JPH0428159A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0428159A
JPH0428159A JP2131671A JP13167190A JPH0428159A JP H0428159 A JPH0428159 A JP H0428159A JP 2131671 A JP2131671 A JP 2131671A JP 13167190 A JP13167190 A JP 13167190A JP H0428159 A JPH0428159 A JP H0428159A
Authority
JP
Japan
Prior art keywords
battery
powders
electrode
conductive agent
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2131671A
Other languages
Japanese (ja)
Other versions
JP3162695B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Masahisa Fujimoto
正久 藤本
Noriyuki Yoshinaga
好永 宣之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13167190A priority Critical patent/JP3162695B2/en
Publication of JPH0428159A publication Critical patent/JPH0428159A/en
Application granted granted Critical
Publication of JP3162695B2 publication Critical patent/JP3162695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve charge and discharge characteristics by utilizing a conductive polymer, which is polymerized on conductive material powders so that it is integrated with the powders, as an electrode material. CONSTITUTION:A conductive polymer, which is polymerized on conductive material powders so that it is integrated with the powders is used as an electrode material. Here metallic powders, carbon powders and the like are used as the conductive material powders. Metals or alloys selected from Ni, Ni-Cr, Ni-Cu, Ni-Fe-Cr, stainless steel, Fe-Cr, Cu, Fe, Cu-Ni, Pb, Cd, Au, Ag and the like are used as the metallic powders. As the carbon powders, acetylene black, ketjen black, graphite, an expanded graphite and the like are used.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はポリアニリン等の導電性ポリマーを電極材料と
して用いてなる二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a secondary battery using a conductive polymer such as polyaniline as an electrode material.

(ロ)従来の技術 近年、各種有機材料からなる導電性ポリマーを電極材料
とした二次電池が提案されている。
(B) Prior art In recent years, secondary batteries have been proposed that use conductive polymers made of various organic materials as electrode materials.

この種の二次電池の電極材料となる導電性ポリマーは、
通常は導電性はわずかであるが、各種アニオンやカチオ
ンの如きドーパントをドーピング並びにアンド−ピング
処理することが可能であり、ドーピング処理により導電
性が飛躍的に上昇する。そして、アニオンがドーピング
される導電性ポリマーを正極材料として、またカチオン
がドーピングされる導電性ポリマーを負極材料として各
々使用すると共に、上記ドーパントを含有する溶液を電
解液として用い、ドーピング及びアンドーピンダを電気
化学的に可逆的に行なうことにより充放電可能な電池が
構成される。
The conductive polymer that serves as the electrode material for this type of secondary battery is
Normally, the conductivity is slight, but it is possible to perform doping or undoping treatment with dopants such as various anions and cations, and the doping treatment dramatically increases the conductivity. Then, a conductive polymer doped with anions is used as a positive electrode material, a conductive polymer doped with cations is used as a negative electrode material, and a solution containing the above dopant is used as an electrolytic solution to remove the doped and undoped pins. A battery that can be charged and discharged is constructed by chemically reversibly performing the process.

このような導電性ポリマーとしては、従来よりポリアセ
チレン、ポリパラフェニレン、ポリチェニレン、ポリピ
ロール、ポリアニリン、ポリパラフェニレンビニレンな
どのような主鎖に兵役二重結合を有する重合体が知られ
ており、ポリアセチレンを例に採れば、ポリアセチレン
を正極または負極の少なくとも一方の電極材料として用
い、BF、−1CIO,−1SbF、−1PF、−等の
アニオン、またはLi”、N a 4、R,−N” (
Rはアルキル基を表わす)等のカチオンを電気化学的に
可逆的にドーピング、アンド−ピングする構成が採られ
る。
As such conductive polymers, polymers having a military double bond in the main chain, such as polyacetylene, polyparaphenylene, polythenylene, polypyrrole, polyaniline, and polyparaphenylenevinylene, are conventionally known. For example, polyacetylene is used as the electrode material for at least one of the positive electrode and the negative electrode, and anions such as BF, -1CIO, -1SbF, -1PF, -, or Li'', Na4, R, -N'' (
A structure is adopted in which cations such as R represents an alkyl group are electrochemically reversibly doped or undoped.

(ハ)発明が解決しようとする課題 このような導電性ポリマーは一般的に導電性が低いため
、電極材料として単独で用いた場合、十分な特性を得る
ことができない。そのため、炭素等の導電剤粉末を導電
性ポリマーと共に混合して電極を構成している。
(c) Problems to be Solved by the Invention Since such conductive polymers generally have low conductivity, sufficient characteristics cannot be obtained when used alone as an electrode material. Therefore, electrodes are constructed by mixing a conductive agent powder such as carbon with a conductive polymer.

しかしながら、導電剤粉末を混合、使用する場合、均一
に混合することは難しく、電極の部位によって導電剤の
配合比、導電剤粉末と導電性ポリマーとの接触状態が異
なるので、電極の導電性を均一に向上させるのが難しい
。したがって、導電性ポリマーを用いた電極において、
単に導電剤粉末を混入するだけでは電極特性を向上させ
るのが難しい。
However, when mixing and using conductive agent powder, it is difficult to mix it uniformly, and the mixing ratio of the conductive agent and the contact state between the conductive agent powder and the conductive polymer vary depending on the part of the electrode, so the conductivity of the electrode is Difficult to improve uniformly. Therefore, in an electrode using a conductive polymer,
It is difficult to improve electrode characteristics simply by mixing conductive agent powder.

本発明はかかる問題点に鑑みてなされたものであって、
導電性ポリマーを用いた電極の導電性を向上させ、この
種二次電池の充放電特性の向上を計るものである。
The present invention has been made in view of such problems, and includes:
The aim is to improve the conductivity of electrodes using conductive polymers and improve the charge/discharge characteristics of this type of secondary battery.

(ニ)課題を解決するための手段 本発明の二次電池は、導電剤粉末上で重合させて該導電
剤粉末と一体となった導電性ポリマーを電極材料として
用いたことを特徴とするものである。
(d) Means for Solving the Problems The secondary battery of the present invention is characterized in that a conductive polymer polymerized on a conductive agent powder and integrated with the conductive agent powder is used as an electrode material. It is.

ここで、前記導電剤粉末としては、金属粉末、炭素粉末
等を用いることができる。
Here, as the conductive agent powder, metal powder, carbon powder, etc. can be used.

この金属粉末としては、N1、Ni−Cr、Ni−Cu
、Ni−Fe−Cr、ステンレス、Fe−Cr、Cu、
Fe、Cu−Ni、Pb、Cd、Au、Ag等の金属や
合金からなるもの、炭素粉末としては、アセチレンブラ
ック、ケッチエンブラック、グラファイト、膨張黒鉛か
らなるもの等が使用される。
This metal powder includes N1, Ni-Cr, Ni-Cu
, Ni-Fe-Cr, stainless steel, Fe-Cr, Cu,
Those made of metals or alloys such as Fe, Cu-Ni, Pb, Cd, Au, and Ag, and those made of acetylene black, Ketchen black, graphite, expanded graphite, etc. are used as carbon powder.

また、前記導電性ポリマーとしては、主鎖に共役二重結
合をもつ高分子、例えばポリアセチレン、ポリパラフェ
ニレン、ポリチオフェン、ポリピロール、ポリパラフェ
ニレンビニレン、ポリアニリン、ポリイミダゾール、ポ
リチアゾール、ボッフラン等が使用可能であるが、中で
も、窒素原子、酸素原子もしくは硫黄原子をヘテロ原子
として有し、かつ共役π−電子系を有する5もしくは6
員のへテロ環式化合物の群からなるポリマーまたはアニ
リンポリマー、例えばポリピロール、ボッアニリン、ポ
リチオフェン等が望ましい。
Further, as the conductive polymer, polymers having a conjugated double bond in the main chain, such as polyacetylene, polyparaphenylene, polythiophene, polypyrrole, polyparaphenylene vinylene, polyaniline, polyimidazole, polythiazole, Boffran, etc. can be used. However, in particular, 5 or 6 having a nitrogen atom, oxygen atom or sulfur atom as a heteroatom and having a conjugated π-electron system.
Preferred are polymers consisting of a group of membered heterocyclic compounds or aniline polymers such as polypyrrole, botaniline, polythiophene, and the like.

そして前記導電性ポリマーを用いた電極を正極とした場
合、負極としては電気陰性度が1.6以下の金属を用い
るのが好ましく、このような金属の例としてはLl、N
a、に、Mg、ANあるいはそれらの合金等が挙げられ
、LiおよびL1合金が好ましい。
When the electrode using the conductive polymer is used as a positive electrode, it is preferable to use a metal with an electronegativity of 1.6 or less as the negative electrode. Examples of such metals include Ll, N
Examples of a) include Mg, AN, and alloys thereof, with Li and L1 alloys being preferred.

一方、本発明の二次電池に用いられる電解液としては、
例えば、電解質を有機溶剤に溶解した溶液が使用される
。かかる電解質としては、電気陰性度が1.6以下の金
属の陽イオンや有機カチオン等の陽イオン及び陰イオン
との塩を埜げることかできる。陽イオンの例としては、
4級アンモニウムイオン、カルボニウムイオン、オキソ
ニウムイオン等が挙げられる。また、陰イオンとじては
、BF、−2cpo、−1PF、−1AsF、−1CF
、S、−1■−1Br−1C1−1F−等が挙げられる
。そして、このような電解質の具体例としては、テトラ
フルオロホウ酸リチウム(LiBF、)、過塩素酸リチ
ウム(L i CI!、O,) 、ヘキサフルオロリン
酸リチウム(L+PFe)、テトラクロロアルミン酸リ
チウム(LiAjICj!、)、テトラフルオロホウ酸
テトラエチルアンモニウム(E t 、NBFt) 、
過塩素酸テトラn−ブチルアンモニウム(nBu、NC
CO2)、トリフルオロメタンスルホン酸リチウム(L
 ICF s S Os )、ヨウ化リチウム(LiI
)、臭化リチウム(LiBr)等が挙げることができる
が、これらに限定されるものではない。そして、正負両
極に本発明の電極材料を用い、LiBF、を電解質とし
て溶解してなる電解液を用いて構成される電池を例にと
れば、充電時には、正極内の電極材料に電解液中のBF
、−が、また負極内の電極材料には電解液中のLi“が
夫々ドーピングされる。一方、放電時には、正、負極に
ドーピングされたBFイ\ L、が夫々電解液中に放出
される。
On the other hand, the electrolyte used in the secondary battery of the present invention is as follows:
For example, a solution in which an electrolyte is dissolved in an organic solvent is used. As such an electrolyte, salts with cations and anions such as metal cations and organic cations having an electronegativity of 1.6 or less can be avoided. Examples of cations are:
Examples include quaternary ammonium ions, carbonium ions, oxonium ions, and the like. In addition, anions include BF, -2cpo, -1PF, -1AsF, -1CF
, S, -1■-1Br-1C1-1F-, and the like. Specific examples of such electrolytes include lithium tetrafluoroborate (LiBF), lithium perchlorate (Li CI!, O,), lithium hexafluorophosphate (L+PFe), and lithium tetrachloroaluminate. (LiAjICj!,), tetraethylammonium tetrafluoroborate (Et, NBFt),
Tetra n-butylammonium perchlorate (nBu, NC
CO2), lithium trifluoromethanesulfonate (L
ICF s S Os ), lithium iodide (LiI
), lithium bromide (LiBr), etc., but are not limited to these. For example, if a battery is constructed using the electrode material of the present invention in both the positive and negative electrodes and an electrolyte in which LiBF is dissolved as the electrolyte, during charging, the electrode material in the positive electrode is exposed to the electrolyte. BF
, -, and the electrode material in the negative electrode is doped with Li'' in the electrolyte. On the other hand, during discharge, BF I\L doped in the positive and negative electrodes are released into the electrolyte, respectively. .

また、電解質を溶解する有機溶剤としては、高誘電率で
非プロトン性のものが好ましく、ニトリル、カーボネー
ト、エーテル、ニトロ化合物、アミド、含硫黄化合物、
塩素化炭化水素、ケトン、エステル等を用いることがで
きる。また、このような溶剤は二種以上を混合して用い
ることもできる。これらの代表例として、アセトニトリ
ル、プロピオニトリル、フ゛チロニトリル、ベンゾニト
リル、プロピレンカーボネート、エチレンカーボネート
、テトラヒドロフラン、ジオキソラン、1.4−ジオキ
サン、ニトロメタン、N、N−ジメチルホルムアミド、
ジメチルスルホキシド、スルホラン、1.2−ジクロロ
エタン、γ−ブチロラクトン、1,2−ジメトキシエタ
ン、リン酸メチル、リン酸エチル等を挙げることができ
るが、これらに限定されるものではない。
In addition, as the organic solvent for dissolving the electrolyte, it is preferable to use an aprotic one with a high dielectric constant, such as nitrile, carbonate, ether, nitro compound, amide, sulfur-containing compound,
Chlorinated hydrocarbons, ketones, esters, etc. can be used. Moreover, two or more kinds of such solvents can also be used in combination. Representative examples of these include acetonitrile, propionitrile, fithyronitrile, benzonitrile, propylene carbonate, ethylene carbonate, tetrahydrofuran, dioxolane, 1,4-dioxane, nitromethane, N,N-dimethylformamide,
Examples include, but are not limited to, dimethyl sulfoxide, sulfolane, 1,2-dichloroethane, γ-butyrolactone, 1,2-dimethoxyethane, methyl phosphate, and ethyl phosphate.

そして、本発明の電解液の濃度は、通常0.OO1〜1
0モル/!で用いられ好ましくは0.1〜3モル/lで
用いられる。
The concentration of the electrolytic solution of the present invention is usually 0. OO1~1
0 mol/! It is preferably used in an amount of 0.1 to 3 mol/l.

二のような電解液は注液の他、予め本発明の電極材料を
用いた電極に含液させて用いることもできる。
In addition to being injected with the electrolytic solution described in 2, it can also be used by pre-impregnating an electrode using the electrode material of the present invention.

(ホ)作 用 導電剤粉末上で導電性ポリマーを重合させているので、
導電剤の表面または内部に導電性ポリマーが形成される
。そしてこの導電剤粉末と一体となった導電性ポリマー
は、粉末粒子単位で一体化しているため、接触状態が良
好となり、電極を構成した場合、導電剤の配合比も電極
の各部位において均一となる。その結果、電極の導電性
が増大し、電極特性が大幅に向上する。
(e) Function Since the conductive polymer is polymerized on the conductive agent powder,
A conductive polymer is formed on or within the conductive agent. Since the conductive polymer integrated with the conductive agent powder is integrated in powder particle units, the contact condition is good, and when an electrode is constructed, the blending ratio of the conductive agent is uniform in each part of the electrode. Become. As a result, the conductivity of the electrode increases and the electrode properties are significantly improved.

(へ)実施例 以下に本発明の実施例を図面に基づき説明する。(f) Example Embodiments of the present invention will be described below based on the drawings.

(実施例1) アニリンと導電剤粉末であるアセチレンブラックを混合
し、窒素雰囲気下で撹拌しながら、室温(20°〜40
℃)でCu(BF4)、・アセトニトリル溶液を滴下し
た。滴下とともに反応液は直ちに黒色に変化し、反応液
はスラリー状を呈した。反応終了後、室温で一度放置し
た。その後反応生成物を濾別すると、表面にポリアニリ
ン層(導電性ポリマー)が形成されたアセチレンブラッ
ク(導電剤粉末)が得られた。
(Example 1) Aniline and acetylene black, which is a conductive agent powder, were mixed and heated to room temperature (20° to 40° C.) while stirring under a nitrogen atmosphere.
℃), and a Cu(BF4)/acetonitrile solution was added dropwise. Upon dropping, the reaction liquid immediately turned black and took on the form of a slurry. After the reaction was completed, the mixture was allowed to stand at room temperature. Thereafter, the reaction product was filtered to obtain acetylene black (conductive agent powder) on which a polyaniline layer (conductive polymer) was formed.

以上のようにして得たポリアニリン−アセチレンブラッ
ク(電極材料)を用い1〜10重量部の結着剤としての
PTFEを混合、プレスすることにより正極1 (第1
図参照)を作製した。尚、第1図は本発明電池の縦断面
図である。また、負極2にはリチウム−アルミニウム合
金を用いており、セパレータ3にはホウフッ化リチウム
−プロピレンカーボネート溶液が含浸されている。そし
て、4は正極1を収納する正極缶、5は負極2を収納す
る負極針であり、正極缶4及び負極針5の内底面には、
それぞれ正極集電体6及び負極集電体7が配置されてい
る。そしてこの正極缶4と負極針5とは絶縁バッキング
8を介して絶縁され、密閉電池を構成している。このよ
うにして本発明電池Aを作製した。
Positive electrode 1 (first
(see figure) was prepared. Incidentally, FIG. 1 is a longitudinal sectional view of the battery of the present invention. Further, a lithium-aluminum alloy is used for the negative electrode 2, and the separator 3 is impregnated with a lithium borofluoride-propylene carbonate solution. 4 is a positive electrode can that stores the positive electrode 1, and 5 is a negative electrode needle that stores the negative electrode 2. On the inner bottom surfaces of the positive electrode can 4 and the negative electrode needle 5,
A positive electrode current collector 6 and a negative electrode current collector 7 are respectively arranged. The positive electrode can 4 and the negative electrode needle 5 are insulated via an insulating backing 8 to form a sealed battery. In this way, the battery A of the present invention was produced.

(比較例1) アセチレンブラックを添加せずに重合して得られたポリ
アニリンに、アセチレンブランクを混合して正極を作製
した以外は、前記実施例1と同様にして電池を作製し、
比較電池Xとした。
(Comparative Example 1) A battery was produced in the same manner as in Example 1, except that an acetylene blank was mixed with polyaniline obtained by polymerization without adding acetylene black to produce a positive electrode.
It was designated as comparative battery X.

これらの電池A、Xを用い、充放電性比較試験を行った
。この時の実験条件は、各電池を用い充を電流1mAで
充電終止電圧3.6V迄充電を行い、放電電流1mAで
放電終止電圧2.OV迄放電を行うというものである。
Using these batteries A and X, a charge/discharge performance comparative test was conducted. The experimental conditions at this time were that each battery was charged at a current of 1 mA to an end-of-charge voltage of 3.6V, and at a discharge current of 1 mA to an end-of-discharge voltage of 2.6V. Discharging is performed until OV.

この結果を、第2図に示す。The results are shown in FIG.

第2図より、いずれの電池も充電効率は100Zを示し
たが、本発明電池Aは6 m A h迄充電できるのに
対し、比較電池XはS m A h迄しか充電できない
ことがわかる。この理由は、比較電池Xにおいて導電性
ポリマーであるポリアニリンと導電剤粉末であるアセチ
レンブラックとの接触状態、配合比が電極の部位によっ
て異なるのに対し、本発明電池Aの正極では導電性ポリ
マーと導電剤粉とが一体化し、電極の部位によって接触
状態、配合比が変わらず、安定、均一化していることに
起因すると考えられる。
From FIG. 2, it can be seen that although all the batteries showed a charging efficiency of 100Z, the battery A of the present invention can be charged up to 6 mA h, whereas the comparative battery X can only be charged up to S mA h. The reason for this is that in Comparative Battery This is thought to be due to the fact that the conductive agent powder is integrated with the powder, and the contact state and blending ratio do not change depending on the electrode location, making it stable and uniform.

(実施例2) アニリンと導電剤粉末であるグラファイトを混合し、窒
素雰囲気下で撹拌しながら、室温でCu(BF、)、・
アセトニトリル溶液を滴下した。滴下とともに反応液は
直ちに黒色に変化し、反応液はスラリー状を呈した。そ
して、反応終了後、反応液を室温で一夜放置した。その
後反応生成物を濾別すると、表面にポリアニリン層が形
成されたグラファイトが得られた。以上のようにして得
たポリアニリン−グラファイト(電極材料)を用いて正
極を作製した。また、負極にはリチウム−アルミニウム
合金、電解液にはホウフッ化リチウム−プロピレンカー
ボネート溶液を用い、前記実施例1と同様にして本発明
電池Bを作製した。
(Example 2) Aniline and graphite, which is a conductive agent powder, were mixed, and while stirring in a nitrogen atmosphere, Cu(BF, ),
Acetonitrile solution was added dropwise. Upon dropping, the reaction liquid immediately turned black and took on the form of a slurry. After the reaction was completed, the reaction solution was left at room temperature overnight. Thereafter, the reaction product was filtered to obtain graphite with a polyaniline layer formed on its surface. A positive electrode was produced using the polyaniline-graphite (electrode material) obtained as described above. Further, a battery B of the present invention was prepared in the same manner as in Example 1, using a lithium-aluminum alloy for the negative electrode and a lithium borofluoride-propylene carbonate solution for the electrolyte.

(比較例2) グラファイトを添加せずに重合して得られたボッアニリ
ンに、グラファイトを混合して正極を作製した以外は、
前記実施例2と同様にして電池を作製し、比較電池Yと
した。
(Comparative Example 2) Except that a positive electrode was prepared by mixing graphite with bot aniline obtained by polymerization without adding graphite,
A battery was produced in the same manner as in Example 2 and designated as Comparative Battery Y.

これらの電池B、Yを用い、充放電特性比較試験を行っ
た。この時の実験条件は、前記実施例1と同一とした。
Using these batteries B and Y, a comparative test of charging and discharging characteristics was conducted. The experimental conditions at this time were the same as in Example 1 above.

この結果を、第3図に示す。The results are shown in FIG.

この結果より、いずれの電池も充放電効率】00%を示
すが、本発明電池Bは5 、5 m A h迄充電でき
るのに対し、比較電池Yは4 、5 m A h迄しか
充電できないことがわかる。これは、前記本発明電池A
と比較電池Xの対比時に考察したのと同じ要因に基づく
と考えられる。
From this result, both batteries show a charge/discharge efficiency of 00%, but inventive battery B can be charged up to 5.5 mA h, whereas comparison battery Y can only be charged up to 4.5 mA h. I understand that. This is the above-mentioned invention battery A
It is thought that this is based on the same factors as those considered when comparing Comparative Battery X and Comparative Battery X.

(実施例3) アニリンと導電剤粉末であるステンレス粉末を混合し、
窒素雰囲気下で撹拌しながら、室温でCu (BFI)
!・アセトニトリル溶液を滴下した。
(Example 3) Mixing aniline and stainless steel powder, which is a conductive agent powder,
Cu (BFI) at room temperature with stirring under nitrogen atmosphere.
! - Acetonitrile solution was added dropwise.

滴下とともに反応液は直ちに黒色に変化し、反応液はス
ラリー状を呈した。そして反応終了後、この反応液を室
温で一夜放置した。その後反応生成物を濾別すると、表
面にポリアニリン層が形成されたステンレス粉末(電極
材料)が得られた。
Upon dropping, the reaction liquid immediately turned black and took on the form of a slurry. After the reaction was completed, the reaction solution was left at room temperature overnight. Thereafter, the reaction product was filtered to obtain stainless steel powder (electrode material) with a polyaniline layer formed on the surface.

以上のようにして得たポリアニリン−ステンレス粉末を
用いて、正極を作製した。また、負極にはりチウム−ア
ルミニウム合金、電解液にはホウフッ化リチウム−プロ
ピレンカーボネート溶液を用い、前記実施例1と同様に
して本発明電池Cを作製した。
A positive electrode was produced using the polyaniline-stainless steel powder obtained as described above. Further, a battery C of the present invention was prepared in the same manner as in Example 1, using a lithium-aluminum alloy for the negative electrode and a lithium borofluoride-propylene carbonate solution for the electrolyte.

(比較例3) ステンレス粉末を添加せずに重合して得られたポリアニ
リンに、ステンレろ粉末を混合して正極を作製した以外
は、前記実施例3と同様にして電池を作製し、比較電池
2とした。
(Comparative Example 3) A battery was prepared in the same manner as in Example 3, except that a positive electrode was prepared by mixing stainless filter powder with polyaniline obtained by polymerization without adding stainless steel powder, and a comparative battery was prepared. It was set as 2.

これら電池C,Zを用い、充放電特性比較試験を行った
。この時の実験条件は、前記実施例1と同一とした。
A comparison test of charging and discharging characteristics was conducted using these batteries C and Z. The experimental conditions at this time were the same as in Example 1 above.

この結果を、第4図に示す。The results are shown in FIG.

この結果より、いずれの電池も充放電効率100%を示
すが、本発明電池Cは5 、7 m A h迄充電でき
るのに対し、比較電池Zは4.7mAh迄しか充電でき
ないことがわがる。これは、前記本発明電池Aと比較電
池Xの対比時、及び本発明電池Bと比較電池Yの対比時
に考察したのと同じ要因に基づくと考えられる。
These results show that both batteries show 100% charge/discharge efficiency, but inventive battery C can be charged up to 5.7 mAh, while comparison battery Z can only be charged up to 4.7 mAh. . This is considered to be based on the same factors as those considered when comparing the battery A of the present invention and the comparative battery X and the battery B of the present invention and the comparative battery Y.

(ト)発明の効果 本発明によれば、導電剤粉末と一体となった導電性ポリ
マーを電極材料として用いているので、導電性ポリマー
と導電剤粉末との接触状態が良好となり電極の導電性が
向上し、優れた充放電特性を有する二次電池が提供でき
、その工業的価値は極めて大きい。
(G) Effects of the Invention According to the present invention, since the conductive polymer integrated with the conductive agent powder is used as the electrode material, the contact state between the conductive polymer and the conductive agent powder is good, and the conductivity of the electrode is improved. It is possible to provide a secondary battery with improved charging and discharging characteristics, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の縦断面図、第2図、第3図及び第
4図は電池の充放電特性比較図である。 1・・・正極、2・・・負極、3・・・セパレータ、4
・・・正極缶、5・・・負極針、6・・・正極集電体、
7・・・負極集電体、8・・・絶縁バッキング、 A、B、C・・・・・・本発明電池、 x、y、z・・・比較電池。
FIG. 1 is a longitudinal sectional view of the battery of the present invention, and FIGS. 2, 3, and 4 are comparison diagrams of the charging and discharging characteristics of the batteries. 1...Positive electrode, 2...Negative electrode, 3...Separator, 4
... Positive electrode can, 5... Negative electrode needle, 6... Positive electrode current collector,
7...Negative electrode current collector, 8...Insulating backing, A, B, C...Battery of the present invention, x, y, z...Comparative battery.

Claims (3)

【特許請求の範囲】[Claims] (1)導電剤粉末上で重合させて該導電剤粉末と一体と
なった導電性ポリマーを電極材料として用いたことを特
徴とする二次電池。
(1) A secondary battery characterized in that a conductive polymer polymerized on a conductive agent powder and integrated with the conductive agent powder is used as an electrode material.
(2)前記導電剤粉末が、金属粉末からなることを特徴
とする請求項1記載の二次電池。
(2) The secondary battery according to claim 1, wherein the conductive agent powder is made of metal powder.
(3)前記導電剤粉末が、炭素粉末からなることを特徴
とする請求項1記載の二次電池。
(3) The secondary battery according to claim 1, wherein the conductive agent powder is made of carbon powder.
JP13167190A 1990-05-22 1990-05-22 Rechargeable battery Expired - Fee Related JP3162695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13167190A JP3162695B2 (en) 1990-05-22 1990-05-22 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13167190A JP3162695B2 (en) 1990-05-22 1990-05-22 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH0428159A true JPH0428159A (en) 1992-01-30
JP3162695B2 JP3162695B2 (en) 2001-05-08

Family

ID=15063505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13167190A Expired - Fee Related JP3162695B2 (en) 1990-05-22 1990-05-22 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP3162695B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002280A1 (en) * 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
JP2005063846A (en) * 2003-08-14 2005-03-10 Nippon Zeon Co Ltd Material for forming electrode layer
WO2012164327A1 (en) * 2011-05-31 2012-12-06 BILOZARESKIY, Sergiy Electro-chemical transformer heat in electricity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002280A1 (en) * 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
JP4529288B2 (en) * 1998-07-06 2010-08-25 Tdk株式会社 Nonaqueous electrolyte secondary battery electrode
JP2005063846A (en) * 2003-08-14 2005-03-10 Nippon Zeon Co Ltd Material for forming electrode layer
JP4543634B2 (en) * 2003-08-14 2010-09-15 日本ゼオン株式会社 Electrode layer forming material
WO2012164327A1 (en) * 2011-05-31 2012-12-06 BILOZARESKIY, Sergiy Electro-chemical transformer heat in electricity

Also Published As

Publication number Publication date
JP3162695B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP2717890B2 (en) Lithium secondary battery
US6919143B2 (en) Positive active material composition for lithium-sulfur battery and lithium-sulfur battery fabricated using same
US6090504A (en) High capacity composite electrode and secondary cell therefrom
US7524583B2 (en) Non-aqueous electrolytic secondary battery
CA2198031C (en) Lithium ion battery with lithium vanadium pentoxide positive electrode
JP6965428B2 (en) How to improve the life of lithium-sulfur batteries
JPH0520874B2 (en)
JP2004342605A (en) Electrochemical element and electrode active material for electrochemical element
JP2008159275A (en) Electrode active material and power storage device using the same
JPH07211351A (en) Nonaqueous electrolyte for secondary battery
JP3557724B2 (en) Non-aqueous electrolyte secondary battery
JPH0428159A (en) Secondary battery
JPH02172163A (en) Nonaqueous electrolyte battery
US9601757B2 (en) Electrode active material, production method for said electrode active material, electrode and secondary battery
JP4127890B2 (en) Non-aqueous electrolyte battery
KR20220158698A (en) lithium ion secondary battery
JP2004103372A (en) Nonaqueous electrolytic solution for electrochemical device, and electrochemical device using the same
US9601778B2 (en) Electrode active material , electrode and secondary battery
JP2019204725A (en) Lithium secondary battery
WO2021187417A1 (en) Electrode active material, electrode and secondary battery
JP3119945B2 (en) Lithium secondary battery
JP2877784B2 (en) Copper-organic disulfide electrode and secondary battery using the same
JPH05198316A (en) Nonaqueous electrolyte battery
JPS63102174A (en) Secondary battery
JPS63105478A (en) Secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees