JPH06103979A - Manufacture of conductive binding agent and application top various kinds of batteries - Google Patents

Manufacture of conductive binding agent and application top various kinds of batteries

Info

Publication number
JPH06103979A
JPH06103979A JP3349326A JP34932691A JPH06103979A JP H06103979 A JPH06103979 A JP H06103979A JP 3349326 A JP3349326 A JP 3349326A JP 34932691 A JP34932691 A JP 34932691A JP H06103979 A JPH06103979 A JP H06103979A
Authority
JP
Japan
Prior art keywords
carbon material
composite material
dispersed
fluorine resin
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3349326A
Other languages
Japanese (ja)
Inventor
Akihisa Ozawa
昭弥 小沢
Masayuki Yoshio
真幸 芳尾
Hideyuki Noguchi
英行 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3349326A priority Critical patent/JPH06103979A/en
Publication of JPH06103979A publication Critical patent/JPH06103979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an electrode for a cell and a battery, which is excellent in charge/discharge performance by uniformly dispersing fluorine resin and carbon material in solution, removing the solution so as to allow composite material to be produced thereafter, and thereby binding electrode active material using the aforesaid composite material as binding agent. CONSTITUTION:Fluorine resin powder and carbon material such as Ketien black whose grain size is less than 0.1mum are dispersed in the class of alcohol such as methanol and the like and the class of halide alkyl such as acetonitrile and the like, are mechanically stirred and dispersed uniformly so as to be formed into composite material, so that the solution is removed thereafter. The composite material thus produced has two properties of binding performance and conductivity, so that electrode active material can be bound without lowering conductivity. The carbon material is high in oxygen over potential, a battery with nickel oxide electrodes can sufficiently be charged with less self-discharge and with performance scarcely deteriorated. The carbon material is therefore effective in particular as the binding material for the positive electrode when aqueous solution is used as electrolytic solution.

Description

【発明の詳細な説明】 【産業上の利用分野】本発明は、電池用正極および負極
合剤製造時に使用する導電性結着剤に関する。 【0003】 【従来の技術及び問題点】酸化ニッケルを正極とし、水
素吸蔵合金を負極とするアルカリ蓄電池や金属酸化物や
カルコゲン化合物を正極活物質とし、金属リチウムを負
極とするリチウム蓄電池では水素吸蔵合金を含む負極合
剤や金属酸化物,カルコゲン化合物を含む正極合剤製造
時にフッ素樹脂などの結着剤と炭素材料等の導電剤を別
々に混合して製造することがよく知られている。アルカ
リ乾電池、塩化亜鉛型乾電池では炭素材料等の導電剤が
二酸化マンガン正極合剤に添加されることもよく知られ
ている。特公58−163157に、水素吸蔵合金粉末
をフッソ樹脂等のバインダーで固定する方法が提案され
ている。しかし、フッソ樹脂が絶縁体であるために水素
吸蔵電極の導電性が損なわれ、かつこの電極中での電流
が不均一となるため、電池としての充放電特性が劣化す
るという問題点があった。この問題点は半導体である電
池活物質では共通する問題点でもある。この問題点を解
決するためにニッケル等の金属粉体を多量に添加するこ
とが考えられるが、この方法では、重量当たりの放電容
量が低下するのみならず電極活物質,金属粉末及びポリ
テトラフルオロエチレン樹脂の密度が異なるため前記三
者の均一な分散が困難となり、電極活物質の結着性が低
下し、充放電サイクルの増加に伴い電極活物質が電極か
ら脱落するという問題点が生じるだけでなく、材料点数
が増え、作業コストの増加につながる。 【0004】 【問題点を解決するための手段】上記問題点を解決する
ため、本発明では、結着剤に予め導電性を付与しようと
するものである。即ち、フッソ樹脂と炭素材料よりなる
複合材料は、炭素材料中にフッソ樹脂が均一に分散され
結着性と導電性の二つの特性を有するため、電池活物質
の結着が電極の導電性を損なう事もなく、電池としての
放電特性あるいは充放電特性が劣化するという問題点は
なくなる。 【0005】 【作用】上記結着剤は、アセチレンブラック,グラファ
イト,ケッチンブラック等の炭素材料材料にポリフルオ
ロエチレン等のフッソ樹脂を均一に分散させた複合材料
で、炭素材料材料の比重が軽いという問題点とフッソ樹
脂が絶縁体であるという問題点を同時に解決した材料で
ある。本発明の複合材料は電極活物質を導電性が低下す
ることなく結着可能である。この導電性結着剤の製造に
使用されるアセチレンブラックは表面積20−300m
/gであり粒径0.1μm以下の炭素粒子がぶどう状
に連結した構造であり広範囲の粒度の活物質(0.1−
50μm)のものに導電性を与えるものである。また、
ここで用いたアセチレンブラックなどの炭素材料は酸素
過電圧が高く酸化ニッケル電極は十分に充電でき、自己
放電も少なく、その性能の劣化が殆どなく電解液に水溶
液を用いる場合の正極用結着剤として特に有効である。 【0006】 【実施例】以下、本発明の実施例を説明する。 【実施例1】ポリフルオロエチレン1gを50−400
mlのメタノール中にホモジナイザーを用いて十分に分
散させる。この分散液にケッチンブラック0.5−4g
を加え、ホモジナイザーを用いて混合分散液を攪拌す
る。この分散液をろ過し,融点以下で乾燥することによ
りフッソ樹脂と炭素材料からなる複合材料を得る。 【0007】 【実施例2】ポリフルオロエチレンを1g含む水溶性分
散液と蒸留水100−300mlをビーカーに入れホモ
ジナイザーを用いて混合する。アセチレンブラック20
0−1000mgを加え、水溶液表面に浮遊するアセチ
レンブラックに対し5−30mlのメタノールを加えア
セチレンブラックを水溶液中に分散させる。アセチレン
ブラックを添加する操作を3回繰り返す。最後にメタノ
ール10−50mlを加えアセチレンブラックの混合溶
液中の分散を十分にする。混合物はろ過後メタノール:
水=2:1から1:4の範囲の混合液で洗浄し,最初ポ
リフルオロエチレン水溶性分散液中に含まれる不純物を
除く。融点以下で乾燥することによりフッソ樹脂と炭素
材料からなる複合材料を得る。 【0008】 【実施例3】ポリフルオロエチレンを1g含む有機溶媒
分散液をメタノール50−400mlにホモジナイザー
を用いて十分に分散させる。この分散液にケッチンブラ
ック0.5−2gを加え、ホモジナイザーを用いて混合
分散液を攪拌する。この分散液をろ過し,メタノールで
洗浄する。融点以下で乾燥することによりフッソ樹脂と
炭素材料からなる複合材料を得る。 【0009】 【応用例1】Ni(OH)100mgに対して20m
gの複合材料を混合する。混合物をステンレスあるいは
ニッケル等の金属スクリーンに0.1−4ton/cm
で圧着し,ニッケル正極を作製する。水素吸蔵負極は
水素合金180mgと30mgの複合材料を混合して作
製した。電池性能テストは図1に示す装置によって行っ
た。第1図における装置は中央に酸化ニッケル極1,こ
の両側に水素吸蔵負極2,Hg/HgO/8M−KOH
照合電極への導線3をセル内に設けた構造となってい
る。電解液は0.1M−LiOHを含む8M−KOHで
ある。充電電流2mAで17時間の充電し,放電電流4
mAで正極電位0.2Vまでの充放電を繰り返した場合
の結果を図2に示す。 【0010】 【応用例2】水素合金100mgに対して20mgの複
合材料を混合する。混合物をステンレスあるいはニッケ
ル等の金属スクリーンに0.1−4ton/cmで圧
着する。実施例1と同じ電解液,電解セルを用いる。但
し、水素吸蔵負極極を中央にし両側に酸化ニッケル極を
配置する。酸化ニッケル極は市販のニッカド電池の正極
を用いる。充電電流を1mA(10mA/g)とし24
時間充電する。放電は1,6,15,30mAで行っ
た。この結果を図3に示す。 【0011】 【発明の効果】以上、本発明の結着剤を用いれば放電あ
るいは充放電特性の優れている電池および蓄電池用電極
を提供する事が出来るものである。 【0012】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive binder used for producing a positive electrode and negative electrode mixture for batteries. 2. Description of the Prior Art Alkaline storage batteries having nickel oxide as a positive electrode and a hydrogen storage alloy as a negative electrode and lithium storage batteries having a metal oxide or a chalcogen compound as a positive electrode active material and metal lithium as a negative electrode store hydrogen. It is well known to separately mix a binder such as a fluororesin and a conductive agent such as a carbon material when manufacturing a negative electrode mixture containing an alloy or a positive electrode mixture containing a metal oxide or a chalcogen compound. In alkaline dry batteries and zinc chloride type dry batteries, it is well known that a conductive material such as a carbon material is added to the manganese dioxide positive electrode mixture. Japanese Patent Publication No. 58-163157 proposes a method of fixing the hydrogen storage alloy powder with a binder such as a fluorine resin. However, since the fluorine resin is an insulator, the conductivity of the hydrogen storage electrode is impaired, and the current in this electrode becomes non-uniform, so that the charge and discharge characteristics of the battery deteriorate. . This problem is also common to battery active materials that are semiconductors. In order to solve this problem, it is possible to add a large amount of metal powder such as nickel, but this method not only lowers the discharge capacity per weight, but also the electrode active material, metal powder and polytetrafluorocarbon. Since the ethylene resins have different densities, it is difficult to uniformly disperse the three materials, the binding property of the electrode active material is deteriorated, and the problem that the electrode active material falls off from the electrode with the increase of charge / discharge cycles occurs. Not only that, but the number of materials increases, which leads to an increase in work cost. In order to solve the above problems, the present invention intends to impart conductivity to the binder in advance. That is, in the composite material composed of the fluorocarbon resin and the carbon material, the fluorocarbon resin is uniformly dispersed in the carbon material and has two properties, that is, binding property and conductivity. Without any damage, there is no problem that the discharge characteristics or charge / discharge characteristics of the battery deteriorate. The above-mentioned binder is a composite material in which a fluorocarbon resin such as polyfluoroethylene is uniformly dispersed in a carbon material such as acetylene black, graphite, and Ketchin black, and the specific gravity of the carbon material is low. It is a material that solves both the problem and the problem that fluorine resin is an insulator. The composite material of the present invention can bind an electrode active material without lowering conductivity. The acetylene black used for producing this conductive binder has a surface area of 20-300 m.
2 / g, a structure in which carbon particles having a particle size of 0.1 μm or less are connected like a grape, and an active material having a wide range of particle sizes (0.1-
50 μm) to give conductivity. Also,
Carbon materials such as acetylene black used here have a high oxygen overvoltage and can sufficiently charge nickel oxide electrodes, and have little self-discharge, and as a binder for the positive electrode when an aqueous solution is used as the electrolyte with almost no deterioration in its performance. Especially effective. Embodiments of the present invention will be described below. Example 1 1 g of polyfluoroethylene was added to 50-400
Disperse well in ml of methanol using a homogenizer. 0.5-4 g of Ketchin black in this dispersion
Is added and the mixed dispersion is stirred using a homogenizer. The dispersion is filtered and dried at a temperature below the melting point to obtain a composite material composed of a fluorine resin and a carbon material. Example 2 An aqueous dispersion containing 1 g of polyfluoroethylene and 100-300 ml of distilled water were placed in a beaker and mixed using a homogenizer. Acetylene black 20
0-1000 mg is added, and 5-30 ml of methanol is added to the acetylene black floating on the surface of the aqueous solution to disperse the acetylene black in the aqueous solution. The operation of adding acetylene black is repeated 3 times. Finally, 10-50 ml of methanol is added to make sufficient dispersion in the mixed solution of acetylene black. The mixture is filtered after methanol:
Wash with a mixed solution of water = 2: 1 to 1: 4 to remove impurities initially contained in the polyfluoroethylene aqueous dispersion. A composite material composed of a fluorine resin and a carbon material is obtained by drying below the melting point. Example 3 An organic solvent dispersion containing 1 g of polyfluoroethylene was sufficiently dispersed in 50-400 ml of methanol using a homogenizer. 0.5-2 g of Ketchin black was added to this dispersion, and the mixed dispersion was stirred using a homogenizer. The dispersion is filtered and washed with methanol. A composite material composed of a fluorine resin and a carbon material is obtained by drying below the melting point. [Application Example 1] 20 m per 100 mg of Ni (OH) 2
g of composite material are mixed. 0.1-4 ton / cm of the mixture on a metal screen such as stainless steel or nickel.
2 is pressure bonded to produce a nickel positive electrode. The hydrogen storage negative electrode was produced by mixing 180 mg and 30 mg of a hydrogen alloy composite material. The battery performance test was performed by the device shown in FIG. The apparatus in FIG. 1 has a nickel oxide electrode 1 in the center, a hydrogen storage negative electrode 2 on both sides thereof, and Hg / HgO / 8M-KOH.
The structure is such that the conducting wire 3 to the reference electrode is provided in the cell. The electrolytic solution is 8M-KOH containing 0.1M-LiOH. Charging current 2mA for 17 hours, discharging current 4
FIG. 2 shows the result when charging and discharging were repeated up to a positive electrode potential of 0.2 V at mA. APPLICATION EXAMPLE 2 20 mg of composite material is mixed with 100 mg of hydrogen alloy. The mixture is pressed onto a metal screen such as stainless steel or nickel at 0.1-4 ton / cm 2 . The same electrolytic solution and electrolytic cell as in Example 1 are used. However, nickel oxide electrodes are arranged on both sides with the hydrogen storage negative electrode as the center. As the nickel oxide electrode, a positive electrode of a commercially available NiCd battery is used. Charging current is 1mA (10mA / g) 24
Charge for hours. The discharge was performed at 1, 6, 15 and 30 mA. The result is shown in FIG. As described above, by using the binder of the present invention, it is possible to provide a battery and a storage battery electrode having excellent discharge or charge / discharge characteristics. [0012]

【図面の簡単な説明】 【図1】テストに用いた電池の構成 【符号の説明】 1は酸化ニッケル極 2は水素吸蔵電極 3は照合電極
への導線 4はガラス製容器 5はゴム栓 【図2】酸化ニッケル電極の充放電挙動 【図3】水素吸蔵電極の放電速度と放電容量の関係
BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1] Configuration of battery used for test [Explanation of reference numerals] 1 is nickel oxide electrode 2 is hydrogen storage electrode 3 is lead wire to reference electrode 4 is glass container 5 is rubber stopper [ Fig. 2 Charge / discharge behavior of nickel oxide electrode. Fig. 3 Relationship between discharge speed and discharge capacity of hydrogen storage electrode.

Claims (1)

【0001】 【特許請求の範囲】 1. メタノール、エタノール等のアルコール類やアセ
トニトリル、ジクロロメタンなどのハロゲン化アルキル
類中にフッソ樹脂の粉末と0.1μm以下の粒径を有す
るケッチンブラック、またはアセチレンブラックを分散
させ機械的攪拌により炭素材料中へフッソ樹脂を均一に
分散複合化させたのち、溶媒を除去する。またはフッソ
樹脂の融点以下で加熱してフッソ樹脂と炭素材料からな
る複合材料を得る方法 2. 水−メタノール混合溶媒(体積比4:1から1:
2の範囲)中にフッソ樹脂の粉末と0.1μm以下の粒
径を有するケッチンブラック、またはアセチレンブラッ
クを分散させ機械的攪拌により炭素材料中へフッソ樹脂
を均一に分散複合化させたのち、溶媒を除去する。また
はフッソ樹脂の融点以下で加熱してフッソ樹脂と炭素材
料からなる複合材料を得る方法 3. この際トリトン100などのポリオキシエチレン
系の中性界面活性剤,ドデシルベンゼンスルフォン酸な
どの陰イオン性界面活性剤やゼフィラミンなどの陽イオ
ン性界面活性の添加により複合材料の親水性と撥水性を
制御する方法 【0002】
[Claims] 1. Fluorine resin powder and Ketjin black or acetylene black having a particle size of 0.1 μm or less are dispersed in alcohols such as methanol and ethanol, or alkyl halides such as acetonitrile and dichloromethane, and mechanically stirred into a carbon material. After the fluorine resin is uniformly dispersed and complexed, the solvent is removed. Alternatively, a method of heating at a temperature below the melting point of the fluororesin to obtain a composite material composed of the fluororesin and the carbon material Water-methanol mixed solvent (volume ratio 4: 1 to 1: 1)
Kickback black having a particle size of the powder and the following 0.1 [mu] m 2 range) fluorine resin in or after dispersed uniformly compounding the fluororesin to a carbon material by mechanical agitation acetylene black is dispersed, and the solvent To remove. Alternatively, a method of obtaining a composite material composed of a fluorocarbon resin and a carbon material by heating below the melting point of the fluorocarbon resin 3. At this time, the hydrophilicity and water repellency of the composite material can be improved by adding a polyoxyethylene-based neutral surfactant such as Triton 100, an anionic surfactant such as dodecylbenzenesulfonic acid, and a cationic surfactant such as Zephyramine. Method of controlling
JP3349326A 1991-10-31 1991-10-31 Manufacture of conductive binding agent and application top various kinds of batteries Pending JPH06103979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3349326A JPH06103979A (en) 1991-10-31 1991-10-31 Manufacture of conductive binding agent and application top various kinds of batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3349326A JPH06103979A (en) 1991-10-31 1991-10-31 Manufacture of conductive binding agent and application top various kinds of batteries

Publications (1)

Publication Number Publication Date
JPH06103979A true JPH06103979A (en) 1994-04-15

Family

ID=18403020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3349326A Pending JPH06103979A (en) 1991-10-31 1991-10-31 Manufacture of conductive binding agent and application top various kinds of batteries

Country Status (1)

Country Link
JP (1) JPH06103979A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327157A (en) * 2003-04-23 2004-11-18 Japan Storage Battery Co Ltd Storage battery
JP2005063846A (en) * 2003-08-14 2005-03-10 Nippon Zeon Co Ltd Material for forming electrode layer
WO2010061965A1 (en) 2008-11-28 2010-06-03 住友化学株式会社 Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
US9362564B2 (en) 2012-10-09 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN115995604A (en) * 2023-03-23 2023-04-21 宁德新能源科技有限公司 Composite electrolyte membrane, electrochemical device, and electronic apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327157A (en) * 2003-04-23 2004-11-18 Japan Storage Battery Co Ltd Storage battery
JP2005063846A (en) * 2003-08-14 2005-03-10 Nippon Zeon Co Ltd Material for forming electrode layer
JP4543634B2 (en) * 2003-08-14 2010-09-15 日本ゼオン株式会社 Electrode layer forming material
WO2010061965A1 (en) 2008-11-28 2010-06-03 住友化学株式会社 Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
US9362564B2 (en) 2012-10-09 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9620820B2 (en) 2012-10-09 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9847555B2 (en) 2012-10-09 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US10128541B2 (en) 2012-10-09 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN115995604A (en) * 2023-03-23 2023-04-21 宁德新能源科技有限公司 Composite electrolyte membrane, electrochemical device, and electronic apparatus
CN115995604B (en) * 2023-03-23 2023-07-14 宁德新能源科技有限公司 Composite electrolyte membrane, electrochemical device, and electronic apparatus

Similar Documents

Publication Publication Date Title
KR101930978B1 (en) Lead-acid battery formulations containing discrete carbon nanotubes
US5223352A (en) Lead-acid battery with dimensionally isotropic graphite additive in active material
JP3185508B2 (en) Sealed lead-acid battery
CA2145564C (en) Alkaline manganese battery
US4197366A (en) Non-aqueous electrolyte cells
US4029854A (en) Halogen electrode
JP2003051306A (en) Negative electrode for lead-acid battery
CN1226797C (en) Secondary battery
JPH117948A (en) Nickel-hydrogen battery anode and manufacture thereof
JP2003123760A (en) Negative electrode for lead-acid battery
JPH06103979A (en) Manufacture of conductive binding agent and application top various kinds of batteries
JP3216451B2 (en) Non-aqueous electrolyte battery
JP5656116B2 (en) Lead acid battery
CN1337750A (en) Method for preparing active material of positive electrode of alkali accumulator and nickle and electrode and alkali accumulator
JPH09180736A (en) Alkaline manganese battery
JP2006351465A (en) Modifier liquid for lead accumulator
JP4224729B2 (en) Sealed lead-acid battery and method for manufacturing the same
JP2750708B2 (en) Lead-acid battery separator
JPH0414760A (en) Lead-acid accumulator
JPH08130001A (en) Separator for storage battery and sealed lead-acid battery using this separator
JP3219418B2 (en) Zinc alkaline battery
JP2815439B2 (en) Sealed lead-acid battery
JPH10188964A (en) Sealed lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode