JP4543634B2 - Electrode layer forming material - Google Patents

Electrode layer forming material Download PDF

Info

Publication number
JP4543634B2
JP4543634B2 JP2003293316A JP2003293316A JP4543634B2 JP 4543634 B2 JP4543634 B2 JP 4543634B2 JP 2003293316 A JP2003293316 A JP 2003293316A JP 2003293316 A JP2003293316 A JP 2003293316A JP 4543634 B2 JP4543634 B2 JP 4543634B2
Authority
JP
Japan
Prior art keywords
electrode layer
electrode
polymerization
ethylenically unsaturated
polymer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003293316A
Other languages
Japanese (ja)
Other versions
JP2005063846A (en
Inventor
英和 森
雅裕 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2003293316A priority Critical patent/JP4543634B2/en
Publication of JP2005063846A publication Critical patent/JP2005063846A/en
Application granted granted Critical
Publication of JP4543634B2 publication Critical patent/JP4543634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for forming an electrode layer having high binding force between a conductive base material and an electrode layer and excellent smoothness and being capable of forming the electrode with high thickness accuracy, and provide a low-impedance electrode layer, an electrode, and an electrochemical element obtained by using the material. <P>SOLUTION: A conductive additive and a polymeric monomer are mixed to obtain a monomer composition, which undergoes dispersion polymerization, emulsion polymerization, suspension polymerization, or microsuspension polymerization in an aqueous medium to obtain polymer particles. Then, the polymer particles and an electrode active material are mixed to obtain a material for forming the electrode layer. The material for forming the electrode layer is molded to obtain the electrode layer, and the electrode layer and a conductive base material are laminated to obtain an electrode, and furthermore, the electrode is wound round or laminated through a separator, which is sealed in a case to obtain an electrochemical element. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、一次電池(マンガン電池、アルカリマンガン電池、フッ化黒鉛リチウム電池、二酸化マンガンリチウム電池、固体電解質電池、注水電池、熱電池など)、二次電池(鉛蓄電池、ニッケルカドニウム電池、ニッケル水素電池、ニッケル鉄蓄電池、酸化銀亜鉛蓄電池、二酸化マンガンリチウム二次電池、コバルト酸リチウム炭酸系二次電池、バナジウムリチウム二次電池など)、又はキャパシタ(電気二重層コンデンサ、電解コンデンサなど)のごとき電気化学素子の電極を製造するための電極層形成用材料、その材料を用いて得られる電極層、電極、及び電気化学素子に関し、さらに詳しくは、導電性基材と電極層との結着力が高く、平滑性に優れ、高い厚み精度で電極を形成できる電極層形成用材料、その材料を用いて得られる低インピーダンスの電極層、電極、及び電気化学素子に関するものである。   The present invention includes primary batteries (manganese batteries, alkaline manganese batteries, graphite fluoride lithium batteries, manganese dioxide lithium batteries, solid electrolyte batteries, water injection batteries, thermal batteries, etc.), secondary batteries (lead storage batteries, nickel cadmium batteries, nickel hydrogen batteries). Battery, nickel iron storage battery, silver zinc oxide storage battery, lithium manganese dioxide secondary battery, lithium cobalt oxide carbonate secondary battery, vanadium lithium secondary battery, etc.) or capacitor (electric double layer capacitor, electrolytic capacitor, etc.) The electrode layer forming material for manufacturing the electrode of the chemical element, the electrode layer obtained using the material, the electrode, and the electrochemical element, more specifically, the binding force between the conductive substrate and the electrode layer is high. , An electrode layer forming material that is excellent in smoothness and can form electrodes with high thickness accuracy. Electrode layer of impedance, those electrodes, and an electrochemical device.

リチウム電池などの一次又は二次電池や、電気二重層コンデンサ、電解コンデンサなどのキャパシタなどの電気化学素子の電極として種々のものが提案されている。
例えば、ラテックス等の結着材と、活性炭等の炭素系粉末とを混合して、結着材の表面に炭素系粉末が付着した状態の混合物を得、それを粉砕して粉末を得、その粉末を成形して、炭素系粉末が結着材によりその表面が被覆されないようにされた電極層及び導電性基材が積層されてなる電極が開示されている(特許文献1)。また、ラテックス等の結着材と、活性炭粉末と、導電性材料とを混合してスラリーを得、このスラリーを導電性基材等に塗布してなる電極が開示されている(特許文献2)。これらの電極では、表面平滑性、厚み精度が不十分であり、活性炭等の電極活物質が剥がれ落ちることがあった。また電極層、電極又は電気化学素子のインピーダンス値が高くなることがあり、良質の電極を安定に製造することが容易でなかった。
Various types of electrodes have been proposed as electrodes for electrochemical elements such as primary or secondary batteries such as lithium batteries, capacitors such as electric double layer capacitors and electrolytic capacitors.
For example, a binder such as latex and carbon-based powder such as activated carbon are mixed to obtain a mixture in which the carbon-based powder adheres to the surface of the binder, and pulverized to obtain a powder. An electrode is disclosed in which a powder is molded and an electrode layer and a conductive base material in which the surface of the carbon-based powder is not covered with a binder and a conductive base material are laminated (Patent Document 1). Further, an electrode is disclosed in which a binder such as latex, activated carbon powder, and a conductive material are mixed to obtain a slurry, and this slurry is applied to a conductive substrate or the like (Patent Document 2). . These electrodes have insufficient surface smoothness and thickness accuracy, and electrode active materials such as activated carbon may be peeled off. Moreover, the impedance value of an electrode layer, an electrode, or an electrochemical element may become high, and it was not easy to manufacture a good quality electrode stably.

特開昭62−16506号公報Japanese Patent Laid-Open No. 62-16506 特開2001−307965号公報JP 2001-307965 A

本発明の目的は、導電性基材と電極層との結着力が高く、平滑性に優れ、高い厚み精度で電極を形成できる電極層形成用材料、その材料を用いて得られる低インピーダンスの電極層、電極及び電気化学素子を提供することにある。
本発明者は、鋭意研究を重ねた結果、導電性付与剤及び結着材を含有してなる重合体粒子と、電極活物質とが混合されてなる電極層形成用材料を用いることによって、導電性基材と電極層との結着力が高く、平滑性に優れ、高い厚み精度で電極が得られ、そして、インピーダンス(内部抵抗)の低い電極層、電極又は電気化学素子が得られることを見出し、その知見に基づいて本発明を完成するに至った。
An object of the present invention is to provide an electrode layer forming material that has a high binding force between a conductive substrate and an electrode layer, is excellent in smoothness, and can form an electrode with high thickness accuracy, and a low impedance electrode obtained by using the material It is to provide layers, electrodes and electrochemical elements.
As a result of intensive studies, the present inventor conducted conductive research by using an electrode layer forming material in which polymer particles containing a conductivity-imparting agent and a binder and an electrode active material are mixed. It has been found that an electrode layer, electrode or electrochemical element having a high binding force between the conductive substrate and the electrode layer, excellent smoothness, high thickness accuracy, and low impedance (internal resistance) can be obtained. Based on the findings, the present invention has been completed.

かくして、本発明によれば、導電性付与剤及び結着材を含有してなる重合体粒子と、電極活物質とが混合されてなる電極層形成用材料が提供され、前記電極層形成用材料を成形してなる電極層が提供され、前記電極層と導電性基材とが積層されてなる電極が提供され、前記電極が巻回または積層されてなる電極構造体、前記電極構造体と電解質とを収納するケース、及びこのケースの開口部を封口する封口体を含有してなる電気化学素子が提供される。また、導電性付与剤及び結着材を含有してなる電極層形成用重合体粒子が提供される。
また、本発明によれば、導電性付与剤と重合性単量体とを混合して単量体組成物を得、これを水系媒体中にて分散重合、乳化重合、懸濁重合あるいはマイクロサスペンジョン重合して重合体粒子を得、次いで該重合体粒子と電極活物質とを混合することを含む導電性付与剤及び結着材を含有してなる重合体粒子と、電極活物質とが混合されてなる電極層形成用材料の製法が提供される。
Thus, according to the present invention, there is provided an electrode layer forming material in which polymer particles containing a conductivity-imparting agent and a binder and an electrode active material are mixed, and the electrode layer forming material is provided. An electrode layer formed by molding is provided, an electrode in which the electrode layer and a conductive base material are laminated is provided, an electrode structure in which the electrode is wound or laminated, and the electrode structure and an electrolyte And an electrochemical element comprising a sealing body that seals the opening of the case. Moreover, the polymer particle for electrode layer formation containing a electroconductivity imparting agent and a binder is provided.
Further, according to the present invention, a monomer composition is obtained by mixing a conductivity-imparting agent and a polymerizable monomer, and this is dispersed, emulsion, suspension or microsuspension in an aqueous medium. Polymer particles are obtained by polymerization, and then the polymer particles containing a conductivity-imparting agent and a binder including mixing the polymer particles and the electrode active material are mixed with the electrode active material. A method for producing the electrode layer forming material is provided.

本発明の電極層形成用材料を用いることによって、導電性基材と電極層との結着力が高く、平滑性に優れ、高い厚み精度で電極が得られ、そして、結着機能を有する重合体粒子に導電性が付与されているので、インピーダンスの低い電極層、電極又は電気化学素子が得られる。本発明の電極を、Ni−Cd電池、リチウム電池などに用いることによって、高容量、高エネルギー密度の出力が可能で且つ長寿命の二次電池を得ることができる。また本発明の電極を電気二重層コンデンサなどに用いることによって、大電流(高出力密度)で、10万回以上の充放電可能な寿命を有するキャパシタを得ることができる。   By using the electrode layer forming material of the present invention, a polymer having high binding force between the conductive substrate and the electrode layer, excellent smoothness, high thickness accuracy, and having a binding function Since conductivity is imparted to the particles, an electrode layer, an electrode, or an electrochemical element with low impedance can be obtained. By using the electrode of the present invention for a Ni-Cd battery, a lithium battery or the like, a secondary battery having a high capacity, a high energy density and a long life can be obtained. Further, by using the electrode of the present invention for an electric double layer capacitor or the like, a capacitor having a life that can be charged and discharged 100,000 times or more with a large current (high output density) can be obtained.

本発明の電極層形成用材料は、導電性付与剤及び結着材を含有してなる重合体粒子と、電極活物質とが混合されてなるものである。
本発明の電極層形成用材料を構成する電極層形成用重合体粒子は、導電性付与剤及び結着材を含有してなるものである。
本発明に用いられる導電性付与剤は、電極層、電極又は電気化学素子の内部抵抗(或いはインピーダンス)を低下させるものであればよく、具体的には、導電性カーボン(例えば、コンダクティブファーネスブラック、スーパーコンダクティブファーネスブラック、エクストラコンダクティブファーネスブラックなどのファーネスブラック;コンダクティブチャンネルブラック;アセチレンブラックなど)、導電性グラファイト、粉末又は繊維状の金属、粉末又は繊維状の金属酸化物などが挙げられる。これらのうち導電性カーボンが好適である。導電性カーボンには市販されているものが多数あり、例えば、コンチネックスCF(コンチネタルカーボン社製コンダクティブファーネスブラック)、ケッチェンブラックEC(ケッチェンブラックインターナショナル社製コンダクティブファーネスブラック)、バルカンC(キヤボット社製コンダクティブファーネスブラック)、BLACKPEARLS2000(キヤボット社製コンダクティブファーネスブラック)、デンカアセチレンブラック(電気化学工業社製アセチレンブラック)などが挙げられる。導電性付与剤は、その比表面積が、通常20m/g以上、好ましくは200m/g以上、さらに好ましくは500m/g以上のものである。また、平均粒径は、通常0.1〜100μmである。
The electrode layer forming material of the present invention is obtained by mixing polymer particles containing a conductivity-imparting agent and a binder and an electrode active material.
The electrode layer-forming polymer particles constituting the electrode layer-forming material of the present invention contain a conductivity-imparting agent and a binder.
The conductivity-imparting agent used in the present invention is not particularly limited as long as it reduces the internal resistance (or impedance) of the electrode layer, electrode, or electrochemical element. Specifically, conductive carbon (for example, conductive furnace black, Furnace black such as super conductive furnace black and extra conductive furnace black; conductive channel black; acetylene black and the like), conductive graphite, powder or fibrous metal, powder or fibrous metal oxide, and the like. Of these, conductive carbon is preferred. There are many commercially available conductive carbons such as Continex CF (Conductive Furnace Black manufactured by Continental Carbon), Ketjen Black EC (Conductive Furnace Black manufactured by Ketjen Black International), Vulcan C ( Examples thereof include Cabot's conductive furnace black), BLACKPEARLS 2000 (Cabot's conductive furnace black), Denka acetylene black (Electrochemical Industry's acetylene black), and the like. Conductive agent, the specific surface area, typically 20 m 2 / g or more, preferably 200 meters 2 / g or more, further preferably not less than 500m 2 / g. Moreover, an average particle diameter is 0.1-100 micrometers normally.

本発明に用いられる結着材は、電極活物質及び導電性付与剤を結着して電極層を形成し、後記の導電性基材に積層させたときに該電極層が剥がれ落ちないようにするためのものである。
結着材としては、ポリブタジエン、カルボキシ変性されていてもよいスチレン・ブタジエン系共重合体、カルボキシ変性されていてもよいアクリロニトリル・ブタジエン系共重合体などのジエン系ゴム;アクリル酸2-エチルヘキシル・メタクリル酸・アクリロニトリル・エチレングリコールジメタクリレート共重合体、アクリル酸2-エチルヘキシル・メタクリル酸・メタクリロニトリル・ジエチレングリコールジメタクリレート共重合体、アクリル酸ブチル・アクリロニトリル・ジエチレングリコールジメタクリレート共重合体、アクリル酸ブチル・アクリル酸・トリメチロールプロパントリメタクリレート共重合体などのアクリレート系ゴム;エチレン・メチルアクリレート共重合体、エチレン・メチルメタクリレート共重合体、エチレン・エチルアクリレート共重合体、エチレン・エチルメタクリレート共重合体などの(メタ)アクリル酸エステル系共重合体;エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体などのアクリル酸系共重合体;
The binder used in the present invention forms an electrode layer by binding an electrode active material and a conductivity-imparting agent so that the electrode layer does not peel off when laminated on a conductive substrate described later. Is to do.
Binders include dibutadiene rubber such as polybutadiene, carboxy-modified styrene / butadiene copolymer, and carboxy-modified acrylonitrile / butadiene copolymer; 2-ethylhexyl acrylate / methacrylic acid Acid / acrylonitrile / ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate / methacrylic acid / methacrylonitrile / diethylene glycol dimethacrylate copolymer, butyl acrylate / acrylonitrile / diethylene glycol dimethacrylate copolymer, butyl acrylate / acrylic Acrylate rubber such as acid / trimethylolpropane trimethacrylate copolymer; ethylene / methyl acrylate copolymer, ethylene / methyl methacrylate copolymer, ethylene / (Meth) acrylic acid ester copolymers such as ethyl acrylate copolymers and ethylene / ethyl methacrylate copolymers; acrylic acid copolymers such as ethylene / acrylic acid copolymers and ethylene / methacrylic acid copolymers;

上記(メタ)アクリル酸エステル系共重合体にラジカル重合性単量体をグラフトさせたグラフト重合体;ポリアクリロニトリル、アクリロニトリル・アクリル酸エステル共重合体、アクリロニトリル・メタクリル酸エステル共重合体、アクリロニトリル・ブタジエン共重合体の水素添加物などのアクリロニトリル系ポリマー;スチレン・ブタジエンブロック共重合体、スチレン・イソプレンブロック共重合体、およびこれらの水素化物などのスチレン系熱可塑性エラストマー;フッ素ゴムやポリフッ化ビニリデンなどの含フッ素ポリマー;カルボキシメチルセルロース、メチルセルロース、エチルセルロースなどのセルロース類、ポリビニルアルコール、ポリビニルメチルエーテル、ポリアクリル酸、ポリアクリル酸塩、酸化スターチ、リン酸化スターチ、カゼイン、各種変性デンプンなどの水溶性ポリマーなどが挙げられ、これらのうちアクリレート系モノマーと重合性不飽和結合を2以上有するモノマーとの共重合体からなる架橋型アクリレート系ゴム又は、メタクリル酸エステル系共重合体又はアクリル酸エステル系共重合体にラジカル重合性単量体をグラフトさせたグラフト重合体が好ましい。   Graft polymer obtained by grafting a radical polymerizable monomer to the above (meth) acrylic acid ester copolymer; polyacrylonitrile, acrylonitrile / acrylic acid ester copolymer, acrylonitrile / methacrylic acid ester copolymer, acrylonitrile / butadiene Acrylonitrile polymers such as hydrogenated copolymers; Styrene thermoplastic elastomers such as styrene / butadiene block copolymers, styrene / isoprene block copolymers, and their hydrides; such as fluoro rubber and polyvinylidene fluoride Fluoropolymers: Celluloses such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, polyvinyl alcohol, polyvinyl methyl ether, polyacrylic acid, polyacrylate, starch starch, phosphorus Water-soluble polymers such as modified starch, casein, various modified starches, etc. Among them, cross-linked acrylate rubber or methacrylic copolymer consisting of a copolymer of an acrylate monomer and a monomer having two or more polymerizable unsaturated bonds A graft polymer obtained by grafting a radical polymerizable monomer to an acid ester copolymer or an acrylate ester copolymer is preferable.

本発明に用いる好適な結着材はそのガラス転移温度(Tg)が通常−60℃〜20℃、好ましくは−40℃〜0℃である。Tgが高すぎると結着力が低下する場合あり、低すぎると粒子状エラストマーが活物質表面を覆って内部抵抗が増加する場合がある。結着材の量は、電極層形成用材料(固形分)の通常0.1〜50質量%、好ましくは2〜30質量%である。結着材の量が少なすぎると、電極層を形成し難くなる場合があり、逆に結着材の量が多すぎると、電気化学素子の内部抵抗が大きくなる場合がある。また水溶性ポリマーは導電性付与剤を重合体粒子中に均一に分散させる効果を示すことがある。水溶性ポリマーの量は、導電性付与材100質量部に対して1〜65質量部であることが好ましく、特に1〜55質量部であることが好ましい。   A suitable binder used in the present invention has a glass transition temperature (Tg) of usually −60 ° C. to 20 ° C., preferably −40 ° C. to 0 ° C. If Tg is too high, the binding force may decrease, and if it is too low, the particulate elastomer may cover the active material surface and increase the internal resistance. The amount of the binder is usually 0.1 to 50% by mass, preferably 2 to 30% by mass of the electrode layer forming material (solid content). If the amount of the binder is too small, it may be difficult to form the electrode layer. Conversely, if the amount of the binder is too large, the internal resistance of the electrochemical device may be increased. The water-soluble polymer may show an effect of uniformly dispersing the conductivity-imparting agent in the polymer particles. The amount of the water-soluble polymer is preferably 1 to 65 parts by mass, particularly preferably 1 to 55 parts by mass with respect to 100 parts by mass of the conductivity-imparting material.

重合体粒子は、その粒径が通常0.01〜20μm、好ましくは0.05〜10μmである。
重合体粒子の粒径は、透過型電子顕微鏡写真で無作為に選んだ粒子像100個の径を測定し、その算術平均値として算出される個数平均粒子径である。
The particle diameter of the polymer particles is usually 0.01 to 20 μm, preferably 0.05 to 10 μm.
The particle diameter of the polymer particles is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameters of 100 particle images randomly selected from a transmission electron micrograph.

重合体粒子は、例えば、1)結着材を軟化溶融させ、それに導電性付与剤を添加して、練りこみ、固化して、粉砕、必要に応じて分級することによって、2)結着材を溶媒に溶解し、導電性付与剤をその溶液に分散させ、次いで該分散溶液を水に転相懸濁させ、乾燥することによって、又は3)結着材の微細な一次粒子の分散液若しくは乳化液に、導電性付与材を添加して、凝集させ二次粒子とし、更に結着材のガラス転移温度より高い温度で攪拌して会合させ、濾過、乾燥することによって得ることができる。   For example, the polymer particles can be obtained by 1) softening and melting the binder, adding a conductivity imparting agent thereto, kneading, solidifying, pulverizing, and classifying as necessary. 2) binder Is dissolved in a solvent, and the conductivity-imparting agent is dispersed in the solution, and then the dispersion is phase-suspended in water and dried, or 3) a dispersion of fine primary particles of the binder or It can be obtained by adding a conductivity-imparting material to the emulsified liquid, aggregating it into secondary particles, further stirring and associating at a temperature higher than the glass transition temperature of the binder, filtering and drying.

本発明において重合体粒子の好適な製法は、導電性付与剤と重合性単量体とを混合して単量体組成物を得、これを水系媒体中にて分散重合、乳化重合、懸濁重合あるいはマイクロサスペンジョン重合して重合体粒子を直接に得る方法である。
この方法において用いられる重合性単量体は、これを重合することによって結着材が形成されるものである。
In the present invention, a preferred method for producing polymer particles is to mix a conductivity-imparting agent and a polymerizable monomer to obtain a monomer composition, which is dispersed, emulsion-polymerized and suspended in an aqueous medium. In this method, polymer particles are obtained directly by polymerization or microsuspension polymerization.
In the polymerizable monomer used in this method, a binder is formed by polymerizing the polymerizable monomer.

重合性単量体としては、ブタジエン、イソプレン等の共役ジエン単量体;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシルなどのメタクリル酸エステル;スチレンなどの芳香族ビニル化合物;アクリロニトリル、メタクリロニトリルなどのエチレン性不飽和ニトリル化合物;アクリル酸、メタクリル酸、イタコン酸、マレイン酸などのエチレン性不飽和カルボン酸;アクリルアミド、メタクリルアミドなどのエチレン性不飽和アミド;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレートなどのジメタクリル酸エステル類、トリメチロールプロパントリメタクリレートなどのトリメタクリル酸エステル類、エチレングリコールジアクリレート、ジエチレングリコールジアクリレートなどのジアクリル酸エステル類、トリメチロールプロパントリアクリレートなどのトリアクリル酸エステル類、ジビニルベンゼンなどのジビニル化合物等の多官能エチレン性単量体;等が挙げられる。   Examples of polymerizable monomers include conjugated diene monomers such as butadiene and isoprene; acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, Methacrylic acid esters such as butyl methacrylate and 2-ethylhexyl methacrylate; aromatic vinyl compounds such as styrene; ethylenically unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; acrylic acid, methacrylic acid, itaconic acid, maleic acid, etc. Ethylenically unsaturated carboxylic acids; Ethylenically unsaturated amides such as acrylamide and methacrylamide; Dimethacrylic acid esters such as ethylene glycol dimethacrylate and diethylene glycol dimethacrylate, Trimethylolpro Polyfunctional ethylenic compounds such as trimethacrylic acid esters such as ethylene trimethacrylate, diacrylic acid esters such as ethylene glycol diacrylate and diethylene glycol diacrylate, triacrylic acid esters such as trimethylolpropane triacrylate, and divinyl compounds such as divinylbenzene Monomer; and the like.

単量体組成物は、導電性付与剤と重合性単量体とを混合してなるものである。混合方法は特に制限されないが、重合性単量体中に導電性付与剤が均一に微分散するように混合する。具体的には、メデヤ型湿式粉砕機を用いて重合性単量体中で導電性付与剤を湿式粉砕し、単量体組成物を得ることが好ましい。
単量体組成物は水系媒体に添加され分散重合、乳化重合、懸濁重合あるいはマイクロサスペンジョン重合する。重合時の安定性を高めるために、水系媒体には分散安定剤又は乳化剤を含有させることができる。
The monomer composition is a mixture of a conductivity imparting agent and a polymerizable monomer. The mixing method is not particularly limited, but mixing is performed so that the conductivity imparting agent is uniformly finely dispersed in the polymerizable monomer. Specifically, it is preferable to wet pulverize the conductivity-imparting agent in the polymerizable monomer using a media type wet pulverizer to obtain a monomer composition.
The monomer composition is added to an aqueous medium and subjected to dispersion polymerization, emulsion polymerization, suspension polymerization, or microsuspension polymerization. In order to increase the stability during polymerization, the aqueous medium can contain a dispersion stabilizer or an emulsifier.

分散安定剤としては、硫酸バリウム、硫酸カルシウムなどの硫酸塩;炭酸バリウム、炭酸カルシウム、炭酸マグネシウムなどの炭酸塩;リン酸カルシウムなどのリン酸塩;酸化アルミニウム、酸化チタン等の金属酸化物; 水酸化アルミニウム、水酸化マグネシウム、水酸化第二鉄などの金属水酸化物、等の難水溶性無機化合物の粒子;カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ポリビニルアルコール、ポリビニルメチルエーテル、ポリアクリル酸(塩)などの水溶性ポリマーなどが挙げられる。乳化剤としては、アルキル硫酸塩、アミド硫酸塩、第二アルキル硫酸塩、アルキルスルホン酸塩、アミドスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルアリルスルホン酸塩、アルキルナフタリンスルホン酸塩等のアニオン系界面活性剤;酢酸アミノ塩、アルキルトリメチルアンモニウムクロリド、ジアルキルジメチルアンモノウムクロリド、アルキルピリジニウムハロゲニド、アルキルジメチルベンジルアンモニウムクロリドなどのカチオン系界面活性剤;アミノ酢酸ナトリウムなどのカルボン酸型、アミノイセチオン酸ナトリウムなどのスルホン酸型、アミノアルキル硫酸エステルなどの硫酸エステル型等の両性界面活性剤;ポリオキシエチレンアルキルフェノール、ポリオキシエチレン脂肪アルコール、ポリオキシエチレン脂肪酸、ポリオキシエチレン酸アミド、ポリオキシエチレン脂肪アミン、プリロニック型界面活性剤等のノニオン系界面活性剤;などが挙げられる。   Examples of the dispersion stabilizer include sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate and magnesium carbonate; phosphates such as calcium phosphate; metal oxides such as aluminum oxide and titanium oxide; aluminum hydroxide Particles of poorly water-soluble inorganic compounds such as metal hydroxides such as magnesium hydroxide and ferric hydroxide; carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, polyvinyl alcohol, polyvinyl methyl ether, polyacrylic acid (salt) And water-soluble polymers. As an emulsifier, anionic surfactants such as alkyl sulfates, amide sulfates, secondary alkyl sulfates, alkyl sulfonates, amide sulfonates, dialkyl sulfosuccinates, alkyl allyl sulfonates, alkyl naphthalene sulfonates, etc. Agents: Cationic surfactants such as amino acid acetate, alkyltrimethylammonium chloride, dialkyldimethylammonium chloride, alkylpyridinium halide, alkyldimethylbenzylammonium chloride; carboxylic acid type such as sodium aminoacetate, sodium aminoisethionate, etc. Amphoteric surfactants such as sulfonic acid type and sulfuric acid ester type such as aminoalkyl sulfate ester; polyoxyethylene alkylphenol, polyoxyethylene fatty alcohol, polyoxyethylene fat , Polyoxyethylene acid amides, polyoxyethylene fatty amines, nonionic surface active agents such as Purironikku surfactant; and the like.

重合反応を開始させるために用いる重合開始剤は特に制限されず、具体的に過硫酸アンモニウム、過硫酸ナトリウムなどの過酸化物系開始剤、アゾイソブチロニトリルなどのアゾ系開始剤などが挙げられる。その他、分子量調整剤、イオン強度調整剤、pH調整剤などの重合副資材を用いることができる。重合反応条件は用いる重合開始剤、重合性単量体の種類に応じて適宜選択することができる。重合温度は通常20〜95℃、好ましくは30〜90℃である。
重合によって得られた重合体粒子は、水系媒体に分散等させた状態でそのまま用いることもできるし、ろ過などの固液分離手段によって水系媒体から取り出し、洗浄、乾燥、必要に応じて分級して用いることもできる。乾燥方法としては、スプレードライ法、攪拌しながらの真空乾燥法、流動床乾燥法などが挙げられる。
The polymerization initiator used for initiating the polymerization reaction is not particularly limited, and specific examples thereof include peroxide initiators such as ammonium persulfate and sodium persulfate, and azo initiators such as azoisobutyronitrile. . In addition, polymerization auxiliary materials such as a molecular weight regulator, an ionic strength regulator, and a pH regulator can be used. The polymerization reaction conditions can be appropriately selected according to the type of polymerization initiator and polymerizable monomer used. The polymerization temperature is usually 20 to 95 ° C, preferably 30 to 90 ° C.
The polymer particles obtained by the polymerization can be used as they are dispersed in the aqueous medium, or taken out from the aqueous medium by solid-liquid separation means such as filtration, washed, dried, and classified as necessary. It can also be used. Examples of the drying method include a spray drying method, a vacuum drying method with stirring, and a fluidized bed drying method.

本発明の電極層形成用材料を構成する電極活物質は電気化学素子の機能によって適宜選択される。
電気二重層コンデンサー用の電極活物質としては、活性炭、ポリアセン等の電解質イオンを吸着可能な炭素質物質が挙げられる。電気二重層コンデンサー用電極活物質は、その比表面積が200〜3500m/gである粉末が好ましい。また、比表面積が200〜3500m/gの、カーボンファイバ、カーボンウィスカ、グラファイト等の繊維、又は粉末も電極層の成形性を損なわない範囲で使用することができる。活性炭としてはフェノール系、レーヨン系、アクリル系、ピッチ系、又はヤシガラ系等を挙げることができる。電気二重層コンデンサー用電極活物質は、その粒子径が通常0.1〜100μm、好ましくは1〜20μmである。この粒子径範囲にある電極活物質を用いることによって、コンデンサ用電極の薄膜化が容易になり、容量密度も高くすることできる。電気二重層コンデンサの場合、電極活物質と導電性付与剤との合計量は、電極層形成用材料(固形分)100質量部のうち通常50〜99.9質量部、好ましくは70〜98質量部、より好ましくは80〜96質量部である。電極活物質と導電性付与剤との比率は、電極活物質100質量部に対し、導電性付与剤が通常0.1〜20質量部、好ましくは0.5〜10質量部である。
The electrode active material constituting the electrode layer forming material of the present invention is appropriately selected depending on the function of the electrochemical element.
Examples of the electrode active material for the electric double layer capacitor include carbonaceous materials capable of adsorbing electrolyte ions such as activated carbon and polyacene. The electrode active material for an electric double layer capacitor is preferably a powder having a specific surface area of 200 to 3500 m 2 / g. Further, fibers such as carbon fiber, carbon whisker, graphite, or powder having a specific surface area of 200 to 3500 m 2 / g can also be used as long as the moldability of the electrode layer is not impaired. Examples of the activated carbon include phenol-based, rayon-based, acrylic-based, pitch-based, and coconut shell-based. The electrode active material for an electric double layer capacitor has a particle size of usually 0.1 to 100 μm, preferably 1 to 20 μm. By using an electrode active material in this particle size range, the capacitor electrode can be made thinner and the capacity density can be increased. In the case of an electric double layer capacitor, the total amount of the electrode active material and the conductivity-imparting agent is usually 50 to 99.9 parts by mass, preferably 70 to 98 parts by mass, out of 100 parts by mass of the electrode layer forming material (solid content). Part, more preferably 80 to 96 parts by mass. The ratio of the electrode active material to the conductivity imparting agent is usually 0.1 to 20 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.

リチウムイオン二次電池正極用の活物質としては、LiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO−P、MoO、V、V13などの遷移金属酸化物;ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子;が挙げられる。リチウムイオン二次電池正極の場合、導電性付与剤の量は電極層形成用材料(固形分)100質量部のうち、通常1〜20質量部、好ましくは2〜10質量部である。電極活物質100質量部に対して導電性付与剤が通常0.5〜20質量部、好ましくは1〜10質量部である。 Examples of the active material for the positive electrode of the lithium ion secondary battery include lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 ; transition metals such as TiS 2 , TiS 3 , and amorphous MoS 3 sulfide; Cu 2 V 2 O 3, transition metal oxides such as amorphous V 2 O-P 2 O 5 , MoO 3, V 2 O 5, V 6 O 13; polyacetylene, poly -p- phenylene etc. A conductive polymer. In the case of a lithium ion secondary battery positive electrode, the amount of the conductivity-imparting agent is usually 1 to 20 parts by mass, preferably 2 to 10 parts by mass, out of 100 parts by mass of the electrode layer forming material (solid content). The conductivity imparting agent is usually 0.5 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.

リチウムイオン二次電池負極用の活物質としては、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質物質;ポリアセン等の導電性高分子などが挙げられる。リチウムイオン電池負極の場合、電極活物質と導電性付与剤の合計量は、電極層形成用材料(固形分)100質量部のうち、通常50〜99.9質量部、好ましくは70〜98質量部である。電極活物質100質量部に対して導電性付与剤が通常0.5〜20質量部、好ましくは1〜10質量部である。   Examples of the active material for the negative electrode of the lithium ion secondary battery include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers, and conductive polymers such as polyacene. . In the case of a lithium ion battery negative electrode, the total amount of the electrode active material and the conductivity-imparting agent is usually 50 to 99.9 parts by mass, preferably 70 to 98 parts by mass, out of 100 parts by mass of the electrode layer forming material (solid content). Part. The conductivity imparting agent is usually 0.5 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.

レドックスキャパシタ用電極活物質としては、酸化ルテニウム(RuO)などの金属酸化物が挙げられる。 Examples of the electrode active material for redox capacitors include metal oxides such as ruthenium oxide (RuO 2 ).

本発明の電極層形成用材料は上記の結着材及び導電性付与剤を含有してなる重合体粒子と、電極活物質とを混合することによって得られる。混合方法は特に制限されないが、水系媒体に分散等した重合体粒子に電極活物質を添加して攪拌混合する方法、乾燥した重合体粒子と電極活物質とをヘンシェルミキサー、オムニミキサー等で攪拌混合する方法などがある。混合に際して電極活物質表面が全て覆われてしまわないようにすることが好ましい。電極活物質の表面が全て覆われてしまうとイオンの移動が阻害され内部抵抗が高くなることがある。本発明の電極層形成用材料は、上記の重合体粒子及び電極活物質の他に、導電性付与剤をさらに混合されていてもよい。   The electrode layer forming material of the present invention can be obtained by mixing polymer particles containing the binder and the conductivity-imparting agent and an electrode active material. The mixing method is not particularly limited, but a method of adding an electrode active material to polymer particles dispersed in an aqueous medium and stirring and mixing, and stirring and mixing the dried polymer particles and the electrode active material with a Henschel mixer, an omni mixer, etc. There are ways to do it. It is preferable that the entire surface of the electrode active material is not covered during mixing. If the entire surface of the electrode active material is covered, the movement of ions may be hindered and the internal resistance may be increased. The electrode layer forming material of the present invention may be further mixed with a conductivity imparting agent in addition to the polymer particles and the electrode active material.

本発明の電極層は、前記電極層形成用材料を成形してなるものである。成形形状は特に限定されないが、通常、シート状若しくはフィルム状である。成形方法としては、例えば、電極層形成用材料が水系又は有機溶媒系の媒体に分散等している場合(すなわち、スラリー状態の場合)には、後記の導電性基材に塗布し乾燥する方法が採られる。電極層形成用材料が固形の場合は、乾式成形が採用される。乾式成形では、前記電極層形成用材料を直接電極層の形状に成形することができる。乾式成形としては、例えば、加圧成形法、粉体成形法、ロール圧延法、押出し成形法などが挙げられ、中でも加圧成形法が好ましい。   The electrode layer of the present invention is formed by molding the electrode layer forming material. Although a shaping | molding shape is not specifically limited, Usually, it is a sheet form or film form. As a forming method, for example, when the electrode layer forming material is dispersed in an aqueous or organic solvent-based medium (that is, in a slurry state), it is applied to a conductive substrate described later and dried. Is taken. When the electrode layer forming material is solid, dry molding is employed. In dry molding, the electrode layer forming material can be directly molded into the shape of an electrode layer. Examples of the dry molding include a pressure molding method, a powder molding method, a roll rolling method, and an extrusion molding method. Among these, the pressure molding method is preferable.

加圧成形では、上記電極層形成用材料を枚葉型プレス機、ロール式プレス機等により加圧して電極層を形成する。加圧成形は、成形型を用い、型内で電極層を形成する方法が好ましい。この方法によれば、電極層形成用材料の型内への供給、加圧成形、作成した電極層の取り出しといった一連の工程を自動化できるため、無人での連続生産が可能になる。また、大きさ、形状の異なる電極層も成形型を変えるだけで製造でき、かつ小型の成形設備で製造可能であるので、多品種の電極層の生産に好適である。加圧温度は、結着材のガラス転移温度、および粒子径等によって異なるが、室温から結着材の耐熱温度までの範囲で選択すればよい。好ましくはガラス転移点Tgよりも10〜30℃高い温度である。圧力は、温度にもよるが、所望の電極密度とすることができれば特に限定されるものではない。   In pressure molding, the electrode layer is formed by pressing the electrode layer forming material with a sheet-fed press, a roll press, or the like. For the pressure molding, a method of using a mold and forming an electrode layer in the mold is preferable. According to this method, since a series of processes such as supply of the electrode layer forming material into the mold, pressure molding, and removal of the prepared electrode layer can be automated, unattended continuous production becomes possible. In addition, since electrode layers having different sizes and shapes can be manufactured by simply changing the molding die and can be manufactured with a small molding facility, it is suitable for production of various types of electrode layers. The pressurizing temperature varies depending on the glass transition temperature and particle diameter of the binder, but may be selected in the range from room temperature to the heat resistant temperature of the binder. Preferably, the temperature is 10 to 30 ° C. higher than the glass transition point Tg. The pressure is not particularly limited as long as it can be a desired electrode density although it depends on the temperature.

成形される電極層の厚みは、50μm〜1000μm、電極層の密度は0.5g/cm〜1.0g/cmであるのが好ましく、使用目的によって求められる内部抵抗との関係で決められる。内部抵抗が小さければ電極層の密度も厚みも大きくすることができ、その結果としてエネルギー密度を上げることができる。但し、電極層の密度は上げ過ぎると電解液の浸透性が悪化するため、0.6g/cm〜0.8g/cmが好ましい。 The thickness of the molded electrode layer is preferably 50 μm to 1000 μm, and the density of the electrode layer is preferably 0.5 g / cm 3 to 1.0 g / cm 3 , and is determined by the relationship with the internal resistance required depending on the purpose of use. . If the internal resistance is small, the density and thickness of the electrode layer can be increased, and as a result, the energy density can be increased. However, if the density of the electrode layer is increased too much, the permeability of the electrolytic solution deteriorates, and therefore 0.6 g / cm 3 to 0.8 g / cm 3 is preferable.

本発明の電極は前記電極層と導電性基材とが積層されてなるものである。
上記で成形された電極層を、導電性基材と積層することにより電極が得られる。導電性基材は、導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、鉄、銅、ニッケル、アルミニウム、チタン、タンタル、ステンレス鋼、金、白金などの金属材料が好ましく、アルミニウムおよび白金が特に好ましい。導電性基材の形状は特に制限されないが、通常、厚さ5〜500μm、好ましくは10〜50μm程度のシート状、フィルム状、または網状のものを用いることができる。また、カーボン繊維織物、マット、導電ゴムシートおよびこれらの積層物も導電性基材として用いることができる。中でも金属箔が好ましく、アルミニウム箔が特に好ましい。
The electrode of the present invention is formed by laminating the electrode layer and a conductive substrate.
An electrode is obtained by laminating the electrode layer formed above with a conductive substrate. The conductive substrate is not particularly limited as long as it has conductivity and is electrochemically durable, but from the viewpoint of having heat resistance, iron, copper, nickel, aluminum, titanium, tantalum, Metal materials such as stainless steel, gold and platinum are preferred, and aluminum and platinum are particularly preferred. The shape of the conductive substrate is not particularly limited, but a sheet-like, film-like, or net-like one having a thickness of about 5 to 500 μm, preferably about 10 to 50 μm can be used. Carbon fiber fabrics, mats, conductive rubber sheets and laminates thereof can also be used as the conductive substrate. Of these, metal foil is preferable, and aluminum foil is particularly preferable.

導電性基材は、その表面に導電性接着剤の層を形成したものを用いてもよい。導電性接着剤は、少なくとも導電性付与剤と結着材を有するものであり、導電性付与剤と、結着材と、必要に応じ添加される分散剤とを水または有機溶媒中で混練することにより製造することができる。得られた導電性接着剤を、導電性基材に塗布、乾燥して導電性接着剤の層が形成される。電極層と導電性基材間の結着性を向上させるとともに内部抵抗の低下に寄与する。   As the conductive substrate, one having a conductive adhesive layer formed on the surface thereof may be used. The conductive adhesive has at least a conductivity imparting agent and a binder, and kneads the conductivity imparting agent, the binder, and a dispersant added as necessary in water or an organic solvent. Can be manufactured. The obtained conductive adhesive is applied to a conductive substrate and dried to form a conductive adhesive layer. This improves the binding between the electrode layer and the conductive substrate and contributes to a decrease in internal resistance.

導電性接着剤に用いられる導電性付与剤としては、前記において例示した導電性付与剤いずれをも用いることができる。また、結着材としては、エラストマーなどを用いることができる。また、分散剤としては、カルボキシメチルセルロースなどのセルロース類、ポリビニルアルコール、ポリビニルメチルエーテル、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン、各種変性デンプンなどを用いることができる。各成分の量は、導電性付与剤100質量部に対して結着材が乾燥重量基準で5〜20質量部、分散剤が乾燥重量基準で1〜5質量部であることが好ましい。上記結着材の量が少なすぎると電極層と導電性基材との接着が不十分になる場合がある。一方、結着材の量が多すぎると導電性付与剤の分散が不十分になり、内部抵抗が大きくなる場合がある。また、上記分散剤の量が少なすぎても導電性付与剤の分散が不十分になる場合がある。一方、分散剤の量が多すぎると該導電性付与剤が分散剤によって被覆され、内部抵抗が大きくなる場合がある。
導電性接着剤の導電性基材への塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって塗布される。塗布する量も特に制限されないが、乾燥した後に形成される電極層の厚さが通常0.5〜10μm、好ましくは2〜7μmとなるように調整される。
Any of the conductivity-imparting agents exemplified above can be used as the conductivity-imparting agent used in the conductive adhesive. Moreover, an elastomer etc. can be used as a binder. As the dispersant, celluloses such as carboxymethyl cellulose, polyvinyl alcohol, polyvinyl methyl ether, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein, various modified starches, and the like can be used. The amount of each component is preferably 5 to 20 parts by mass on the basis of dry weight and 1 to 5 parts by mass of the dispersant on the basis of dry weight with respect to 100 parts by mass of the conductivity-imparting agent. If the amount of the binder is too small, the adhesion between the electrode layer and the conductive substrate may be insufficient. On the other hand, if the amount of the binder is too large, the conductivity imparting agent may not be sufficiently dispersed, and the internal resistance may increase. Moreover, even if there is too little quantity of the said dispersing agent, dispersion | distribution of an electroconductivity imparting agent may become inadequate. On the other hand, if the amount of the dispersant is too large, the conductivity imparting agent may be covered with the dispersant, and the internal resistance may increase.
The method for applying the conductive adhesive to the conductive substrate is not particularly limited. For example, it is applied by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating, or the like. The amount to be applied is not particularly limited, but is adjusted so that the thickness of the electrode layer formed after drying is usually 0.5 to 10 μm, preferably 2 to 7 μm.

電極層と導電性基材とを積層して電極を得る方法は特に限定されない。本発明の電極は、例えば、スラリー状態の電極層形成用材料を導電性基材に塗布し乾燥する方法や、加圧成形により成形した電極層に導電性基材を張り合わせる方法や、導電性基材を形成する金属材料を電極層に蒸着する方法が挙げられる。また、電極層の加圧成形を成形型内で行う場合は、導電性基材を設置した成形型内に前記電極層形成用材料を供給し、加圧成形を行うと、電極層の形成と同時に導電性基材と電極層とを積層することが可能であり、工程を簡略化することができるので好ましい。   A method for obtaining an electrode by laminating an electrode layer and a conductive substrate is not particularly limited. The electrode of the present invention is, for example, a method in which an electrode layer forming material in a slurry state is applied to a conductive substrate and dried, a method in which a conductive substrate is bonded to an electrode layer formed by pressure molding, The method of vapor-depositing the metal material which forms a base material on an electrode layer is mentioned. In addition, in the case where pressure forming of the electrode layer is performed in the mold, when the electrode layer forming material is supplied into the mold in which the conductive base material is installed and pressure molding is performed, At the same time, the conductive substrate and the electrode layer can be stacked, which is preferable because the process can be simplified.

また、押出し成形やロール圧延により連続的にシート状の電極層を成形する場合は、導電性基材としてロール状の金属圧延箔コイルを用い、該ロールから連続的に金属箔を引き出して電極層と連続的に積層することができる。得られたシート状の電極はさらにプレス処理を行い電極密度を上げてもよい。   In addition, when a sheet-like electrode layer is continuously formed by extrusion molding or roll rolling, a roll-shaped metal rolled foil coil is used as the conductive substrate, and the metal foil is continuously drawn from the roll to form the electrode layer. Can be laminated continuously. The obtained sheet-like electrode may be further pressed to increase the electrode density.

本発明の電気化学素子は、前記の電極と必要に応じてセパレータとが巻回または積層されてなる電極構造体、前記電極構造体と電解質とを収納するケース、及びこのケースの開口部を封口する封口体を含有してなるものである。   The electrochemical device of the present invention includes an electrode structure in which the electrode and a separator as necessary are wound or laminated, a case for housing the electrode structure and an electrolyte, and an opening in the case It contains a sealing body.

セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜または不織布、一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜など公知のものを用いることができる。
電解質としては、従来より公知のものがいずれも使用でき、テトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェートなどが挙げられる。電解質は溶媒によって溶解される。溶媒としては非水系溶媒、水系溶媒とがあるが、耐電圧が高い非水系溶媒が好ましい。電解質として固体電解質あるいはゲル電解質を用いてもよい。
電解質を溶解させる溶媒(電解液溶媒)は、一般的に電解液溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ−ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられ、これらは単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。電解液の濃度は通常0.5モル/L以上、好ましくは0.8モル/L以上である。
As the separator, there can be used known ones such as a microporous film or non-woven fabric made of polyolefin such as polyethylene or polypropylene, or a porous film mainly made of pulp called electrolytic capacitor paper.
As the electrolyte, any conventionally known electrolyte can be used, and examples thereof include tetraethylammonium tetrafluoroborate, triethylmonomethylammonium tetrafluoroborate, and tetraethylammonium hexafluorophosphate. The electrolyte is dissolved by the solvent. The solvent includes a non-aqueous solvent and an aqueous solvent, but a non-aqueous solvent having a high withstand voltage is preferable. A solid electrolyte or a gel electrolyte may be used as the electrolyte.
The solvent for dissolving the electrolyte (electrolytic solution solvent) is not particularly limited as long as it is generally used as an electrolytic solution solvent. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate; lactones such as γ-butyrolactone; sulfolanes; nitriles such as acetonitrile, and the like. Can be used. Of these, carbonates are preferred. The concentration of the electrolytic solution is usually 0.5 mol / L or more, preferably 0.8 mol / L or more.

電極構造体と電解質とを収納するケース、及びこのケースの開口部を封口する封口体は、電極構造体及び電解質を収納し、腐食などによって漏液、漏れガスなどが生じないものであれば、その材質、形状など特に限定されない。   The case that houses the electrode structure and the electrolyte, and the sealing body that seals the opening of the case contains the electrode structure and the electrolyte, so long as no leakage or leakage gas occurs due to corrosion, etc. The material, shape, etc. are not particularly limited.

実施例1
(電極層形成用材料の製造)
スチレン50質量部、アセチレンブラック20質量部、ポリメタクリル酸エステルマクロマー(東亜合成化学工業製、「AA6」)0.3質量部の混合物を加圧ニーダーを用いて混練した。次いで、プラネタリーミキサーで上記混練物に更にアゾイソブチロニトリル4質量部、ブチルアクリレート50質量部を加えて均一に分散させた。この分散物をイオン交換水300質量部、カルボキシメチルセルロース10質量部、ラウリル硫酸ソーダ0.2質量部を溶解させた水溶液中に添加し、ホモジナイザーを用いて微分散させた。
この微分散液を攪拌機、コンデンサー、温度計及び窒素ガス導入口を備えた重合容器に仕込み、窒素気流下、80℃で8時間重合を行って体積平均粒径0.6μmの重合体粒子の分散液を得た。なお、重合体粒子の体積平均粒径は、マルチサイザー(コールター社製)により測定した。このマルチサイザーによる測定は、媒体;イソトンII (商品名;コールター社製電解液);濃度;10%;測定粒子数;50,000個;の条件で行った。
Example 1
(Manufacture of electrode layer forming material)
A mixture of 50 parts by mass of styrene, 20 parts by mass of acetylene black, and 0.3 parts by mass of a polymethacrylic acid ester macromer (manufactured by Toa Gosei Chemical Industry Co., Ltd., “AA6”) was kneaded using a pressure kneader. Next, 4 parts by mass of azoisobutyronitrile and 50 parts by mass of butyl acrylate were further added to the above kneaded product with a planetary mixer and dispersed uniformly. This dispersion was added to an aqueous solution in which 300 parts by mass of ion-exchanged water, 10 parts by mass of carboxymethyl cellulose, and 0.2 parts by mass of sodium lauryl sulfate were dissolved, and finely dispersed using a homogenizer.
This fine dispersion is charged into a polymerization vessel equipped with a stirrer, a condenser, a thermometer and a nitrogen gas inlet, and polymerized at 80 ° C. for 8 hours under a nitrogen stream to disperse polymer particles having a volume average particle diameter of 0.6 μm. A liquid was obtained. The volume average particle diameter of the polymer particles was measured with Multisizer (manufactured by Coulter Inc.). The measurement with this multisizer was performed under the conditions of medium; Isoton II (trade name; electrolyte solution manufactured by Coulter); concentration; 10%; number of particles to be measured;

(電極層の製造)
ヘンシェルミキサーに活性炭(クラレケミカル製BP20 粒子径5μ)3000質量部を仕込み、活性炭を攪拌しながら、上記で得た重合体粒子分散液360質量部(乾燥重量)をスプレー噴霧して、重合体粒子を添加し、粉末状混合物を得た。得られた粉末状混合物4.5gを4cm×6cmの金型内に仕込み、1トンプレスで80℃で加熱加圧し、厚み300μmのシート状の電極層を得た。
(Manufacture of electrode layers)
A Henschel mixer was charged with 3000 parts by weight of activated carbon (BP20 particle size 5 μm manufactured by Kuraray Chemical), and while stirring the activated carbon, 360 parts by weight (dry weight) of the polymer particle dispersion obtained above was sprayed to form polymer particles. Was added to obtain a powdery mixture. 4.5 g of the obtained powdery mixture was placed in a 4 cm × 6 cm mold and heated and pressurized at 80 ° C. with a 1 ton press to obtain a sheet-like electrode layer having a thickness of 300 μm.

(電極及び電気化学素子の製造)
電極層シートを4cm×6cmの白金板に貼り付けて電極を作製した。上記により得られた電極2枚を用いて、電極層が内側になるように厚さ40μmのセルロース繊維製セパレーターを挟み、さらに両側から厚さ2mm、幅5cm、長さ7cmの2枚のガラス板で挟持し、電極構造体とした。
不純物を取り除くために、上記電極構造体を200℃で3時間減圧加熱した。電極構造体に電解質を減圧下で含浸させ、次いで電極構造体をポリプロピレン製の角型有底筒状容器に収容し、電気二重層キャパシタを作製した。電解質としてはプロピレンカーボネートに1.5モル/Lの濃度でトリエチルモノメチルアンモニウムテトラフルオロボレートが溶解した溶液を用いた。内部抵抗と容量を測定した結果を表1に示す。
(Manufacture of electrodes and electrochemical elements)
The electrode layer sheet was affixed to a 4 cm × 6 cm platinum plate to produce an electrode. Using two electrodes obtained as described above, a cellulose fiber separator with a thickness of 40 μm is sandwiched so that the electrode layer is on the inside, and further, two glass plates with a thickness of 2 mm, a width of 5 cm, and a length of 7 cm from both sides To form an electrode structure.
In order to remove impurities, the electrode structure was heated under reduced pressure at 200 ° C. for 3 hours. The electrode structure was impregnated with an electrolyte under reduced pressure, and the electrode structure was then housed in a polypropylene square bottomed cylindrical container to produce an electric double layer capacitor. As the electrolyte, a solution in which triethylmonomethylammonium tetrafluoroborate was dissolved in propylene carbonate at a concentration of 1.5 mol / L was used. Table 1 shows the results of measuring the internal resistance and capacitance.

実施例2
アセチレンブラックに代えて、カーボンブラック50質量部を用いた他は実施例1と同様に体積平均粒子径0.6μmの重合体粒子の分散液を得、この重合体粒子を用いて実施例1と同様にして電極層、電極構造体及び電気二重層キャパシタを得た。その評価結果を表1に示した。
Example 2
A dispersion of polymer particles having a volume average particle diameter of 0.6 μm was obtained in the same manner as in Example 1 except that 50 parts by mass of carbon black was used in place of acetylene black. Similarly, an electrode layer, an electrode structure, and an electric double layer capacitor were obtained. The evaluation results are shown in Table 1.

比較例1
アセチレンブラック20質量部を用いなかった他は実施例1と同様にして体積平均粒子径0.4μmの重合体粒子の分散液を得、活性炭3000質量部の代わりにアセチレンブラック20質量部及び活性炭3000質量部を仕込んだ他は実施例1と同様にして電極層、電極構造体及び電気二重層キャパシタを得た。その評価結果を表1に示した。
Comparative Example 1
A dispersion of polymer particles having a volume average particle size of 0.4 μm was obtained in the same manner as in Example 1 except that 20 parts by mass of acetylene black was not used. Instead of 3000 parts by mass of activated carbon, 20 parts by mass of acetylene black and 3000 parts of activated carbon were obtained. An electrode layer, an electrode structure, and an electric double layer capacitor were obtained in the same manner as in Example 1 except that the mass part was charged. The evaluation results are shown in Table 1.

比較例2
活性炭(クラレケミカル製BP20 粒子径5μ)3000質量部、アセチレンブラック60質量部、PTFE300質量部を粉末混合し、ニーダーを用いて混練し、PTFEを繊維化し、これを4cm×6cmの金型内に仕込み、1トンプレスで80℃で加熱加圧し、厚み300μmのシート状の電極層を得た。次いで実施例1と同様にして電極構造体及び電気二重層キャパシタを得た。その評価結果を表1に示した。
Comparative Example 2
Activated charcoal (BP20 made by Kuraray Chemical Co., Ltd., particle size 5μ) 3000 parts by mass, acetylene black 60 parts by mass, PTFE 300 parts by mass are mixed with powder, kneaded using a kneader, fiberized PTFE, and placed in a 4 cm × 6 cm mold. The sheet was heated and pressed at 80 ° C. with a 1-ton press to obtain a sheet-like electrode layer having a thickness of 300 μm. Next, an electrode structure and an electric double layer capacitor were obtained in the same manner as in Example 1. The evaluation results are shown in Table 1.

Figure 0004543634
Figure 0004543634

(表1の記号)
比較例2の容量を基準にして、容量が+20%以上の場合を◎、+10以上+20%未満の場合を○、−10%以上+10%未満の場合を△、−10%未満の場合を×で表し、
比較例2の内部抵抗を基準にして、内部抵抗が−20%以下の場合◎、−20%超−10%以下の場合を○、−10%超+10%以下の場合を△、+10%超の場合を×で表した。
(Symbol in Table 1)
Based on the capacity of Comparative Example 2, when the capacity is + 20% or more, ◎, when +10 or more and less than + 20%, ◯, when −10% or more and less than + 10%, Δ, when less than −10% Represented by
Based on the internal resistance of Comparative Example 2, the case where the internal resistance is -20% or less ◎, the case where -20% is over -10% or less, the case where it is -10% or more + 10% or less △, the case + 10% or more The case of was represented by x.

Claims (6)

導電性付与剤及び結着材を含有してなる重合体粒子と、電極活物質とが混合されてなり、
前記重合体粒子が、導電性付与剤と重合性単量体とを混合して得られる単量体組成物を、水系媒体中にて分散重合、乳化重合、懸濁重合又はマイクロサスペンジョン重合して得られるものであり、
前記重合性単量体が、共役ジエン単量体、アクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物、エチレン性不飽和ニトリル化合物、エチレン性不飽和カルボン酸、エチレン性不飽和アミド、多官能エチレン性単量体のうち少なくとも一つである電極層形成用材料。
Polymer particles containing a conductivity-imparting agent and a binder, and an electrode active material are mixed,
The polymer particles are obtained by subjecting a monomer composition obtained by mixing a conductivity imparting agent and a polymerizable monomer to dispersion polymerization, emulsion polymerization, suspension polymerization or microsuspension polymerization in an aqueous medium. der those obtained is,
The polymerizable monomer is a conjugated diene monomer, acrylic ester, methacrylic ester, aromatic vinyl compound, ethylenically unsaturated nitrile compound, ethylenically unsaturated carboxylic acid, ethylenically unsaturated amide, polyfunctional ethylene An electrode layer forming material that is at least one of the functional monomers .
請求項1記載の電極層形成用材料を成形してなる電極層。   An electrode layer formed by molding the electrode layer forming material according to claim 1. 請求項2記載の電極層と導電性基材とが積層されてなる電極。   An electrode formed by laminating the electrode layer according to claim 2 and a conductive substrate. 請求項3記載の電極が巻回または積層されてなる電極構造体、前記電極構造体と電解質とを収納するケース、及びこのケースの開口部を封口する封口体を含有してなる電気化学素子。   An electrochemical element comprising: an electrode structure in which the electrode according to claim 3 is wound or laminated; a case that houses the electrode structure and an electrolyte; and a sealing body that seals an opening of the case. 導電性付与剤と重合性単量体とを混合して単量体組成物を得、
これを水系媒体中にて分散重合、乳化重合、懸濁重合又はマイクロサスペンジョン重合して重合体粒子を得、次いで該重合体粒子と電極活物質とを混合し、
前記重合性単量体が、共役ジエン単量体、アクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物、エチレン性不飽和ニトリル化合物、エチレン性不飽和カルボン酸、エチレン性不飽和アミド、多官能エチレン性単量体のうち少なくとも一つである電極層形成用材料の製法。
Mixing a conductivity-imparting agent and a polymerizable monomer to obtain a monomer composition,
This is dispersion polymerization, emulsion polymerization, suspension polymerization or microsuspension polymerization in an aqueous medium to obtain polymer particles, and then the polymer particles and the electrode active material are mixed ,
The polymerizable monomer is a conjugated diene monomer, acrylic ester, methacrylic ester, aromatic vinyl compound, ethylenically unsaturated nitrile compound, ethylenically unsaturated carboxylic acid, ethylenically unsaturated amide, polyfunctional ethylene A method for producing a material for forming an electrode layer, which is at least one of functional monomers .
導電性付与剤と重合性単量体とを混合して得られる単量体組成物を、水系媒体中にて分散重合、乳化重合、懸濁重合又はマイクロサスペンジョン重合して得られ
前記重合性単量体が、共役ジエン単量体、アクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物、エチレン性不飽和ニトリル化合物、エチレン性不飽和カルボン酸、エチレン性不飽和アミド、多官能エチレン性単量体のうち少なくとも一つである電極層形成用重合体粒子。
A monomer composition obtained by mixing a conductivity-imparting agent and a polymerizable monomer is obtained by dispersion polymerization, emulsion polymerization, suspension polymerization or microsuspension polymerization in an aqueous medium ,
The polymerizable monomer is a conjugated diene monomer, acrylic ester, methacrylic ester, aromatic vinyl compound, ethylenically unsaturated nitrile compound, ethylenically unsaturated carboxylic acid, ethylenically unsaturated amide, polyfunctional ethylene Electrode layer-forming polymer particles which are at least one of the polymerizable monomers.
JP2003293316A 2003-08-14 2003-08-14 Electrode layer forming material Expired - Fee Related JP4543634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293316A JP4543634B2 (en) 2003-08-14 2003-08-14 Electrode layer forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293316A JP4543634B2 (en) 2003-08-14 2003-08-14 Electrode layer forming material

Publications (2)

Publication Number Publication Date
JP2005063846A JP2005063846A (en) 2005-03-10
JP4543634B2 true JP4543634B2 (en) 2010-09-15

Family

ID=34370320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293316A Expired - Fee Related JP4543634B2 (en) 2003-08-14 2003-08-14 Electrode layer forming material

Country Status (1)

Country Link
JP (1) JP4543634B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106680A1 (en) * 2005-03-30 2006-10-12 Zeon Corporation Electrode material for electric double layer capacitor, method for producing same, electrode for electric double layer capacitor, and electric double layer capacitor
JP5311706B2 (en) * 2005-04-25 2013-10-09 日本ゼオン株式会社 Method for producing composite particle for electrochemical device electrode
WO2006115272A1 (en) * 2005-04-26 2006-11-02 Zeon Corporation Composite particles for electrochemical element electrode
US8119289B2 (en) * 2005-04-28 2012-02-21 Zeon Corporation Electro-chemical element electrode
JP4839669B2 (en) * 2005-04-28 2011-12-21 日本ゼオン株式会社 Composite particles for electrochemical device electrodes
JP4876478B2 (en) * 2005-05-27 2012-02-15 日本ゼオン株式会社 Method for producing sheet for electrochemical element electrode
JP2006339184A (en) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd Method of manufacturing composite particle for electrochemical element
JP2007019108A (en) * 2005-07-05 2007-01-25 Fuji Heavy Ind Ltd Lithium ion capacitor
JP4839726B2 (en) * 2005-08-19 2011-12-21 日本ゼオン株式会社 Electrode for electric double layer capacitor
JP2007067088A (en) * 2005-08-30 2007-03-15 Fuji Heavy Ind Ltd Lithium ion capacitor
JP4985404B2 (en) * 2005-09-16 2012-07-25 日本ゼオン株式会社 Electrochemical element electrode manufacturing method, electrochemical element electrode material, and electrochemical element electrode
US20100221965A1 (en) 2008-01-29 2010-09-02 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
JP4778034B2 (en) * 2008-01-30 2011-09-21 パナソニック株式会社 Method for producing non-aqueous secondary battery
JP5767431B2 (en) * 2008-10-03 2015-08-19 日本ゼオン株式会社 Electrochemical element electrode forming material, method for producing the same, and electrochemical element electrode
JP5499532B2 (en) * 2009-07-02 2014-05-21 日本ゼオン株式会社 Method for producing electrode for lithium ion secondary battery and composite particle
CN102859777B (en) * 2010-03-29 2015-08-26 日本瑞翁株式会社 Lithium rechargeable battery
JP5557793B2 (en) 2011-04-27 2014-07-23 株式会社日立製作所 Nonaqueous electrolyte secondary battery
JP6007973B2 (en) * 2012-03-26 2016-10-19 日本ゼオン株式会社 Composite particle for secondary battery negative electrode, its use and production method, and binder composition
WO2013183717A1 (en) * 2012-06-07 2013-12-12 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary cell negative electrode, and lithium ion secondary cell
JP6119750B2 (en) * 2012-06-28 2017-04-26 日本ゼオン株式会社 Negative electrode slurry composition, lithium ion secondary battery negative electrode and lithium ion secondary battery
US20170317378A1 (en) * 2014-11-21 2017-11-02 Zeon Corporation Composite particles for electrochemical device electrode
US11870076B2 (en) 2017-03-28 2024-01-09 Toagosei Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrode
KR102358448B1 (en) * 2017-11-21 2022-02-04 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and preparing method thereof
KR101920595B1 (en) 2018-08-08 2018-11-20 국방과학연구소 Thin film electrode for thermal batteries and a manufacturing method therefor
CN110648848A (en) * 2019-09-19 2020-01-03 肇庆绿宝石电子科技股份有限公司 115 ℃ large ripple current resistant aluminum electrolytic capacitor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975938A (en) * 1982-10-26 1984-04-28 San Aroo Kagaku Kk Production of vinyl chloride polymer composition
JPH0428159A (en) * 1990-05-22 1992-01-30 Sanyo Electric Co Ltd Secondary battery
JPH06103979A (en) * 1991-10-31 1994-04-15 Akihisa Ozawa Manufacture of conductive binding agent and application top various kinds of batteries
JPH0896794A (en) * 1994-09-20 1996-04-12 Murata Mfg Co Ltd Lithium secondary battery
JPH09129218A (en) * 1995-11-07 1997-05-16 Matsushita Electric Ind Co Ltd Polymer electrolyte lithium battery
JPH09320604A (en) * 1996-05-28 1997-12-12 Japan Synthetic Rubber Co Ltd Conductive-binded composition for secondary battery electrode and manufacture thereof
JPH10199532A (en) * 1997-01-10 1998-07-31 Toyota Central Res & Dev Lab Inc Positive electrode material for lithium secondary battery
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JPH10270047A (en) * 1997-03-27 1998-10-09 Nippon Zeon Co Ltd Battery binder composition, battery electrode slurry, lithyum secondary battery electrode, lithyum secondary battery
JP2002075375A (en) * 2000-08-31 2002-03-15 Nippon Shokubai Co Ltd Electrode for battery
JP2002134115A (en) * 2000-10-23 2002-05-10 Takiron Co Ltd Conductive binder liquid for lithium ion secondary battery, method of preparing binder liquid and electrode material for lithium ion secondary battery using binder liquid

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975938A (en) * 1982-10-26 1984-04-28 San Aroo Kagaku Kk Production of vinyl chloride polymer composition
JPH0428159A (en) * 1990-05-22 1992-01-30 Sanyo Electric Co Ltd Secondary battery
JPH06103979A (en) * 1991-10-31 1994-04-15 Akihisa Ozawa Manufacture of conductive binding agent and application top various kinds of batteries
JPH0896794A (en) * 1994-09-20 1996-04-12 Murata Mfg Co Ltd Lithium secondary battery
JPH09129218A (en) * 1995-11-07 1997-05-16 Matsushita Electric Ind Co Ltd Polymer electrolyte lithium battery
JPH09320604A (en) * 1996-05-28 1997-12-12 Japan Synthetic Rubber Co Ltd Conductive-binded composition for secondary battery electrode and manufacture thereof
JPH10199532A (en) * 1997-01-10 1998-07-31 Toyota Central Res & Dev Lab Inc Positive electrode material for lithium secondary battery
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JPH10270047A (en) * 1997-03-27 1998-10-09 Nippon Zeon Co Ltd Battery binder composition, battery electrode slurry, lithyum secondary battery electrode, lithyum secondary battery
JP2002075375A (en) * 2000-08-31 2002-03-15 Nippon Shokubai Co Ltd Electrode for battery
JP2002134115A (en) * 2000-10-23 2002-05-10 Takiron Co Ltd Conductive binder liquid for lithium ion secondary battery, method of preparing binder liquid and electrode material for lithium ion secondary battery using binder liquid

Also Published As

Publication number Publication date
JP2005063846A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4543634B2 (en) Electrode layer forming material
JP6409782B2 (en) Particulate polymer, binder layer and porous film composition for binder of lithium ion secondary battery
US8048478B2 (en) Method of manufacturing electrode for electrochemical device
JP5413368B2 (en) Method for producing electrode for electrochemical device
JP5943602B2 (en) Acrylic aqueous dispersion and aqueous paste for electrochemical cell, and method for producing electrode / battery comprising the same
JP4605467B2 (en) Method for producing electrochemical element
JP6171680B2 (en) Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6273956B2 (en) Binder for secondary battery porous membrane, slurry composition for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
WO2005013298A1 (en) Binder for electrical double layer capacitor electrodes
US7570478B2 (en) Binder for electric double layer capacitor
JP2015028842A (en) Adhesive agent for lithium ion secondary batteries, lithium ion secondary battery separator, and lithium ion secondary battery
JP6135396B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JPWO2005117043A1 (en) Electrode device electrode manufacturing method and apparatus
JP6314402B2 (en) Binder composition for electrochemical capacitor, slurry composition for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor
JPH09320604A (en) Conductive-binded composition for secondary battery electrode and manufacture thereof
CN107925086B (en) Electrode for electrochemical element
WO2015111663A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2005166756A (en) Binder for electrochemical element
KR20160114044A (en) Liquid adhesive coating for coating collector
JP5499532B2 (en) Method for producing electrode for lithium ion secondary battery and composite particle
JP4678302B2 (en) Method for manufacturing electrode for electric double layer capacitor
JP5696826B2 (en) Binder composition for electrode, slurry composition for electrode, electrode and battery
WO2019013218A1 (en) Method for producing member for electrochemical elements and laminate for electrochemical elements
JP4899354B2 (en) Method for producing composite particles, electrode material for electrochemical element, method for producing electrode for electrochemical element, and electrode for electrochemical element
JP2016096250A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4543634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees