvent mixed in a volume ratio of 0, 70:30, 10:90, and 5:95 was used.
このようにして作製した電池を、以下順に(B2)電
池、(B3)電池、(B4)電池、(B5)電池、(B6)
電池と称する。The batteries fabricated in this manner are referred to as (B 2 ) battery, (B 3 ) battery, (B 4 ) battery, (B 5 ) battery, and (B 6 )
It is called a battery.
〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。 Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.
上記本発明の(B1)電池〜(B6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。The charge-discharge cycle of the batteries (B 1 ) to (B 6 ) of the present invention and the batteries (Y) and (Z) of the comparative example was repeated under the same conditions as in the experiment of the first embodiment.
そして、各電池の200サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第2表
に併せて示す。The end-of-charge voltage and charge / discharge efficiency at the 200th cycle of each battery were examined. The results are shown in Table 2 above.
第2表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(B2)電池及び(B6)電
池では充電終止電圧が各々4.37V、4.39Vであって低下し
ていることが認められ、更に本発明の(B1)電池及び
(B3)電池〜(B5)電池では充電終止電圧が3.75〜3.
77Vであって更に低下していることが認められる。As is clear from Table 2, the (Y) battery of Comparative Example,
(Z) In the battery, the end-of-charge voltage is very high as described above. In contrast, the present invention (B 2) cells and (B 6) 4.37V charge voltage are each a battery, it is recognized that reduced a 4.39V, further of the present invention (B 1) The end-of-charge voltage for batteries and (B 3 ) batteries to (B 5 ) batteries is 3.75 to 3.
It is 77V, and it is recognized that it has further decreased.
また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(B2)電池及び(B6)電池では充放電効率
が各々87%、85%であって向上していることが認めら
れ、更に本発明の(B1)電池及び(B3)電池〜
(B5)電池では充放電効率が96〜100%であって更に向
上していることが認められる。Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, in the battery (B 2 ) and the battery (B 6 ) of the present invention, the charge / discharge efficiency was 87% and 85%, respectively, which was improved, and the battery of the present invention (B 1 ) And (B 3 ) battery ~
In (B 5) the battery is recognized that further improves a charge-discharge efficiency from 96 to 100%.
これらのことから、本発明の(B1)電池〜(B6)電
池は比較例の(Y)電池及び(Z)電池と比べて性能が
向上したことが伺える。From these facts, it can be seen that the batteries (B 1 ) to (B 6 ) of the present invention have improved performance as compared with the batteries (Y) and (Z) of the comparative examples.
特に(B1)電池及び(B3)電池〜(B5)電池は飛
躍的に性能が向上していることが伺える。したがって、
有機溶媒であるジエトキシエタンとジメチルスルホキシ
ドとの混合体積比率は90:10〜10:90の範囲であることが
望ましい。In particular, it can be seen that the performance of the (B 1 ) battery and the (B 3 ) battery to (B 5 ) battery has been dramatically improved. Therefore,
The mixing volume ratio of diethoxyethane and dimethyl sulfoxide, which are organic solvents, is preferably in the range of 90:10 to 10:90.
第3実施例 〔実施例I〕 有機溶媒としてブトキシプロポキシメタン〔C4H9OC
H2OC3H7〕とジメチルスルホキシドとを50:50の体積比
率で混合した溶媒を用いる他は前記第1実施例の実施例
Iと同様にして電池を作製した。Third Example [Example I] Butoxypropoxymethane [C 4 H 9 OC] as an organic solvent
[H 2 OC 3 H 7 ] and dimethyl sulfoxide were used in the same manner as in Example I of the first embodiment, except that a solvent in which the volume ratio was mixed at 50:50 was used.
このようにして作製した電池を、以下(C1)電池と
称する。The battery fabricated in this manner is hereinafter referred to as a (C 1 ) battery.
下記第3表に示すように、有機溶媒としてブトキシプ
ロポキシメタンとジメチルスルホキシドとをそれぞれ9
5:5、90:10、70:30、10:90、5:95の体積比率で混合した
溶媒を用いる他は上記実施例Iと同様にして電池を作製
した。As shown in Table 3 below, butoxypropoxymethane and dimethylsulfoxide were used as organic solvents, respectively.
A battery was produced in the same manner as in Example I except that a solvent mixed in a volume ratio of 5: 5, 90:10, 70:30, 10:90, and 5:95 was used.
このようにして作製した電池を、以下順に(C2)電
池、(C3)電池、(C4)電池、(C5)電池、(C6)
電池と称する。The batteries fabricated in this manner are referred to as (C 2 ) battery, (C 3 ) battery, (C 4 ) battery, (C 5 ) battery, and (C 6 )
It is called a battery.
〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。 Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.
上記本発明の(C1)電池〜(C6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。The charge-discharge cycle of the batteries (C 1 ) to (C 6 ) of the present invention and the batteries (Y) and (Z) of the comparative example was repeated under the same conditions as in the experiment of the first embodiment.
そして、各電池の200サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第3表
に併せて示す。The end-of-charge voltage and charge / discharge efficiency at the 200th cycle of each battery were examined. The results are shown in Table 3 above.
第3表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(C2)電池及び(C6)電
池では充電終止電圧が各々4.40V、4.43Vであって低下し
ていることが認められ、本発明の(C1)電池及び
(C3)電池〜(C5)電池では充放電終止電圧が3.77〜
3.79Vであって更に低下していることが認められる。As is clear from Table 3, the (Y) battery of the comparative example,
(Z) In the battery, the end-of-charge voltage is very high as described above. In contrast, (C 2) battery, and (C 6) charge voltage are each a battery 4.40V of the present invention, it is recognized that reduced a 4.43V, (C 1) cell of the invention And (C 3 ) battery to (C 5 ) battery have a charge-discharge end voltage of 3.77 to
It is 3.79 V, and it is recognized that it has further decreased.
また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(C2)電池及び(C6)電池では充放電効率
が各々84%、85%であって向上していることが認めら
れ、更に本発明の(C1)電池及び(C3)電池〜
(C5)電池では充放電効率96〜100%であって更に向上
していることが認められる。Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, in the (C 2 ) battery and the (C 6 ) battery of the present invention, the charge / discharge efficiency was 84% and 85%, respectively, which was improved, and the (C 1 ) battery of the present invention was improved. and (C 3) batteries -
In (C 5) the battery is recognized to have further improved a 96-100% charge-discharge efficiency.
これらのことから、本発明の(C1)電池〜(C6)電
池は比較例の(Y)電池及び(Z)電池と比べて性能が
向上したことが伺える。From these facts, it can be seen that the batteries (C 1 ) to (C 6 ) of the present invention have improved performance as compared with the batteries (Y) and (Z) of the comparative examples.
特に(C1)電池及び(C3)電池〜(C5)電池は飛
躍的に性能が向上していることが伺える。したがって、
有機溶媒であるブトキシプロポキシメタンとジメチルス
ルホキシドとの混合体積比率は90:10〜10:90の範囲であ
ることが望ましい。In particular, it can be seen that the performance of the (C 1 ) battery and the (C 3 ) battery to the (C 5 ) battery has been dramatically improved. Therefore,
The mixing volume ratio of butoxypropoxymethane and dimethyl sulfoxide, which are organic solvents, is preferably in the range of 90:10 to 10:90.
第4実施例 〔実施例I〕 有機溶媒としてエトキシメトキシエタン〔C2H5O
(CH2)2OCH3〕とジメチルスルホキシドとを50:50の体
積比率で混合した溶媒を用いる他は前記第1実施例の実
施例Iと同様にして電池を作製した。Fourth Example [Example I] Ethoxymethoxyethane [C 2 H 5 O] as an organic solvent
(CH 2 ) 2 OCH 3 ] and dimethyl sulfoxide were mixed in a volume ratio of 50:50 to prepare a battery in the same manner as in Example I of the first embodiment except that a solvent was used.
このようにして作製した電池を、以下(D1)電池と
称する。The battery fabricated in this manner is hereinafter referred to as a battery (D 1 ).
下記第4表に示すように、有機溶媒としてエトキシメ
トキシエタンとジメチルスルホキシドとをそれぞれ95:
5、90:10、70:30、10:90、5:95の体積比率で混合した溶
媒を用いる他は上記実施例Iと同様にして電池を作製し
た。As shown in Table 4 below, ethoxymethoxyethane and dimethylsulfoxide were used as organic solvents in 95:
A battery was prepared in the same manner as in Example I except that a solvent mixed in a volume ratio of 5, 90:10, 70:30, 10:90, and 5:95 was used.
このようにして作製した電池を、以下順に(D2)電
池、(D3)電池、(D4)電池、(D5)電池、(D6)
電池と称する。The batteries fabricated in this manner are referred to as (D 2 ) battery, (D 3 ) battery, (D 4 ) battery, (D 5 ) battery, and (D 6 )
It is called a battery.
〔比較例I,II〕 比較例としては前記第1実施例の比較例I,IIに示す
(Y)電池及び(Z)電池を用いた。 Comparative Examples I and II As comparative examples, the (Y) battery and the (Z) battery shown in Comparative Examples I and II of the first embodiment were used.
上記本発明の(D1)電池〜(D6)電池及び比較例の
(Y)電池,(Z)電池について、前記第1実施例の実
験と同様の条件で充放電サイクルを繰り返し行った。The charge-discharge cycle of the batteries (D 1 ) to (D 6 ) of the present invention and the batteries (Y) and (Z) of the comparative examples was repeated under the same conditions as in the experiment of the first embodiment.
そして、各電池の200サイクル目における充電終止電
圧と充放電効率とを調べたので、その結果を前記第4表
に併せて示す。The end-of-charge voltage and charge / discharge efficiency at the 200th cycle of each battery were examined. The results are shown in Table 4 above.
第4表より明らかなように、比較例の(Y)電池、
(Z)電池では、前記のように充電終止電圧が非常に高
い。これに対して、本発明の(D2)電池及び(D6)電
池では充電終止電圧が各々4.38V、4.40Vであって低下し
ていることが認められ、更に本発明の(D1)電池及び
(D3)電池〜(D5)電池では充電終止電圧が3.76〜3.
78Vであって更に低下していることが認められる。As is clear from Table 4, the (Y) battery of Comparative Example,
(Z) In the battery, the end-of-charge voltage is very high as described above. In contrast, (D 2) cell and the present invention (D 6) charge voltage are each a battery 4.38V, it is recognized that reduced a 4.40 V, still of the present invention (D 1) The end-of-charge voltage for batteries and (D 3 ) batteries to (D 5 ) batteries is 3.76 to 3.
It is 78V, and it is recognized that it has further decreased.
また、比較例の(Y)電池、(Z)電池では、充放電
効率が前記のように著しく低下している。これに対し
て、本発明(D2)電池及び(D6)電池では充放電効率
が各々86%、84%であって向上していることが認めら
れ、更に本発明の(D1)電池及び(D3)電池〜
(D5)電池では充放電効率が97〜100%であって更に向
上していることが認められる。Further, in the batteries (Y) and (Z) of the comparative examples, the charging / discharging efficiency is significantly reduced as described above. On the other hand, in the batteries (D 2 ) and (D 6 ) of the present invention, the charge / discharge efficiency was 86% and 84%, respectively, which was improved, and the batteries of the present invention (D 1 ) And (D 3 ) battery ~
(D 5 ) In the battery, the charging / discharging efficiency is 97 to 100%, and it is recognized that the efficiency is further improved.
これらのことから、本発明の(D1)電池〜(D6)電
池は比較例の(Y)電池及び(Z)電池と比べて性能が
向上したことが伺える。From these facts, it can be seen that the batteries (D 1 ) to (D 6 ) of the present invention have improved performance as compared with the batteries (Y) and (Z) of the comparative examples.
特に(D1)電池及び(D3)電池〜(D5)電池は飛
躍的に性能が向上していることが伺える。したがって、
有機溶媒であるエトキシメトキシエタンとジメチスルホ
キシドとの混合体積比率は90:10〜10:90の範囲であるこ
とが望ましい。In particular, it can be seen that the (D 1 ) battery and (D 3 ) battery to (D 5 ) battery have dramatically improved performance. Therefore,
It is desirable that the mixing volume ratio of ethoxymethoxyethane and dimethyl sulfoxide, which are organic solvents, is in the range of 90:10 to 10:90.
このように、本発明の(A1)電池〜(A6)電池、
(B1)電池〜(B6)電池、(C1)電池〜(C6)電
池、(D1)電池〜(D6)電池が比較例の(Y)電池及
び(Z)電池と比べて充電時の電圧が低下して、性能が
向上したのは以下に示す2つの理由によるものと考えら
れる。Thus, the batteries (A 1 ) to (A 6 ) of the present invention,
(B 1 ) Battery to (B 6 ) Battery, (C 1 ) Battery to (C 6 ) Battery, (D 1 ) Battery to (D 6 ) Battery Compared with Comparative Examples (Y) Battery and (Z) Battery It is considered that the voltage at the time of charging was lowered and the performance was improved for the following two reasons.
ジエトキシメタン、ジエトキシエタン、ブトキシプ
ロポキシメタン、エトキシメトキシエタンからなる群か
ら選択された直鎖ジエーテル系化合物とジメチルスルホ
キシドとの混合溶媒を使用した場合には、アニオンと前
記特定の直鎖ジエーテル系化合物との溶媒和が、この直
鎖ジエーテル系化合物と導電性ポリマーとの相互作用に
より外れ易くなって、導電性ポリマー中へアニオンがド
ーピングし易くなること。Diethoxymethane, diethoxyethane, butoxypropoxymethane, when using a mixed solvent of dimethyl sulfoxide and a linear diether compound selected from the group consisting of ethoxymethoxyethane, an anion and the specific linear diether compound The solvation with the compound is easily released due to the interaction between the linear diether compound and the conductive polymer, and the anion is easily doped into the conductive polymer.
本発明の混合溶媒を用いた電解液は、従来のプロピ
レンカーボネートのみを溶媒とする電解液と比べて粘度
が低くなるので、電解液中でアニオンが移動し易くな
り、且つイオンが解離しやすい混合比になっているこ
と。The electrolytic solution using the mixed solvent of the present invention has a lower viscosity than the conventional electrolytic solution using only propylene carbonate as a solvent, so that anions can easily move in the electrolytic solution and ions can be easily dissociated. Being ratio.
これらのことから、電池の充放電特性やサイクル特性
を向上させることができる。For these reasons, the charge / discharge characteristics and cycle characteristics of the battery can be improved.
尚、上記第1実施例〜第4実施例においては導電性ポ
リマーから成る電極を正極のみに用いているが、正極・
負極の両極に用いた場合であっても、上記と同様の効果
が得られる。In the first to fourth embodiments, the electrode made of a conductive polymer is used only for the positive electrode.
Even when used for both electrodes of the negative electrode, the same effects as above can be obtained.
また、上記第1〜第4実施例においては負極にリチウ
ム金属を用いたが、アルミニウム,ビスマス,鉛,錫,
カドミウム,インジウム,亜鉛より成る群から選ばれる
少なくとも1つとリチウムとの合金、マンガン,クロ
ム,鉄,珪素,銅,ジルコニウム,タングステン,モリ
ブデンより成る群より選ばれる少なくとも1種の金属を
含むリチウム−アルミニウム合金或いは導電性ポリマー
を用いた場合も同様の効果を奏することは勿論である。In the first to fourth embodiments, lithium metal was used for the negative electrode, but aluminum, bismuth, lead, tin,
Lithium-aluminum containing at least one metal selected from the group consisting of manganese, chromium, iron, silicon, copper, zirconium, tungsten, and molybdenum, and an alloy of at least one selected from the group consisting of cadmium, indium, and zinc with lithium. Needless to say, the same effect can be obtained when an alloy or a conductive polymer is used.
また、正極に用いる導電性ポリマーとしては、として
は前記ポリアニリンの他、主鎖に共役二重結合をもつ他
の高分子、例えばポリアセチレン、ポリパラフェニレ
ン、ポリピロール、ポリチオフェン、ポリパラフェニレ
ンビニレン、ポリイミダゾール、ポリチアゾール、ポリ
フラン等であってもよい。特に、窒素原子、酸素原子若
しくは硫黄原子をヘタロ原子として有し、且つ共役π−
電子系を有する5若しくは6員のヘテロ環式化合物の群
から成るポリマーまたはアニリンポリマー、例えば、ポ
リピロール、ポリチオフェン、ポリアニリンが望まし
い。Examples of the conductive polymer used for the positive electrode include, in addition to the polyaniline, other polymers having a conjugated double bond in the main chain, such as polyacetylene, polyparaphenylene, polypyrrole, polythiophene, polyparaphenylenevinylene, and polyimidazole. , Polythiazole, polyfuran and the like. In particular, it has a nitrogen atom, an oxygen atom or a sulfur atom as a hetero atom, and has a conjugated π-
Preference is given to polymers from the group of 5- or 6-membered heterocyclic compounds having an electronic system or aniline polymers, for example polypyrrole, polythiophene, polyaniline.
電解液としては、電解質を有機溶剤に溶解した溶液が
使用される。かかる電解質としては、電気陰性度が1.6
以下の金属陽イオンや有機陽イオン等の陽イオン及び陰
イオンとの塩がある。そして、有機陽イオンの例として
は、4級アンモニウムイオン等がある。一方、陰イオン
としてはBF4 -、ClO4 -、PF6 -、AsF6 -、CF3SO3 -、I-、Br
-、Cl-、F-等がある。具体的な電解質の例としては、
テトラフルオロホウ酸リチウム(LiBF4)、過塩素酸リ
チウム(LiClO4)、ヘキサフルオロリン酸リチウム(Li
PF6)、テトラクロロアルミン酸リチウム(LiAlCl4)、
テトラフルオロホウ酸テトラエチルアンモニウム〔(C
2H5)4NBF4〕、過塩素酸テトラエチルアンモニウム
〔(C2H5)4NClO4〕、トリフルオロメタンスルホン酸
リチウム(LiCF3SO3)、ヨウ化リチウム(LiI)、臭化
リチウム(LiBr)等があるが、これらのものに限定され
るものではない。As the electrolytic solution, a solution obtained by dissolving an electrolyte in an organic solvent is used. Such an electrolyte has an electronegativity of 1.6
There are salts with cations and anions such as the following metal cations and organic cations. Examples of the organic cation include a quaternary ammonium ion. On the other hand, as anions, BF 4 − , ClO 4 − , PF 6 − , AsF 6 − , CF 3 SO 3 − , I − , Br
-, Cl -, F - is like. Examples of specific electrolytes include:
Lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (Li
PF 6 ), lithium tetrachloroaluminate (LiAlCl 4 ),
Tetraethylammonium tetrafluoroborate [(C
2 H 5 ) 4 NBF 4 ], tetraethylammonium perchlorate [(C 2 H 5 ) 4 NClO 4 ], lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium iodide (LiI), lithium bromide (LiBr) ), But are not limited to these.
発明の効果 以上説明したように本発明によれば、充電時における
電圧の上昇を低く押さえることができるので、電池缶や
集電体の腐食を防止することができると共に、電解液や
ドーパント或いは導電性ポリマーの分解等が抑制され
る。加えて、上記の混合溶媒を電解液の溶媒として用い
れば、従来のプロピレンカーボネートのみを溶媒とする
電解液と比べて、粘度が低くなる。これらのことから、
電池の充放電特性やサイクル特性を向上させることがで
き、高信頼性且つ高性能の二次電池を作製しうるという
効果を奏する。Effect of the Invention As described above, according to the present invention, a rise in voltage during charging can be suppressed low, so that corrosion of a battery can and a current collector can be prevented, and an electrolyte, a dopant or a conductive material can be prevented. Decomposition and the like of the reactive polymer are suppressed. In addition, when the above-mentioned mixed solvent is used as a solvent for the electrolytic solution, the viscosity is lower than that of a conventional electrolytic solution using only propylene carbonate as a solvent. from these things,
This has the effect of improving the charge / discharge characteristics and cycle characteristics of the battery, and producing a highly reliable and high performance secondary battery.
第1図は実施例の電池の構造を示す断面図である。 1……正極、2……負極、3……セパレータ。 FIG. 1 is a sectional view showing the structure of the battery of the embodiment. 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 10/40──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 10/40
Claims (1)
ポリマーを上記正極のみ、或るいは正、負両極に用いた
二次電池において、 前記電解液の溶媒が、ジエトキシメタン、ジエトキシエ
タン、ブトキシプロポキシメタン、エトキシメトキシエ
タンからなる群から選択された直鎖ジエーテル系化合物
と、ジメチルスルホキシドとの混合溶媒からなることを
特徴とする二次電池。1. A secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein a conductive polymer is used only for the positive electrode or for both positive and negative electrodes, wherein the solvent of the electrolytic solution is diethoxymethane. A secondary battery comprising a mixed solvent of dimethyl sulfoxide and a linear diether-based compound selected from the group consisting of ethoxyethane, diethoxyethane, butoxypropoxymethane, and ethoxymethoxyethane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1209052A JP2765974B2 (en) | 1989-08-11 | 1989-08-11 | Rechargeable battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1209052A JP2765974B2 (en) | 1989-08-11 | 1989-08-11 | Rechargeable battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0374060A JPH0374060A (en) | 1991-03-28 |
JP2765974B2 true JP2765974B2 (en) | 1998-06-18 |
Family
ID=16566459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1209052A Expired - Fee Related JP2765974B2 (en) | 1989-08-11 | 1989-08-11 | Rechargeable battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2765974B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3492173B2 (en) * | 1997-12-09 | 2004-02-03 | シャープ株式会社 | Non-aqueous battery |
JP2002298999A (en) * | 2001-03-30 | 2002-10-11 | Molex Inc | Socket for semiconductor package, and sliding method to semiconductor package |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2621213B2 (en) * | 1987-08-28 | 1997-06-18 | 松下電器産業株式会社 | Organic electrolyte lithium secondary battery |
-
1989
- 1989-08-11 JP JP1209052A patent/JP2765974B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0374060A (en) | 1991-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6855457B2 (en) | Nonaqueous electrolyte secondary battery with a molten salt electrolyte | |
US5260148A (en) | Lithium secondary battery | |
EP2863468B1 (en) | Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same | |
US4804594A (en) | Predoped conductive polymers as battery electrode materials | |
DE69313364T2 (en) | Non-aqueous electrolyte solution and battery that contains this electrolyte | |
US10050274B2 (en) | Power storage device | |
WO1996041387A1 (en) | Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same | |
US6090504A (en) | High capacity composite electrode and secondary cell therefrom | |
WO2007012174A1 (en) | Plastic crystal electrolyte in lithium-based electrochemical devices | |
EP0797264A2 (en) | Electrode including organic disulfide compound and method of producing the same | |
US6984471B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery | |
DE69211972T2 (en) | Accumulators with non-aqueous electrolyte | |
JP3287376B2 (en) | Lithium secondary battery and method of manufacturing the same | |
US6461773B1 (en) | Electrolyte for electrochemical device | |
US20220029199A1 (en) | Non-aqueous electrolyte solution for battery and lithium secondary battery | |
JP3564756B2 (en) | Non-aqueous electrolyte secondary battery | |
US4840858A (en) | Secondary cell | |
JP2765974B2 (en) | Rechargeable battery | |
US20040081891A1 (en) | Nonaqueous electrolyte secondary cell | |
JP2680631B2 (en) | Rechargeable battery | |
JP2765994B2 (en) | Rechargeable battery | |
JP2692956B2 (en) | Rechargeable battery | |
JP3046972B2 (en) | Non-aqueous electrolyte and battery containing the same | |
JP2632021B2 (en) | Rechargeable battery | |
JP3162695B2 (en) | Rechargeable battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |