JP2528693B2 - Polymer battery - Google Patents

Polymer battery

Info

Publication number
JP2528693B2
JP2528693B2 JP63142498A JP14249888A JP2528693B2 JP 2528693 B2 JP2528693 B2 JP 2528693B2 JP 63142498 A JP63142498 A JP 63142498A JP 14249888 A JP14249888 A JP 14249888A JP 2528693 B2 JP2528693 B2 JP 2528693B2
Authority
JP
Japan
Prior art keywords
polymer
electrolyte
battery
lithium
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63142498A
Other languages
Japanese (ja)
Other versions
JPH01311561A (en
Inventor
龍 長井
清明 赤代
浩 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Hitachi Maxell Energy Ltd
Original Assignee
Nitto Denko Corp
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Hitachi Maxell Energy Ltd filed Critical Nitto Denko Corp
Priority to JP63142498A priority Critical patent/JP2528693B2/en
Publication of JPH01311561A publication Critical patent/JPH01311561A/en
Application granted granted Critical
Publication of JP2528693B2 publication Critical patent/JP2528693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウムまたはリチウム合金を負極に用い、
特定の導電性ポリマーを正極に用いた全固体系のポリマ
ー電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention uses lithium or a lithium alloy for a negative electrode,
The present invention relates to an all-solid-state polymer battery using a specific conductive polymer for a positive electrode.

〔従来の技術〕[Conventional technology]

従来、導電性ポリマーを正極に用いたポリマー電池で
は、電解質中のアニオンが導電性ポリマー中にドープ、
脱ドープすることによって充放電が行われていたため、
液体電解質が電池構成上必ず必要とされていた〔例え
ば、J.Electrochem.Soc.,128、1651(1981)〕。
Conventionally, in a polymer battery using a conductive polymer as a positive electrode, anions in the electrolyte are doped in the conductive polymer,
Since charging and discharging were performed by dedoping,
A liquid electrolyte was indispensable for battery construction [eg, J. Electrochem. Soc., 128, 1651 (1981)].

そのような状況の中で、固体電解質系のポリマー電池
を得ようとする試みもなされているが、従来、試みられ
たものは、ポリピロールを正極に用い、ポリエチレンオ
キサイドとLiClO4との錯形成物を電解質に用い、リチウ
ムを負極に用いたものであるが、このものは内部抵抗が
大きく、また、ドーパントを電解質から得るため、充分
な電気容量を得ることができなかった〔Petr Novak J.E
lectrochem.Soc.,134,No.6、1341(1987)〕。
Under such circumstances, attempts have been made to obtain a polymer battery of a solid electrolyte system, but in the past, what has been attempted is to use polypyrrole as a positive electrode and form a complexed product of polyethylene oxide and LiClO 4 . Was used as the electrolyte and lithium was used as the negative electrode, but this one had a large internal resistance, and because the dopant was obtained from the electrolyte, sufficient electric capacity could not be obtained [Petr Novak JE
lectrochem.Soc., 134, No. 6, 1341 (1987)].

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、上述したように従来のポリマー電池では液
状電解質が必要であったため、実用化にあたっては、上
記液状電解質を封入するために強度のある金属製の外装
体を必要とし、そのため、柔軟性、形状自在性、封止の
容易性や、軽量性に欠けていたり、また、固体電解質系
のポリマー電池への試みも、内部抵抗が大きく、電気容
量の小さい電池しか得られず、実用性に欠けていたとい
う問題点を解決し、実用性を有する全固体系のポリマー
電池を提供することを目的とする。
Since the present invention requires a liquid electrolyte in the conventional polymer battery as described above, in practical use, a strong metal outer casing is required to enclose the liquid electrolyte, and therefore, the flexibility is required. However, it lacks flexibility in shape, ease of sealing, and lightness. In addition, when attempting to use solid electrolyte polymer batteries, only batteries with large internal resistance and small electric capacity could be obtained, making them practical. It is an object of the present invention to solve the problem that was lacking and to provide an all-solid-state polymer battery having practicality.

〔課題を解決するための手段〕 本発明は、導電性ポリマーとポリマーアニオンとの錯
形成物を正極に用いることにより、正極でリチウムイオ
ンのドープ、脱ドープを生じさせ、電解質中のアニオン
の導電性ポリマーへのドープ、脱ドープを不要にして、
電解質には負極から供給されるリチウムイオンの伝導体
としての機能のみを果たせるようにして、高分子固体電
解質の使用を可能にし、全固体系のポリマー電池が得ら
れるようにしたものである。
[Means for Solving the Problems] The present invention uses a complexed product of a conductive polymer and a polymer anion for a positive electrode, thereby causing doping and dedoping of lithium ions at the positive electrode, and conductivity of anions in the electrolyte. Eliminates the need to dope or de-dope the volatile polymer,
In the electrolyte, only the function of the lithium ion supplied from the negative electrode as a conductor can be fulfilled, the solid polymer electrolyte can be used, and the all solid polymer battery can be obtained.

本発明において、正極に用いる錯形成物を構成する導
電性ポリマーとしては、例えばポリアニリン、ポリチオ
フェン、ポリピロール、ポリアセチレンなどが用いられ
る。一方、ポリマーアニオンとしては、例えばポリビニ
ルスルホン酸や、一般式(I) (式中、x+y=1.0では、yは0.1〜1.0、XはSO3Hま
たはCOOHであり、RfはCF2、O−CF2、O−(−CF2
または である) で示されるフッ素化ポリマーアニオン、さらには一般式
(II) (式中、x+y=1.0では、yは0.1〜1.0、XはSO3Hま
たはCOOHである) で示されるフッ素化ポリマーアニオンなどが用いられ
る。つまり、正極に用いる導電性ポリマーとポリマーア
ニオンとの錯形成物としては、例えば上記ポリアニリ
ン、ポリチオフェン、ポリピロール、ポリアセチレンな
どの導電性ポリマーと、例えばポリビニルスルホン酸、
一般式(I)で示されるフッ素化ポリマーアニオン、一
般式(II)で示されるフッ素化ポリマーアニオンなどの
ポリマーアニオンとの錯形成物が用いられる。
In the present invention, as the conductive polymer forming the complex-forming product used for the positive electrode, for example, polyaniline, polythiophene, polypyrrole, polyacetylene, etc. are used. On the other hand, examples of the polymer anion include polyvinyl sulfonic acid and the general formula (I). (In the formula, when x + y = 1.0, y is 0.1 to 1.0, X is SO 3 H or COOH, and Rf is CF 2 , O—CF 2 , O — (— CF 2 ) 3
Or And a fluorinated polymer anion represented by the general formula (II) (In the formula, when x + y = 1.0, y is 0.1 to 1.0, and X is SO 3 H or COOH) and the like. That is, as the complexed product of the conductive polymer used for the positive electrode and the polymer anion, for example, a conductive polymer such as polyaniline, polythiophene, polypyrrole, polyacetylene, and polyvinyl sulfonic acid,
A complexed product with a polymer anion such as the fluorinated polymer anion represented by the general formula (I) and the fluorinated polymer anion represented by the general formula (II) is used.

上記のような導電性ポリマーとポリマーアニオンとの
錯形成物においては、前記ポリビニルスルホン酸やフッ
素化ポリマーアニオンがその側鎖にスルホン基(−SO
3H)やカルボキシル基(−COOH)を有するので、これら
の酸部分にリチウムイオン(Li+イオン)がドープして
酸が中和されることによって電池の放電反応が生じ(こ
のLi+イオンのドープによって導電性ポリマーとポリマ
ーアニオンとは錯形成を解離する)、またLi+イオンが
上記酸部分から脱ドープすることによって電池の充電反
応が生じる(このLi+イオンの脱ドープによって導電性
ポリマーとポリマーアニオンとは再び錯形成する)。し
たがって、上記導電性ポリマーとポリマーアニオンとの
錯形成物を正極に用いる場合には、液状電解質中のアニ
オンが正極のポリマーにドープ、脱ドープする必要がな
くなり、電解質は負極から解離するLi+イオンの伝導体
としてのみ機能すればよくなるので、活物質相当量のリ
チウム塩を液状電解質に溶解させておく必要がなくな
る。それ故、液状電解質を用いる必要がなく、固体電解
質が使用できるようになる。
In the complexed product of the conductive polymer and the polymer anion as described above, the polyvinyl sulfonic acid or the fluorinated polymer anion has a sulfone group (-SO
3 H) and a carboxyl group (-COOH), these acid moieties are doped with lithium ions (Li + ions) to neutralize the acid, resulting in the discharge reaction of the battery (this Li + ion The conductive polymer and the polymer anion dissociate from the complex by the dope), and the charging reaction of the battery occurs by the Li + ion dedoping from the acid portion (the dedoping of the Li + ion gives the conductive polymer Re-complexes with the polymer anion). Therefore, when using the complexed product of the conductive polymer and the polymer anion in the positive electrode, the anion in the liquid electrolyte does not need to be doped into the polymer of the positive electrode and dedoped, and the electrolyte dissociates from the negative electrode Li + ion It suffices that the lithium salt functions only as the conductor, and it is not necessary to dissolve the lithium salt in an amount corresponding to the active material in the liquid electrolyte. Therefore, it is not necessary to use a liquid electrolyte, and a solid electrolyte can be used.

高分子固体電解質としては、例えばエチレンオキサイ
ド−プロピレンオキサイド共重合体と3価アルコールと
架橋剤としての役割を果たす2,4−トリレンジイソシア
ネートなどの2官能を有する有機物とを反応させること
によって得られた架橋ポリマーとリチウム塩との複合
体、ポリエチレンオキサイドとリチウム塩との複合体、
ポリプロピレンオキサイドとリチウム塩との複合体、エ
チレンオキサイド−プロピレンオキサイド共重合体とリ
チウム塩との複合体、ポリエチレンオキサイドまたはポ
リプロピレンオキサイドと3価アルコールと前記2,4−
トリレンジイソシアナートなどの2官能を有する有機物
とを反応させて得られた架橋ポリマーとリチウム塩との
複合体、あるいは本出願人によって出願された特願昭62
−265806号に開示されるポリエチレンオキサイド、ポリ
プロピレンオキサイド、エチレンオキサイド−プロピレ
ンオキサイド共重合体などのポリエーテルグリコールと
2,4−トリレンジイソジアナートなどの2官能を有する
有機物と4価以上の多価アルコールとを反応させること
によって得られた架橋ポリマーとリチウム塩との複合
体、同じく特願昭62−265809号に開示されるポリエーテ
ルグリコールと2,4−トリレンジイソシアナートなどの
2官能を有する有機物とOH基の一部をポリエチレングリ
コールモノメチルエーテルとの反応により封鎖した3価
以上の多価アルコールとを反応させることによって得ら
れた架橋ポリマーとリチウム塩との複合体、同じく特願
昭62−265810号に開示されるポリグリセリンにポリエー
テルグリコールを付加した一般式(III) (式中、Rはポリエチレングリコール、ポリプロピレン
グリコールまたはエチレンオキサイド−プロピレンオキ
サイド共重合体であり、nは2〜50である) で示されるポリマーを架橋剤で架橋した架橋ポリマーと
リチウム塩との複合体、同じく特願昭62−265811号に開
示されるアリル化ポリエーテルグリコールをビニル重合
した一般式(IV) (式中、R1はHまたはCH3であり、lは3〜360、mは2
〜40である) で示されるポリマーを架橋剤で架橋したポリマーとリチ
ウム塩との複合体などがあげられる。そして、上記導電
性ポリマーと複合体を形成するのに使用するリチウム塩
としては、例えばLiCF3SO3、LiCF3CO2、LiBr、LiI、LiS
CN、LiBF4、LiClO4、LiAsF6などがあげられる。
The polymer solid electrolyte is obtained by reacting, for example, an ethylene oxide-propylene oxide copolymer with a trihydric alcohol and a bifunctional organic substance such as 2,4-tolylene diisocyanate which functions as a crosslinking agent. Complex of crosslinked polymer and lithium salt, complex of polyethylene oxide and lithium salt,
Composite of polypropylene oxide and lithium salt, composite of ethylene oxide-propylene oxide copolymer and lithium salt, polyethylene oxide or polypropylene oxide, trihydric alcohol and the above 2,4-
A complex of a crosslinked polymer obtained by reacting an organic compound having a bifunctionality such as tolylene diisocyanate with a lithium salt, or Japanese Patent Application No. Sho 62-filed by the present applicant.
-Polyether glycols such as polyethylene oxide, polypropylene oxide, ethylene oxide-propylene oxide copolymers disclosed in No. 265806 and
A complex of a crosslinked polymer and a lithium salt, which is obtained by reacting a bifunctional organic compound such as 2,4-tolylene diisodianate with a polyhydric alcohol having a valence of 4 or more, and Japanese Patent Application No. 62-265809. And a trihydric or higher polyhydric alcohol in which a part of the OH group is blocked by a reaction with polyethylene glycol monomethyl ether. A complex of a crosslinked polymer and a lithium salt obtained by the reaction, and a general formula (III) obtained by adding polyether glycol to polyglycerol disclosed in Japanese Patent Application No. 62-265810. (In the formula, R is polyethylene glycol, polypropylene glycol, or ethylene oxide-propylene oxide copolymer, and n is 2 to 50) A composite of a cross-linked polymer and a lithium salt, which is cross-linked with a cross-linking agent. , A general formula (IV) obtained by vinyl-polymerizing an allylated polyether glycol disclosed in Japanese Patent Application No. 62-265811. (In the formula, R 1 is H or CH 3 , l is 3 to 360, and m is 2
A complex of a polymer obtained by cross-linking the polymer represented by the formula (4) with a cross-linking agent and a lithium salt. And, as the lithium salt used to form the composite with the conductive polymer, for example, LiCF 3 SO 3 , LiCF 3 CO 2 , LiBr, LiI, LiS
Examples include CN, LiBF 4 , LiClO 4 , and LiAsF 6 .

本発明において、上記導電性ポリマーとポリマーアニ
オンとの錯形成物を正極に用いるには、通常、上記錯形
成物の粉末をペレット状に加圧成形するか、またはシー
ト状に加圧成形する。その際、ポリテトラフルオロエチ
レンなどの結着剤を上記錯形成物に添加しておいてもよ
い。また、上記導電性ポリマーとポリマーアニオンとの
錯形成物に高分子固体電解質を添加して成形体にし、そ
れを正極に用いると、正極内部でのイオン伝導性が向上
して内部抵抗が小さくなるので特に好ましい。
In the present invention, in order to use the complex-formed product of the conductive polymer and the polymer anion as a positive electrode, the powder of the complex-formed product is usually pressure-molded into a pellet or a sheet. At that time, a binder such as polytetrafluoroethylene may be added to the complex-forming product. Further, when a solid polymer electrolyte is added to the complexed product of the above-mentioned conductive polymer and polymer anion to form a molded body, which is used for the positive electrode, the ionic conductivity inside the positive electrode is improved and the internal resistance is reduced. Therefore, it is particularly preferable.

負極にはリチウムまたはリチウム合金が用いられる。
上記リチウム合金としては、例えばリチウム−アルミニ
ウム合金、リチウム−錫合金、リチウム−亜鉛合金、リ
チウム−鉛合金、リチウム−ビスマス合金、リチウム−
ケイ素合金、リチウム−アンチモン合金、リチウム−マ
グネシウム合金、リチウム−インジウム合金、リチウム
−ガリウム合金、リチウム−ゲルマニウム合金、リチウ
ム−ガリウム−インジウム合金などが用いられる。また
それらのリチウム合金にさらに他の金属を添加したもの
も負極に用いることができる。
Lithium or a lithium alloy is used for the negative electrode.
Examples of the lithium alloy include lithium-aluminum alloy, lithium-tin alloy, lithium-zinc alloy, lithium-lead alloy, lithium-bismuth alloy, lithium-
A silicon alloy, a lithium-antimony alloy, a lithium-magnesium alloy, a lithium-indium alloy, a lithium-gallium alloy, a lithium-germanium alloy, a lithium-gallium-indium alloy, or the like is used. Further, those obtained by adding another metal to these lithium alloys can also be used for the negative electrode.

〔実施例〕〔Example〕

実施例1 エチレンオキサイド−プロピレンオキサイド共重合体
とグリセリンと2,4−トリレンジイソシアナートとを反
応させて得られた架橋ポリマーを、LiCF3SO3をアセトン
に1mol/の濃度で溶解したアセトン溶液に浸漬して、
上記ポリマーにそのエチレンオキサイド−プロピレンオ
キサイド共重合体部分のエーテル結合15個に対してLiCF
3SO3を1個の割合で錯体化させて高分子固体電解質を得
た。この高分子固体電解質を以下においてはトリオール
(PEO−PPO)−LiCF3SO3系高分子固体電解質と表現す
る。
Example 1 Ethylene oxide - acetone crosslinked polymer obtained by reacting propylene oxide copolymer and the glycerol and 2,4-tolylene diisocyanate, a LiCF 3 SO 3 was dissolved at a concentration of 1mol / acetone solution Soak in
In the above-mentioned polymer, LiCF was added to 15 ethylene bonds of the ethylene oxide-propylene oxide copolymer part.
A solid polymer electrolyte was obtained by complexing 3 SO 3 at a rate of one. The solid polymer electrolyte expressed as triol (PEO-PPO) -LiCF 3 SO 3 polymer solid electrolyte in the following.

つぎに、ポリビニルスルホン酸を溶解した水溶液中に
アニオンを溶解し、この中に酸化剤として(NH42Cr2O
7水溶液を添加して、アニリンを重合させ、ポリアニリ
ンとポリビニルスルホン酸との錯形成物を得た。
Next, the anion was dissolved in an aqueous solution in which polyvinyl sulfonic acid was dissolved, and (NH 4 ) 2 Cr 2 O was added as an oxidant in the solution.
7 Aqueous solution was added to polymerize aniline to obtain a complex-formed product of polyaniline and polyvinyl sulfonic acid.

上記ポリアニリンとポリビニルスルホン酸との錯形成
物と、前記トリオール(PEO−PPO)−LiCF3SO3系高分子
固体電解質とを重量比で70:30の割合で混合した後、80
℃に加熱して厚さ0.4mmのシート状にし、これを直径10m
mに打ち抜いて正極とした。電解質には前記トリオール
(PEO−PPO)−LiCF3SO3系高分子固体電解質を厚さ0.1m
mにシート化し、それを直径10mmに打ち抜いたものを用
い、負極には厚さ0.1mmで直径10mmのリチウム板を用い
て、第1図に示す電池(モデルセル)を作製した。第1
図において、1は上記の正極であり、2は電解質、3は
負極である。4および5は集電体で、6および7はリー
ド線であり、8はポリプロピレン製のセル容器、9はポ
リプロピレン製の封口体である。
After mixing at a ratio of 70:30 and complexing of the said polyaniline and polyvinyl sulfonic acid, and said triol (PEO-PPO) -LiCF 3 SO 3 polymer solid electrolyte in a weight ratio of 80
It is heated to ℃ and made into a sheet with a thickness of 0.4 mm.
It was punched out into m to obtain a positive electrode. The triol (PEO-PPO) -LiCF 3 SO 3 based solid polymer thickness 0.1m electrolyte in the electrolyte
A battery (model cell) shown in FIG. 1 was prepared using a sheet made into m and punched out to have a diameter of 10 mm, and using a lithium plate having a thickness of 0.1 mm and a diameter of 10 mm as a negative electrode. First
In the figure, 1 is the above positive electrode, 2 is an electrolyte, and 3 is a negative electrode. 4 and 5 are current collectors, 6 and 7 are lead wires, 8 is a polypropylene cell container, and 9 is a polypropylene sealing body.

実施例2 ポリエチレンオキサイドと2,4−トリレンジイソシア
ナートとを反応させて得られた架橋ポリマーを、LiBF4
をアセトンに1mol/の濃度で溶解したアセトン溶液に
浸漬して、上記ポリマーにエチレンオキサイドのエーテ
ル結合30個に対してLiBF4を1個の割合で錯体化させて
高分子固体電解質を得た。この高分子固体電解質を以下
においてはPEO−LiBF4系高分子固体電解質と表現する。
Example 2 A crosslinked polymer obtained by reacting polyethylene oxide with 2,4-tolylene diisocyanate was treated with LiBF 4
Was immersed in an acetone solution in which acetone was dissolved at a concentration of 1 mol / mol, and LiBF 4 was complexed with the above polymer at a ratio of 30 ether bonds of ethylene oxide to obtain a solid polymer electrolyte. The solid polymer electrolyte expressed as PEO-LiBF 4 polymer solid electrolyte in the following.

つぎに、フッ素化イオン交換樹脂〔デュポン社製、ナ
フィオン(商品名)、なお、このナフィオンの構造式は
後記のとおりであり、スルホン基を有している〕の5%
水性分散液と2−プロパノールとの混合液40mlに、アニ
リン2mlを添加し、白金板(20mm×20mm)上に電位幅−
0.2V〜+0.9V(S.C.E、なお、S.C.Eとは標準カロメル電
極である)、走査速度100mV/secで、電解重合法により
アニリンを重合してポリアニリンとフッ素化ポリマーア
ニオンとの錯形成物を合成した。得られた錯形成物を充
分に水洗後、50℃で真空乾燥した。
Next, 5% of fluorinated ion exchange resin [Nafion (trade name) manufactured by DuPont, the structural formula of this Nafion is as described below and has a sulfone group]
2 ml of aniline was added to 40 ml of the mixture of the aqueous dispersion and 2-propanol, and the potential range on the platinum plate (20 mm x 20 mm)
0.2V to + 0.9V (SCE, SCE is a standard calomel electrode), scanning speed 100mV / sec, aniline is polymerized by electrolytic polymerization method to synthesize a complex of polyaniline and fluorinated polymer anion. did. The obtained complex-formed product was thoroughly washed with water and then vacuum dried at 50 ° C.

上記ポリアニリンとフッ素化ポリマーアニオンとの錯
形成物と前記PEO−LiBF4系高分子固体電解質とを重量比
80:20の割合で混合した後、80℃に加熱して厚さ0.4mmの
シート状にし、これを直径10mmに打ち抜いて正極とし
た。電解質には前記PEO−LiBF4系高分子固体電解質を厚
さ0.1mmにシート化し、それを直径10mmに打ち抜いたも
のを用い、負極には厚さ0.1mmで直径10mmのリチウム板
を用い、他の構成は実施例1と同様にして第1図に示す
構造の電池(モデルセル)を作製した。
The weight ratio of the complexed product of the polyaniline and the fluorinated polymer anion to the PEO-LiBF 4 system solid polymer electrolyte
After mixing at a ratio of 80:20, it was heated to 80 ° C. to form a sheet having a thickness of 0.4 mm, which was punched out to a diameter of 10 mm to obtain a positive electrode. As the electrolyte, the above PEO-LiBF 4 polymer solid electrolyte was formed into a sheet with a thickness of 0.1 mm and punched to have a diameter of 10 mm, and used as the negative electrode, and a lithium plate with a thickness of 0.1 mm and a diameter of 10 mm was used as the negative electrode. In the same manner as in Example 1, a battery (model cell) having the structure shown in FIG. 1 was produced.

なお、上記アニリンの重合に際して用いられたフッ素
化イオン交換樹脂ナフィオン(商品名)の構造式は次の
とおりである。
The structural formula of the fluorinated ion exchange resin Nafion (trade name) used in the polymerization of aniline is as follows.

比較例1 固体電解質としてポリエチレンオキサイドとLiClO4
の複合体(以下、PEO−LiClO4系高分子固体電解質とい
う)を用い、負極にはリチウムを、正極にはHClO4を0.2
mol/溶解した水溶液にアニリンを0.1mol/溶解し、
白金板を電極として電解重合法で重合し、水洗乾燥して
得たポリアニリンと上記PEO−LiClO4系高分子固体電解
質との重量比70:30の混合物を、それぞれ前記実施例1
の場合と同寸法で用いて、第1図に示す構造の電池(モ
デルセル)を作製した。なお、この比較例1の電池は、
前述したような固体電解質系のポリマー電池の試みに準
じて作製した電池である。ただし、導電性ポリマーとし
てポリピロールを用いると、ポリピロールとポリアニリ
ンとの差によって他の構成の差に基づく電池特性の相違
が不明瞭になるので、導電性ポリマーとしては実施例1
にあわせてポリアニリンを用いている。
Comparative Example 1 A composite of polyethylene oxide and LiClO 4 (hereinafter referred to as PEO-LiClO 4 -based polymer solid electrolyte) was used as a solid electrolyte, lithium was used for the negative electrode, and HClO 4 was used for the positive electrode at 0.2
aniline 0.1mol / dissolved in mol / dissolved aqueous solution,
A mixture of polyaniline obtained by polymerizing by electrolytic polymerization using a platinum plate as an electrode, washed with water and dried, and the PEO-LiClO 4 -based polymer solid electrolyte in a weight ratio of 70:30 was prepared in the same manner as in Example 1 above.
A battery (model cell) having the structure shown in FIG. The battery of Comparative Example 1 was
It is a battery produced in accordance with the above-described trial of the solid electrolyte type polymer battery. However, when polypyrrole is used as the conductive polymer, a difference between the polypyrrole and the polyaniline makes a difference in battery characteristics due to a difference in other constitution unclear.
Polyaniline is used according to.

これら実施例1〜2の電池および比較例1の電池を80
℃、50μAで3.9Vに充電した後、10μAで放電したとき
の放電特性を第2図に示す。
The batteries of Examples 1 and 2 and the battery of Comparative Example 1 were
FIG. 2 shows the discharge characteristics when the battery was charged at 3.9 V at 50 ° A at 50 ° C and then discharged at 10 μA.

また、上記実施例1〜2の電池および比較例1の電池
を80℃、50μAで、充電終止電圧3.9V、放電終止電圧2.
0Vの充放電を行ったときのサイクル特性を第3図に示
す。
In addition, the batteries of Examples 1 and 2 and the battery of Comparative Example 1 were tested at 80 ° C. and 50 μA at a charge end voltage of 3.9 V and a discharge end voltage of 2.
FIG. 3 shows the cycle characteristics when charging / discharging at 0V.

第2図において、縦軸は電圧を示し、横軸は放電電気
量を示すが、この第2図に示されるように、電圧が1Vに
低下するまでの放電電気量は、実施例1〜2の電池の方
が比較例1の電池よりはるかに大きい。また、第3図に
おいて、縦軸は各サイクルごとの放電電気量を示し、横
軸はサイクル数を示すが、同じサイクル数で比較した場
合、実施例1〜2の電池の方が比較例1の電池より、大
きな放電電気量を示す。このように、実施例1〜2の電
池は、従来提案の全固体系ポリマー電池に相当する比較
例1の電池に比べて、放電電気量が大きく、実用上、充
分な電池性能を有していた。
In FIG. 2, the vertical axis represents the voltage and the horizontal axis represents the discharge electricity amount. As shown in FIG. 2, the discharge electricity amount until the voltage decreases to 1 V is the same as in Examples 1 to 2. The battery of 1 is much larger than the battery of Comparative Example 1. Further, in FIG. 3, the vertical axis represents the amount of electricity discharged for each cycle, and the horizontal axis represents the number of cycles. However, when compared with the same number of cycles, the batteries of Examples 1 and 2 were compared with Comparative Example 1 The discharge amount of electricity is larger than that of the battery. As described above, the batteries of Examples 1 and 2 have a large amount of discharged electricity and have sufficient battery performance in practical use as compared with the battery of Comparative Example 1 corresponding to the conventionally proposed all-solid-state polymer battery. It was

上記のように、本発明によれば、液状電解質を用いな
い全固体系のポリマー電池でありながら、従来技術では
到達し得なかった実用性のある電池性能を有し得るよう
になったので、実用化にあたって、外装体には強度のあ
る金属製のものを必要とせず、外装体は外気と遮断でき
る程度のものであればよいので、例えばポリクロロトリ
フルオロエチレンシートなど樹脂製の外装体を使用する
ことができるため、柔軟性、形状自在性、封止の容易性
や軽量性などを有し、かつ実用性のある電池性能を備え
た全固体系のポリマー電池を実現することができるよう
になった。
As described above, according to the present invention, it is possible to have a practical battery performance that could not be achieved by the conventional technique, even though it is an all-solid-state polymer battery that does not use a liquid electrolyte. For practical use, a strong metal thing is not required for the outer package, and the outer package need only be one that can block the outside air. For example, use a resin outer package such as a polychlorotrifluoroethylene sheet. Because it can be used, it is possible to realize an all-solid-state polymer battery that has flexibility, shape flexibility, ease of sealing and lightness, and practical battery performance. Became.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では、正極にリチウムイ
オンのドープ、脱ドープができる導電性ポリマーとポリ
マーアニオンとの錯形成物を用いることによって、電解
質に高分子固体電解質を用いることを可能にし、全固体
系のポリマー電池を提供することができた。
As described above, in the present invention, lithium ion doping in the positive electrode, by using a complex formation product of a conductive polymer and polymer anion capable of dedoping, it is possible to use a solid polymer electrolyte as an electrolyte, An all-solid-state polymer battery could be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るポリマー電池の一例を示す断面図
である。第2図は実施例1〜2の電池と比較例1の電池
の放電特性図、第3図は実施例1〜2の電池と比較例1
の電池のサイクル特性図である。 1……正極、2……電解質、3……負極
FIG. 1 is a sectional view showing an example of a polymer battery according to the present invention. FIG. 2 is a discharge characteristic diagram of the batteries of Examples 1 and 2 and the battery of Comparative Example 1, and FIG. 3 is the battery of Examples 1 and 2 and Comparative Example 1
3 is a cycle characteristic diagram of the battery of FIG. 1 ... Positive electrode, 2 ... Electrolyte, 3 ... Negative electrode

フロントページの続き (72)発明者 服部 浩 大阪府茨木市丑寅1丁目1番88号 日立 マクセル株式会社内 (56)参考文献 特開 昭63−39916(JP,A)Continuation of front page (72) Inventor Hiroshi Hattori 1-188, Tora, Ibaraki-shi, Osaka Inside Hitachi Maxell Co., Ltd. (56) Reference JP-A-63-39916 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムまたはリチウム合金を負極に用
い、導電性ポリマーとポリマーアニオンとの錯形成物を
正極に用い、電解質として高分子固体電解質を用いたこ
とを特徴とするポリマー電池。
1. A polymer battery comprising lithium or a lithium alloy as a negative electrode, a complexed product of a conductive polymer and a polymer anion as a positive electrode, and a solid polymer electrolyte as an electrolyte.
【請求項2】正極が導電性ポリマーとポリマーアニオン
との錯形成物と高分子固体電解質の混合物である請求項
1記載のポリマー電池。
2. The polymer battery according to claim 1, wherein the positive electrode is a mixture of a complexed product of a conductive polymer and a polymer anion and a solid polymer electrolyte.
【請求項3】導電性ポリマーがポリアニリンで、ポリマ
ーアニオンがポリビニルスルホン酸である請求項1また
は請求項2記載のポリマー電池。
3. The polymer battery according to claim 1, wherein the conductive polymer is polyaniline and the polymer anion is polyvinyl sulfonic acid.
【請求項4】導電性ポリマーがポリアニリンで、ポリマ
ーアニオンがフッ素化ポリマーアニオンである請求項1
または請求項2記載のポリマー電池。
4. The conductive polymer is polyaniline and the polymer anion is a fluorinated polymer anion.
Alternatively, the polymer battery according to claim 2.
JP63142498A 1988-06-09 1988-06-09 Polymer battery Expired - Fee Related JP2528693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63142498A JP2528693B2 (en) 1988-06-09 1988-06-09 Polymer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63142498A JP2528693B2 (en) 1988-06-09 1988-06-09 Polymer battery

Publications (2)

Publication Number Publication Date
JPH01311561A JPH01311561A (en) 1989-12-15
JP2528693B2 true JP2528693B2 (en) 1996-08-28

Family

ID=15316733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63142498A Expired - Fee Related JP2528693B2 (en) 1988-06-09 1988-06-09 Polymer battery

Country Status (1)

Country Link
JP (1) JP2528693B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315951A (en) * 1988-06-16 1989-12-20 Tokuyama Soda Co Ltd Electrochemical cell
US5429891A (en) * 1993-03-05 1995-07-04 Bell Communications Research, Inc. Crosslinked hybrid electrolyte film and methods of making and using the same
JP2014127274A (en) * 2012-12-25 2014-07-07 Nitto Denko Corp Nonaqueous electrolyte secondary battery, and positive electrode sheet used for the same

Also Published As

Publication number Publication date
JPH01311561A (en) 1989-12-15

Similar Documents

Publication Publication Date Title
US5597661A (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
JP3348405B2 (en) Secondary battery and capacitor using indole polymer
US10892521B2 (en) Solid polymer electrolyte based on modified cellulose and its use in lithium or sodium secondary batteries
JP4218183B2 (en) Lithium battery
EP0282068B1 (en) Nonaqueous secondary battery
KR101768452B1 (en) Anode, all solid lithium secondary batteries including the same and manufacturing method for the same
CN105308778A (en) Electricity-storage-device electrode, manufacturing method therefor, and electricity-storage device using said electrode
Lee et al. Rechargeable thin film batteries of polypyrrole and polyaniline
US6274268B1 (en) Polymer secondary battery and method of making same
JPH0864203A (en) Electrode, manufacture thereof, and secondary battery using it
KR100389713B1 (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
JP2528693B2 (en) Polymer battery
JP3144410B2 (en) Battery and capacitor using quinoxaline resin
WO2014104005A1 (en) Nonaqueous electrolyte secondary battery
JP2014053298A (en) Cathode for power storage device and method of manufacturing the same, cathode active material for power storage device and method of manufacturing the same, and power storage device
JP3115153B2 (en) Electrochemical devices and secondary batteries
JP2014053297A (en) Cathode for power storage device, power storage device, and method of manufacturing slurry for power storage device cathode
KR100347882B1 (en) Conducting Polymer/Manganese Oxide Composite Cathode Material for Lithium Secondary Batteries and Method for Making Same
JPH10154512A (en) Positive electrode material for secondary battery
JP3723140B2 (en) Power storage device using quinoxaline compound
JP2934450B2 (en) Polymer solid electrolyte and secondary battery using the same
JPH1197026A (en) Electrode for li cell
JP3215478B2 (en) Battery
USH1462H (en) Solid state electrochemical lithium/polymer cell
KR100457093B1 (en) Fabrication of a polymer electrolyte for lithium/sulfur battery and room temperature lithium/sulfur battery containing the same with one flat voltage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees