JPH10154512A - Positive electrode material for secondary battery - Google Patents
Positive electrode material for secondary batteryInfo
- Publication number
- JPH10154512A JPH10154512A JP8313406A JP31340696A JPH10154512A JP H10154512 A JPH10154512 A JP H10154512A JP 8313406 A JP8313406 A JP 8313406A JP 31340696 A JP31340696 A JP 31340696A JP H10154512 A JPH10154512 A JP H10154512A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- electrode material
- functional group
- acid
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は二次電池用正極材料
に関し、特に従来のものと比べて単位重量当たりのエネ
ルギー密度及び単位体積当たりのエネルギー密度が高い
二次電池用正極材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode material for a secondary battery, and more particularly to a positive electrode material for a secondary battery having higher energy density per unit weight and higher energy density per unit volume than conventional ones.
【0002】[0002]
【従来の技術】リチウム、リチウム合金あるいはリチウ
ムを含有し得る炭素材料を負極とする非水電解質二次電
池は、起電力が高く、従来の鉛蓄電池やニッケルカドミ
ウム蓄電池に比べ高エネルギー密度になることが期待さ
れている。このような二次電池の正極材料としては、二
硫化チタンや二硫化モリブデンなどの金属硫化物やコバ
ルト酸リチウムやニッケル酸リチウム等の金属酸化物を
用いることが検討され、実用電池が開発されてきてい
る。2. Description of the Related Art A nonaqueous electrolyte secondary battery using lithium, lithium alloy or a carbon material capable of containing lithium as a negative electrode has a high electromotive force and a higher energy density than conventional lead storage batteries and nickel cadmium storage batteries. Is expected. The use of metal sulfides such as titanium disulfide and molybdenum disulfide and metal oxides such as lithium cobalt oxide and lithium nickel oxide as positive electrode materials for such secondary batteries has been studied, and practical batteries have been developed. ing.
【0003】しかし、それらの材料は資源的な問題を抱
え、例えば電気自動車用の電源等、広い分野にわたって
大型電池が必要とされる状況では、材料供給の点から最
適な電極構成要素ではない。However, these materials have resource problems, and are not optimal electrode components from the viewpoint of material supply in a situation where a large battery is required in a wide field such as a power supply for an electric vehicle.
【0004】ある種の有機導電性高分子,例えばポリア
ニリンやポリピロールなどは電気導電性をもち、また酸
化還元活性を示すので、これを正極及び/又は負極材料
に用いた二次電池が考案された。有機導電性高分子は、
上記の金属硫化物や金属酸化物と比べて、材料供給の点
から問題が少なく、また種々の構造及び性質を持つもの
が合成化学的に設計できる利点がある。Certain organic conductive polymers, such as polyaniline and polypyrrole, have electrical conductivity and exhibit redox activity, and thus secondary batteries using such materials as positive and / or negative electrode materials have been devised. . Organic conductive polymers are
Compared with the above-mentioned metal sulfides and metal oxides, there are fewer problems in terms of material supply, and there is an advantage that those having various structures and properties can be synthetically designed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、例えば
ポリアニリンを正極材料として用いた電池では、電池の
充放電の際に電解質の陰イオンのドーピング及び脱ドー
ピングが起こる。そのため、電池容器内には正極材料の
酸化還元当量と等しい以上の電解質を必要とし、その結
果電池のエネルギー密度は電極構成要素のみから予想さ
れた値より遥かに低い値しか得られない。そこで、電池
の充放電過程で電解液の移動を伴わず、かつ高い充放電
容量を持つ高分子材料が要望されている。However, in a battery using, for example, polyaniline as a positive electrode material, doping and undoping of an anion of an electrolyte occur during charging and discharging of the battery. Therefore, the electrolyte required in the battery container is equal to or greater than the oxidation-reduction equivalent of the positive electrode material. As a result, the energy density of the battery can be much lower than the value expected only from the electrode components. Therefore, there is a demand for a polymer material that does not involve movement of an electrolyte during the charge and discharge process of a battery and has a high charge and discharge capacity.
【0006】本発明はこうした事情を考慮してなされた
もので、酸化還元活性なキノン系官能基を有する構造を
もつ導電性高分子あるいは酸化還元活性なキノン系官能
基を有する単位をその繰り返し構造の中に含む導電性高
分子からなる構成とすることにより、従来の二次電池用
正極材料に比べ、単位重量当たりの容量が大きい二次電
池用正極材料を提供することを目的とする。The present invention has been made in view of such circumstances, and has been made of a conductive polymer having a structure having a redox-active quinone-based functional group or a unit having a redox-active quinone-based functional group. An object of the present invention is to provide a positive electrode material for a secondary battery having a larger capacity per unit weight than that of a conventional positive electrode material for a secondary battery, by adopting a configuration made of a conductive polymer contained therein.
【0007】[0007]
【課題を解決するための手段】本願第1の発明は、酸化
還元活性なキノン系官能基を有する構造をもつ導電性高
分子からなることを特徴とする二次電池用正極材料であ
る。本願第2の発明は、酸化還元活性なキノン系官能基
を有する単位をその繰り返し構造の中に含む導電性高分
子からなることを特徴とする二次電池用正極材料であ
る。Means for Solving the Problems The first invention of the present application is a positive electrode material for a secondary battery, comprising a conductive polymer having a structure having a quinone-based functional group having redox activity. A second invention of the present application is a positive electrode material for a secondary battery, comprising a conductive polymer containing a unit having a quinone-based functional group having redox activity in its repeating structure.
【0008】本発明者らは、本発明における正極材料
は、少なくとも1種類以上の酸化還元活性なキノン系官
能基を有する構造を特徴とする導電性高分子、及び少な
くとも1種類以上の酸化還元活性なキノン系官能基を有
する単位をその繰り返し構造の中に含む導電性高分子で
あり、従来の導電性高分子に比べて、分子構造当たりの
移動電子数が多くなるため著しく高い容量密度を示し、
またこれを正極とする二次電池では電解液の必要最小限
量が少ないためエネルギー密度が高くなり、これにより
高性能な二次電池が実現できることを見い出だした。The present inventors have found that the cathode material of the present invention comprises a conductive polymer characterized by having at least one or more redox-active quinone functional groups, and at least one or more redox-active quinone functional groups. Is a conductive polymer that contains a unit having a unique quinone-based functional group in its repeating structure, and has a significantly higher capacity density due to a higher number of mobile electrons per molecular structure than conventional conductive polymers. ,
In addition, they have found that a secondary battery using this as a positive electrode has a high energy density because the necessary minimum amount of the electrolyte is small, thereby realizing a high-performance secondary battery.
【0009】本発明の正極材料を得るための方法を、以
下に説明する。まず、メタ位またはオルト位に2つのメ
トキシ基を持つアミノベンゼン類、例えば下記化1の
(1) に示す2,5−ジメトキシアニリン、下記化1の
(2) に示す3,3−ジメトキシアニリン、下記化1の
(3) に示す3,6−ジメトキシ−1,2−ジアミノベン
ゼン、メタ位またはオルト位に2つのメトキシ基を持つ
アミノナフタレン類、例えば下記化1の(4) に示す5,
8−ジメトキシ−1−アミノナフタレン、下記化1の
(5) に示す5,6−ジメトキシ−1−アミノナフタレ
ン、またはメタ位またはオルト位に2つのメトキシ基を
持つアミノアントラセン類、例えば下記化1の(6) に示
す1,4,6,9−テトラメトキシ−5−アミノアント
ラセンなど、分子内に2つ以上のメトキシ基と1つ以上
のアミノ基を含む芳香族化合物を反応基質として含み、
電解質として過塩素酸、塩酸または硫酸などの無機酸ま
たは酢酸、メタンスルホン酸、トリフルオロメタンスル
ホン酸等の有機酸を含む水性溶液または有機溶媒溶液を
用い、電解法によってそれら基質の酸化重合を行ない、
電極上に不溶性の導電性高分子膜を得る。The method for obtaining the cathode material of the present invention will be described below. First, aminobenzenes having two methoxy groups at the meta or ortho position, for example,
2,5-dimethoxyaniline shown in (1),
3,3-dimethoxyaniline shown in (2),
3,6-dimethoxy-1,2-diaminobenzene represented by (3), aminonaphthalenes having two methoxy groups at the meta or ortho position, for example, 5,5 represented by the following formula (4)
8-dimethoxy-1-aminonaphthalene,
5,6-dimethoxy-1-aminonaphthalene shown in (5) or aminoanthracenes having two methoxy groups in the meta or ortho position, for example, 1,4,6,9 shown in the following chemical formula (6) Including, as a reaction substrate, an aromatic compound containing two or more methoxy groups and one or more amino groups in the molecule, such as -tetramethoxy-5-aminoanthracene;
Using an aqueous solution or an organic solvent solution containing an inorganic acid such as perchloric acid, hydrochloric acid or sulfuric acid or an acetic acid, methanesulfonic acid, or an organic acid such as trifluoromethanesulfonic acid as an electrolyte, and performing oxidative polymerization of those substrates by an electrolytic method,
An insoluble conductive polymer film is obtained on the electrode.
【0010】[0010]
【化1】 Embedded image
【0011】この際、有機溶媒としては特に限定するも
のではなく、反応基質及び電解質の双方を溶解するもの
であればよいが、重合生成物を効率よく得るためには、
水との混合溶媒を用いることもできる。基質の重合反応
性を高くするために、また重合生成物の性質を改善する
ために、前記基質を含む電解質溶液にアニリンまたはピ
ロールを添加し、これを電解酸化法により重合すること
により、それぞれポリアニリンまたはポリピロール構造
にキノン系官能基が複合化した重合物としてもよい。At this time, the organic solvent is not particularly limited as long as it can dissolve both the reaction substrate and the electrolyte. However, in order to obtain a polymerization product efficiently,
A mixed solvent with water can also be used. In order to increase the polymerization reactivity of the substrate and to improve the properties of the polymerization product, aniline or pyrrole is added to the electrolyte solution containing the substrate, and the aniline or pyrrole is polymerized by an electrolytic oxidation method to obtain polyaniline, respectively. Alternatively, a polymer in which a quinone functional group is complexed with a polypyrrole structure may be used.
【0012】次に、前記方法によって得られた重合物
を、過塩素酸、塩酸または硫酸等の無機酸、メタンスル
ホン酸、トリフルオロメタンスルホン酸等の有機酸を含
む水性溶液、有機溶媒溶液、またはそれらの混合溶液中
で電位走査することにより重合中のメトキシ基を加水分
解してヒドロキシル基に変換し、酸化還元活性なキノン
系感応基を有する導電性高分子とする。この間の反応過
程は、上記化1の(1) に示す2,5−ジメトキシアニリ
ンを基質として用いた場合には、下記化2に示す式(1)
のように表される。Next, an aqueous solution containing an inorganic acid such as perchloric acid, hydrochloric acid or sulfuric acid, an organic acid such as methanesulfonic acid or trifluoromethanesulfonic acid, an organic solvent solution, By conducting a potential scan in the mixed solution thereof, the methoxy group during polymerization is hydrolyzed and converted into a hydroxyl group to obtain a conductive polymer having a quinone-sensitive group having redox activity. In the reaction process during this time, when 2,5-dimethoxyaniline shown in the above chemical formula (1) is used as a substrate, the formula (1) shown in the following chemical formula (2)
It is represented as
【0013】[0013]
【化2】 Embedded image
【0014】この発明に係る二次電池の基本構成要素と
しては、本発明の材料を使用した正極、さらに負極、非
水溶媒、支持電解質、セパレータ、集電体及び容器等が
挙げられる。The basic components of the secondary battery according to the present invention include a positive electrode using the material of the present invention, a negative electrode, a non-aqueous solvent, a supporting electrolyte, a separator, a current collector, a container, and the like.
【0015】前記負極材料としては、特に限定されない
が、例えば、金属リチウム、リチウム含有合金、リチウ
ムを含むことのできる炭素材料及び導電性高分子が使用
される。前記非水溶媒としては、特に限定されないが、
支持電解質を溶解し、かつ非プロトン性であればよく、
例えばカーボネート類、エーテル類、ニトリル類、エス
テル類、含硫黄有機化合物を挙げることができる。The negative electrode material is not particularly limited, but, for example, lithium metal, a lithium-containing alloy, a carbon material containing lithium, and a conductive polymer are used. The non-aqueous solvent is not particularly limited,
It is only necessary to dissolve the supporting electrolyte and be aprotic,
Examples thereof include carbonates, ethers, nitriles, esters, and sulfur-containing organic compounds.
【0016】具体的には、プロピレンカーボネート,エ
チレンカーボネート,ジエチルカーボネート,ジメチル
カーボネート,ジメトキシエタン,テトラヒドロフラ
ン,アセトニトリル,ジオキサン,スルホラン,蟻酸メ
チル,酢酸エチル,プロピオン酸メチル,ブチロラクト
ンなどが単独で、あるいは2種類以上が適宜混合して使
用される。Specifically, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, dimethoxyethane, tetrahydrofuran, acetonitrile, dioxane, sulfolane, methyl formate, ethyl acetate, methyl propionate, butyrolactone, etc. are used alone or in combination. The above may be used as an appropriate mixture.
【0017】支持電解質としては、特に限定されない
が、例えば、LiClO4 ,LiBF4 ,LiPF6 ,
LiCF3 SO3 ,LiN(CF3 SO2 ) 2 などを使
用できる。The supporting electrolyte is not particularly limited. For example, LiClO 4 , LiBF 4 , LiPF 6 ,
LiCF 3 SO 3 and LiN (CF 3 SO 2 ) 2 can be used.
【0018】ここで、本発明に係る電池の反応様式を、
正極にポリ(2,5−ジヒドロキシアニリン)を、負極
に金属リチウムを用いた場合を例として、それぞれ下記
化3に示す式(2) ,下記化3に示す式(3) に示す。Here, the reaction mode of the battery according to the present invention is as follows.
For example, the case where poly (2,5-dihydroxyaniline) is used for the positive electrode and metallic lithium is used for the negative electrode is shown in the following formula (2) and the following formula (3), respectively.
【0019】[0019]
【化3】 Embedded image
【0020】[0020]
【発明の実施の形態】以下、実施例により本発明を具体
的に説明するが、本発明は下記実施例により限定される
ものではない。 (実施例1)0.2moldm-3(以下、moldm-3
をMで表わす)の2,5−ジメトキシアニリンと0.2
5MHClO4 を含む水−アセトニトリル混合溶液(容
積比=1:1)を重合用電解液に用いて、0.0Vから
+0.9V(対SCE)の電位範囲を、0.02Vs-1
の走査速度で電位走査を繰り返すことにより、重合物中
のメトキシ基を加水分解反応によってヒドロキシ基に変
換し、目的とするポリ(2,5−ジヒドロキシアニリ
ン)を得た。次に、この材料をpH7の緩衝水溶液中で
電位走査を行なったところ、約0V(対SCE)に可逆
な酸化還元応答を表わす電流ピーク対が認められ、重合
物中のキノン系官能基が酸化還元活性であることが確か
められた。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples. (Example 1) 0.2 moldm -3 (hereinafter, moldm -3)
Is represented by M) 2,5-dimethoxyaniline and 0.2
Using a water-acetonitrile mixed solution (volume ratio = 1: 1) containing 5M HClO 4 as a polymerization electrolyte, the potential range from 0.0 V to +0.9 V (vs. SCE) is set to 0.02 Vs −1.
The methoxy group in the polymer was converted to a hydroxy group by a hydrolysis reaction by repeating potential scanning at a scanning speed of 1. to obtain the desired poly (2,5-dihydroxyaniline). Next, when this material was subjected to potential scanning in a buffered aqueous solution of pH 7, a current peak pair indicating a reversible redox response was observed at about 0 V (vs. SCE), and the quinone-based functional group in the polymer was oxidized. The activity was confirmed to be reducing.
【0021】(実施例2)実施例1と同じ方法で合成し
て得たポリ(2,5−ジヒドロキシアニリン)を1.0
MのLiClO4 を含むプロピレンカーボネート溶液中
で電位走査を行なったところ、約3V(対Li/Li+
参照電極)に可逆な酸化還元応答を表わす電流ピーク対
が認められ、重合物中のキノン系官能基が酸化還元活性
であることが確かめれた。Example 2 Poly (2,5-dihydroxyaniline) obtained by the same method as in Example 1 was used in an amount of 1.0%.
When a potential scan was performed in a propylene carbonate solution containing M LiClO 4, the potential scan was about 3 V (vs. Li / Li +
A current peak pair representing a reversible redox response was observed at the reference electrode), confirming that the quinone functional group in the polymer had redox activity.
【0022】(実施例3)実施例1と同じ方法で合成し
て得たポリ(2,5−ジヒドロキシアニリン)の膜を正
極とし、金属リチウムを負極に用い、1.0MのLiC
lO4 を含むプロピレンカーボネート溶液を電解液とす
る電池を構成したところ、約3.3Vの起電力が得られ
た。この電池を0.05mAcm-2の定電流で充放電し
たところ、正極重量当たり、280mAhg-1の放電容
量が得られた。Example 3 A poly (2,5-dihydroxyaniline) film obtained by the same method as in Example 1 was used as a positive electrode and metallic lithium was used as a negative electrode.
When a battery was constructed using a propylene carbonate solution containing 10 4 as an electrolyte, an electromotive force of about 3.3 V was obtained. When the battery was charged and discharged at a constant current of 0.05 mAcm -2 , a discharge capacity of 280 mAhg -1 per positive electrode weight was obtained.
【0023】(実施例4)0.1Mの2,5−ジメトキ
シアニリンと0.1Mのアニリン及び0.25MのHC
lO4 を含む水−アセトニトリル混合溶液(容積比1:
1)を重合用電解液に用いて、0.0Vから+0.9V
(対SCE)の電位範囲を、0.02Vs-1の走査速度
で電位走査を繰り返すことにより、白金電極板上にポリ
アニリンとポリ(2,5−ジヒドロキシアニリン)が複
合した重合物を得た。Example 4 0.1M 2,5-dimethoxyaniline, 0.1M aniline and 0.25M HC
Water-acetonitrile mixed solution containing 10 4 (volume ratio 1:
Using 1) as an electrolyte for polymerization, 0.0V to + 0.9V
By repeating the potential scanning in the potential range of (to SCE) at a scanning speed of 0.02 Vs -1 , a polymer in which polyaniline and poly (2,5-dihydroxyaniline) were composited on a platinum electrode plate was obtained.
【0024】得られた膜をイオン交換水と0.5MHC
l4 で洗浄した後、0.5VHClO4 水溶液中で、−
0.2Vから+0.9V(対SCE)の電位範囲を、
0.02Vs-1の走査速度で繰り返すことにより、重合
物中のメトキシ基を加水分解反応によってヒドロキシ基
に交換し、キノン系官能基を含む導電性高分子を得た。[0024] The obtained membrane was mixed with ion-exchanged water and 0.5 MHC.
After washing with l 4, in 0.5VHClO 4 aqueous solution, -
The potential range from 0.2 V to +0.9 V (vs. SCE)
By repeating the scanning at a scanning speed of 0.02 Vs -1 , the methoxy group in the polymer was exchanged with a hydroxy group by a hydrolysis reaction to obtain a conductive polymer containing a quinone functional group.
【0025】次に、この材料を正極とし、金属リチウム
を負極に用い、1.0MのLiClO4 を含むプロピレ
ンカーボネート溶液を電解液とする電池を構成したとこ
ろ、約3.3Vの起電力が得られた。この電池を0.0
5mA/cm-2の定電流で充放電したところ、正極重量
当たり、250mAg-1の放電容量が得られた。Next, when a battery was constructed using this material as a positive electrode, metallic lithium as a negative electrode, and a propylene carbonate solution containing 1.0 M LiClO 4 as an electrolyte, an electromotive force of about 3.3 V was obtained. Was done. Replace this battery with 0.0
When the battery was charged and discharged at a constant current of 5 mA / cm -2 , a discharge capacity of 250 mAg -1 was obtained per weight of the positive electrode.
【0026】(比較例1)重合反応基質にアニリンを用
いた他は、実施例1と同じ方法を用いて白金電極基板上
にポリアニリン重合物を得た。次に、この材料を正極と
し、金属リチウムを負極に用い、1.0MのLiClO
4 を含むプロピレンカーボネート溶液を電解液とする電
池を構成したところ、約3.3Vの起電力が得られた。
この電池を0.05mA/cm-2の定電流で充放電した
ところ、正極重量当たり、140mAg-1の放電容量が
得られた。Comparative Example 1 A polyaniline polymer was obtained on a platinum electrode substrate in the same manner as in Example 1 except that aniline was used as a polymerization reaction substrate. Next, this material was used as a positive electrode, and lithium metal was used as a negative electrode.
When a battery was constructed using a propylene carbonate solution containing 4 as an electrolyte, an electromotive force of about 3.3 V was obtained.
When the battery was charged and discharged at a constant current of 0.05 mA / cm -2 , a discharge capacity of 140 mAg -1 was obtained per weight of the positive electrode.
【0027】[0027]
【発明の効果】以上詳述したように本発明によれば、従
来の二次電池用正極材料に比べ、単位重量当たりの容量
が大きい正極材料が提供できる。また、電池反応の様式
が従来の高分子材料例えばポリアニリンやポリピロール
などとは異なるので、電池のエネルギー密度も著しく改
善できる。As described above in detail, according to the present invention, it is possible to provide a cathode material having a larger capacity per unit weight than a conventional cathode material for a secondary battery. Further, since the mode of the battery reaction is different from that of a conventional polymer material such as polyaniline or polypyrrole, the energy density of the battery can be remarkably improved.
フロントページの続き (72)発明者 阿南 文政 福岡県福岡市南区塩原2丁目1番47号 九 州電力株式会社総合研究所内 (72)発明者 足立 和之 福岡県福岡市南区塩原2丁目1番47号 九 州電力株式会社総合研究所内 (72)発明者 田島 英彦 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内Continued on the front page (72) Inventor Bunsei Anan 2-1-147 Shiobara, Minami-ku, Fukuoka City, Fukuoka Prefecture Inside Kyushu Electric Power Co., Inc. (72) Inventor Kazuyuki Adachi 2-1-1 Shiobara, Minami-ku, Fukuoka City, Fukuoka Prefecture No. 47 Inside Kyushu Electric Power Co., Ltd.
Claims (2)
構造をもつ導電性高分子からなることを特徴とする二次
電池用正極材料。1. A cathode material for a secondary battery, comprising a conductive polymer having a structure having a quinone-based functional group having redox activity.
単位をその繰り返し構造の中に含む導電性高分子からな
ることを特徴とする二次電池用正極材料。2. A positive electrode material for a secondary battery, comprising a conductive polymer containing a unit having a quinone functional group having redox activity in its repeating structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8313406A JPH10154512A (en) | 1996-11-25 | 1996-11-25 | Positive electrode material for secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8313406A JPH10154512A (en) | 1996-11-25 | 1996-11-25 | Positive electrode material for secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10154512A true JPH10154512A (en) | 1998-06-09 |
Family
ID=18040900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8313406A Withdrawn JPH10154512A (en) | 1996-11-25 | 1996-11-25 | Positive electrode material for secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10154512A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6248474B1 (en) | 1997-11-04 | 2001-06-19 | Nec Corporation | Composite electrode for secondary battery and production method thereof |
US6277518B1 (en) | 1997-12-17 | 2001-08-21 | Nec Corporation | Electrode materials for use in batteries, and electrodes and batteries using same |
US6686089B1 (en) | 1998-09-04 | 2004-02-03 | Nec Tokin Corporation | Battery electrode, secondary battery, and method of manufacturing same |
WO2009118990A1 (en) | 2008-03-28 | 2009-10-01 | パナソニック株式会社 | Electrode active material for electricity storage device, electricity storage device, electronic device and transport device |
WO2009118989A1 (en) | 2008-03-28 | 2009-10-01 | パナソニック株式会社 | Electrode active material for electric storage device, electric storage device, electronic equipment, and transportation equipment |
US8263241B2 (en) | 2006-04-05 | 2012-09-11 | Panasonic Corporation | Method for manufacturing secondary battery and method for preparing positive electrode active material for secondary battery |
US8338027B2 (en) | 2007-03-08 | 2012-12-25 | Panasonic Corporation | Phenanthrenequinone compound, electrode active material, and power storage device |
US9583750B2 (en) | 2011-10-05 | 2017-02-28 | Tohoku University | Secondary battery |
-
1996
- 1996-11-25 JP JP8313406A patent/JPH10154512A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6248474B1 (en) | 1997-11-04 | 2001-06-19 | Nec Corporation | Composite electrode for secondary battery and production method thereof |
US6277518B1 (en) | 1997-12-17 | 2001-08-21 | Nec Corporation | Electrode materials for use in batteries, and electrodes and batteries using same |
US6686089B1 (en) | 1998-09-04 | 2004-02-03 | Nec Tokin Corporation | Battery electrode, secondary battery, and method of manufacturing same |
US8263241B2 (en) | 2006-04-05 | 2012-09-11 | Panasonic Corporation | Method for manufacturing secondary battery and method for preparing positive electrode active material for secondary battery |
US8338027B2 (en) | 2007-03-08 | 2012-12-25 | Panasonic Corporation | Phenanthrenequinone compound, electrode active material, and power storage device |
WO2009118990A1 (en) | 2008-03-28 | 2009-10-01 | パナソニック株式会社 | Electrode active material for electricity storage device, electricity storage device, electronic device and transport device |
WO2009118989A1 (en) | 2008-03-28 | 2009-10-01 | パナソニック株式会社 | Electrode active material for electric storage device, electric storage device, electronic equipment, and transportation equipment |
US8338028B2 (en) | 2008-03-28 | 2012-12-25 | Panasonic Corporation | Electrode active material for power storage device, power storage device, and electronic and transport devices |
US9583750B2 (en) | 2011-10-05 | 2017-02-28 | Tohoku University | Secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Le Gall et al. | Poly (2, 5-dihydroxy-1, 4-benzoquinone-3, 6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries | |
US6743877B1 (en) | Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators | |
US7226697B2 (en) | Electricity storage device | |
US8092557B2 (en) | Water soluble polymer binder for lithium ion battery | |
JPH11506799A (en) | Electroactive high storage capacity polyacetylene-co-polysulfur material and electrolytic cell containing same | |
CN101111954A (en) | Positive electrode material for lithium secondary battery | |
JP4005192B2 (en) | Solid battery | |
KR20170090887A (en) | Polymer electrolyte for lithium secondary battery and lithium secondary battery including the same | |
JP2002151141A (en) | Proton conduction polymer secondary battery | |
JPH10265567A (en) | Aniline polymer, electrode material and secondary battery | |
JP2936097B2 (en) | Composite electrode and secondary battery obtained therefrom | |
US4472489A (en) | Polymeric electrode coated with reaction product or organosulfur compound | |
JP3575108B2 (en) | Polymer solid electrolyte, its material and use | |
JP3400453B2 (en) | Redox copolymers and their use in making mixed conductive materials | |
JPH10154512A (en) | Positive electrode material for secondary battery | |
JPH10294015A (en) | Polymeric solid electrolyte and usage thereof | |
KR100389713B1 (en) | Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof | |
JP2000021406A (en) | Electrode binding agent and its use | |
KR20190044313A (en) | Selenium-sulfur compound electrode material coated with polyaniline for lithium-sulfur battery and lithium-sulfur battery using the same | |
JP3557477B2 (en) | Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, method for producing them, and polymer solid electrolyte material | |
JP2934450B2 (en) | Polymer solid electrolyte and secondary battery using the same | |
JP3723140B2 (en) | Power storage device using quinoxaline compound | |
Kawabe et al. | Electrochemical properties of fullerene derivative polymers as electrode materials | |
JPH1036657A (en) | Polymerizable monomer, solid polyelectrolyte comprising the same, and its use | |
US7063918B2 (en) | Nanoscale solid-state polymeric battery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040203 |