JPS61222248A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61222248A
JPS61222248A JP6446585A JP6446585A JPS61222248A JP S61222248 A JPS61222248 A JP S61222248A JP 6446585 A JP6446585 A JP 6446585A JP 6446585 A JP6446585 A JP 6446585A JP S61222248 A JPS61222248 A JP S61222248A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
silicon
oxide film
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6446585A
Other languages
Japanese (ja)
Inventor
Kuniaki Kumamaru
熊丸 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6446585A priority Critical patent/JPS61222248A/en
Publication of JPS61222248A publication Critical patent/JPS61222248A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to form a polycrystalline silicon resistor highly accurately, by determining the particle diameter of the polycrystalline silicon at or above the specified value, and reducing the elution of the silicon into Al, which is in contact with the silicon. CONSTITUTION:On a field oxide film 2 on a semiconductor substrate 1, a polycrystalline silicon film, in which impurities are not added, is formed at 650 deg.C or more. A polycrystalline silicon film 31 is made to remain selectively by photoetching method. The field oxide film 2 is selectively etched away, and a buffer oxide film 4 is formed. Then, <+>B<11> ions are implanted, and an upper part other than the polycrystalline silicon film 3 is covered by an ion- implantation resisting material 10. Ions of V-group inactive atoms are implanted. After heat treatment in an nitrogen atmosphere, a silicon nitride film 6 and an Al electrode 7 are formed. Then, the particle diameter of the crystal of the polycrystalline silicon film 3 becomes 3000Angstrom or more. Thus, local disappearance of the polycrystalline silicon during the electrode processes can be extremely reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は多結晶シリコンとAl(アル2ニウム)あるい
はA1合金が直接接触する構造を有する半導体装置及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device having a structure in which polycrystalline silicon and Al (aluminum) or an Al alloy are in direct contact with each other, and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

この種の半導体装置及°びその製造方法の従来例を第6
図に示す。即ち第6図(ハ))に示すようへ半導体基板
l上のフィールド酸化膜2上に、不純物無添加の多結晶
シリコン膜3を形成し、これを写真蝕刻法により選択的
に残す。しかる後にフィールド酸化膜2を選択的にエツ
チングし、抵抗形成に必要なり1mのイオンインプラン
テーク1ンのためのバッファ酸化膜4を形成する。
Conventional examples of this type of semiconductor device and its manufacturing method are described in the sixth section.
As shown in the figure. That is, as shown in FIG. 6(c), an impurity-free polycrystalline silicon film 3 is formed on the field oxide film 2 on the semiconductor substrate l, and is selectively left by photolithography. Thereafter, the field oxide film 2 is selectively etched to form a buffer oxide film 4 for an ion implant take 1 of 1 m, which is necessary for forming a resistor.

次に第6図(C)に示される如く B のイオンインプ
ランテーシ璽ンを、例えば加速電圧1!!v=50ka
V 、  ドーズ量Qdx&0xlO”m  で行ナウ
Next, as shown in FIG. 6(C), the ion implantation voltage of B is applied, for example, at an accelerating voltage of 1! ! v=50ka
V, dose amount Qdx & 0xlO”m and row now.

しかる後に熱処理を行なって活性化させ、多結晶シリコ
ン抵抗3と単結晶シリコン抵抗5を併せて形成する。次
に第6図(e) K示される如くシリコン窒化膜6を形
成してから、電極形成用窓を形成後、電極rを形成し、
400〜500℃の温度で熱処理を行なう亀のである。
Thereafter, a heat treatment is performed to activate the resistor, thereby forming a polycrystalline silicon resistor 3 and a single crystal silicon resistor 5 together. Next, as shown in FIG. 6(e) K, a silicon nitride film 6 is formed, an electrode formation window is formed, and an electrode r is formed.
It is a turtle that undergoes heat treatment at a temperature of 400 to 500 degrees Celsius.

ところが上記従来例には、次のような問題点がある。第
6図(b)は第6図(a)のA部分の拡大図である。こ
の図に示されるように、多結晶シリコン被着後の多結晶
シリコンの粒径dl* 1200λで、この粒径はBl
lイオンインプランテーシ璽ン、更に1000℃の熱処
理を経た後も、第6図(d)に示すように多結晶シリコ
ンの粒径d。
However, the above conventional example has the following problems. FIG. 6(b) is an enlarged view of portion A in FIG. 6(a). As shown in this figure, the grain size of polycrystalline silicon after depositing polycrystalline silicon is dl* 1200λ, and this grain size is Bl
Even after ion implantation and further heat treatment at 1000°C, the grain size d of polycrystalline silicon remains unchanged as shown in FIG. 6(d).

中1500λ程度である。第6図(d)は第6図(C)
のB部分の拡大図である。この粒径のま\の状態でAl
あるいFiA7合金の電極形成を行ない、低温(400
〜500℃)の熱処理を行なうと、多結晶シリコン3中
のシリコンは、該シリコンに接しているM1中へ固相拡
散し、AIの粒界に析出する。この現象は、その温度に
おけるM中のシリコンの同容限界まで継続しておこり、
最終的にはこの多結晶シリコンは消失する。第6図(e
)中8は多結晶シリコン析出領域、9は多結晶シリコン
消失領域である・従って単結晶シリコンとAl合金との
コンタクト抵抗を最小にする最適条件(例えば450℃
窒素雰囲気中で30分間)にて熱処理を行なうと、多結
晶シリコン中のシリコンの局部的消失が起こり、多結晶
シリコン3とAt合金7とのコンタクト抵抗が増大し、
抵抗形成の均−性等が悪化する。この現象が更に進むと
、抵抗の断線も生じるものでめった。
It is about 1500λ in the middle. Figure 6(d) is Figure 6(C)
It is an enlarged view of part B of . At this particle size, Al
Alternatively, electrodes of FiA7 alloy are formed and heated at low temperature (400℃).
When heat treatment is performed at a temperature of 500 DEG C.), the silicon in the polycrystalline silicon 3 diffuses into the M1 in contact with the silicon and precipitates at the grain boundaries of the AI. This phenomenon continues until the isocapacity limit of silicon in M at that temperature.
Eventually this polycrystalline silicon disappears. Figure 6 (e
), 8 is a polycrystalline silicon precipitation region, and 9 is a polycrystalline silicon disappearance region. Therefore, the optimum conditions for minimizing the contact resistance between single crystal silicon and Al alloy (for example, 450°C
When heat treatment is performed for 30 minutes in a nitrogen atmosphere, silicon in the polycrystalline silicon locally disappears, and the contact resistance between the polycrystalline silicon 3 and the At alloy 7 increases.
The uniformity of resistance formation deteriorates. If this phenomenon progressed further, the resistor would become disconnected, which was rare.

〔発明の目的〕。[Object of the invention].

本発明は上記実情に鑑みてなされたもので、多結晶シリ
コン中のシリコンのAI中への固相溶出、多結晶シリコ
ンの消失を防止し、均−性曳好で高精度の多結晶シリコ
ン抵抗体が得られる半導体装置及びその製造方法を提供
しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it prevents the solid phase elution of silicon in polycrystalline silicon into AI and the disappearance of polycrystalline silicon, and provides a highly accurate polycrystalline silicon resistor with good uniformity. The purpose of this invention is to provide a semiconductor device and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明は、例えば多結晶シリコンの形成温度を650℃
以上とし、該多結晶シリコンに抵抗形成に必要なイオン
注入後に、V族の不活性イオンの注入を行ない、アニー
ルして多結晶シリコンの粒径を3000λ以上とするこ
とにより、これと接するAI中へのシリコンの溶出を低
減させ、高精度の多結晶シリコン抵抗体を形成できるよ
うにしたものである。
In the present invention, for example, the formation temperature of polycrystalline silicon is set to 650°C.
After the ion implantation necessary for forming a resistor into the polycrystalline silicon, inert ions of group V are implanted and annealed to make the grain size of the polycrystalline silicon 3000λ or more. This reduces the elution of silicon into the silicon, making it possible to form highly accurate polycrystalline silicon resistors.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の一実施例を説明する。第1
図は同実施例の工程図であるが、これは第6図のものに
対応させた場合の例であるから、対応個所には同一符号
を用いる。第1図(a)に示される如く、半導体基板1
上のフィールド酸化膜2上に不純物無添加多結晶シリコ
ン膜3tを形成する。この時の多結晶シリコン膜形成温
度は650℃以上とする。次に写真蝕刻法によシ、選択
的に多結晶シリコン膜3□を残もしかる後にフィールド
酸化膜2を選択的にエツチング除去し、抵抗形成に必要
なバッファ酸化膜4を形成する。次に第1図(b)に示
される如く十B11のイオン注入を、例えば加速電圧g
v=50keV 、  ドーズ量Qd= 5.OX 1
0” cm  で行なう。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a process diagram of the same embodiment, but since this is an example corresponding to the one in FIG. 6, the same reference numerals are used for corresponding parts. As shown in FIG. 1(a), a semiconductor substrate 1
An impurity-free polycrystalline silicon film 3t is formed on the upper field oxide film 2. The temperature for forming the polycrystalline silicon film at this time is 650° C. or higher. Next, by photolithography, the polycrystalline silicon film 3□ is selectively left, and then the field oxide film 2 is selectively etched away to form a buffer oxide film 4 necessary for forming a resistor. Next, as shown in FIG. 1(b), ion implantation of 10B11 is carried out at an acceleration voltage of g
v=50keV, dose amount Qd=5. OX1
Perform at 0” cm.

次に第1図(C)に示される如く、抵抗形成予定の多結
晶シリコン膜31以外の上部を、耐イオン注入性材料(
例えば感光性樹脂レジスト)lOで覆う。しかる後にV
族の不活性原子(例えば” H34)をイオン注入する
。この時のイオン注入条件は、効果及び生産性を考慮し
、加速電圧Ey=5QkeV、)’−xJIQa=1.
0xlQ”e−”にて行なう。更に B ■イオン注入
領域の電気的活性化のため、1000℃窒素雰囲気にて
30分間熱処理を行なう。次に第1図(d)の如く窒化
シリコン膜6を形成してから、電極形成用窓を形成して
電極1を形成し、その後450℃、窒素雰囲気中で30
分間熱処理を行なうものである。
Next, as shown in FIG. 1C, the upper part of the film other than the polycrystalline silicon film 31 where the resistor is to be formed is covered with an ion implantation resistant material (
For example, cover with photosensitive resin resist (1O). Then V
Inert atoms of the group (for example, H34) are ion-implanted.The ion-implantation conditions at this time are: acceleration voltage Ey=5QkeV, )'-xJIQa=1.
Performed at 0xlQ"e-". Furthermore, heat treatment is performed for 30 minutes at 1000° C. in a nitrogen atmosphere to electrically activate the ion-implanted region. Next, as shown in FIG. 1(d), a silicon nitride film 6 is formed, an electrode formation window is formed, and an electrode 1 is formed.
Heat treatment is performed for a minute.

ところで第4図に示すように、多結晶シリコン膜の粒径
と多結晶シリコンの消失数をみた場合、粒径がaooo
i以下に表ると消失数は増加し、従来技術の1000〜
1500λの場合、その消失数は100ケ(1200μ
m冨当り)に4達する。また第5図に示すように、消失
数が100ケ(1200μが当り)近くになると、近接
部どうしの4μm#Aの抵抗差ΔRは80〜100gと
なり、ばらつきは大きくなる。
By the way, as shown in FIG. 4, when looking at the grain size of the polycrystalline silicon film and the number of polycrystalline silicon disappearing, the grain size is aooo
When expressed below i, the number of disappearances increases, compared to 1000 in the conventional technology.
In the case of 1500λ, the number of disappearances is 100 (1200μ
(per m) reaches 4. Further, as shown in FIG. 5, when the number of disappearances approaches 100 (1200 μm hits), the resistance difference ΔR of 4 μm #A between adjacent portions becomes 80 to 100 g, and the dispersion becomes large.

これに対し第2図に示すように、多結晶シリコン膜3、
のデポジション温度を650℃以上とすることにより、
デポジション後のイニシャル粒径は150oXが維持で
きる。更K  Bllのイオン注入後に N14のイオ
ン注入を行ない、1000℃の窒素雰囲気中で30分間
熱処理を行なった場合の粒径と+N14のドーズtQd
の関係を第3図に示している。この図から分るように、
+N14のQd=LOXIO”Ql)−”にて粒径〉3
000人が形成される。従って上述したように、多結晶
シリコンの粒径を3000人以上とすることによシ、電
極工程での多結晶シリコンの局部消失は激減し、高f#
度の多結晶シリコン抵抗の形成が可能となるものである
On the other hand, as shown in FIG.
By setting the deposition temperature to 650°C or higher,
The initial particle size after deposition can be maintained at 150oX. Further, particle size and +N14 dose tQd when N14 ion implantation is performed after K Bll ion implantation and heat treatment is performed for 30 minutes in a nitrogen atmosphere at 1000°C.
The relationship is shown in Figure 3. As you can see from this figure,
+N14 Qd=LOXIO"Ql)-" particle size>3
000 people are formed. Therefore, as mentioned above, by setting the grain size of polycrystalline silicon to 3000 or more, the local loss of polycrystalline silicon in the electrode process is drastically reduced, and high f#
This makes it possible to form a polycrystalline silicon resistor with a high degree of resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、多結晶シリコン中の
シリコンのAl中への固相溶出、多結晶シリコンの消失
を防止し、均一性良好で高精度の多結晶シリコン層が得
られるものである。
As explained above, according to the present invention, solid-phase elution of silicon in polycrystalline silicon into Al and disappearance of polycrystalline silicon can be prevented, and a polycrystalline silicon layer with good uniformity and high precision can be obtained. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程図、第2図は多結
晶シリコン堆積温度と粒径の関係を示す特性図、第3図
は Nt4ドーズ量と粒径の関係を示す特性図、第4図
は粒径と多結晶シリモノ消失数の関係を示す特性図、第
5図は多結晶シリコン消失数と抵抗Stの関係を示す特
性図、第6図は従来装置の製造工程図である。 l・・・半導体基板、2・・・フィールド酸化膜、3m
・・・多結晶シリコン膜、4・・・バッファ酸化膜、5
・・・単結晶シリコン抵抗層、1・・・AI!電極、1
0・・・感光性樹脂層。
Figure 1 is a manufacturing process diagram of an embodiment of the present invention, Figure 2 is a characteristic diagram showing the relationship between polycrystalline silicon deposition temperature and grain size, and Figure 3 is a characteristic diagram showing the relationship between Nt4 dose and grain size. , Figure 4 is a characteristic diagram showing the relationship between the grain size and the number of polycrystalline silicon vanishes, Figure 5 is a characteristic diagram showing the relationship between the number of polycrystalline silicon vanishes and resistance St, and Figure 6 is a manufacturing process diagram of a conventional device. be. l...Semiconductor substrate, 2...Field oxide film, 3m
...Polycrystalline silicon film, 4...Buffer oxide film, 5
...Single crystal silicon resistance layer, 1...AI! electrode, 1
0...Photosensitive resin layer.

Claims (3)

【特許請求の範囲】[Claims] (1)粒径が3000Å以上の多結晶シリコン層と、該
層と接するAlあるいはAl合金層とを具備したことを
特徴とする半導体装置。
(1) A semiconductor device comprising a polycrystalline silicon layer with a grain size of 3000 Å or more and an Al or Al alloy layer in contact with the layer.
(2)多結晶シリコン層を形成する工程と、前記多結晶
シリコン層にV族の電気的に不活性な原子をイオン注入
し前記多結晶シリコン層の粒径を3000Å以上にする
工程と、前記多結晶シリコンに接するAlあるいはAl
合金層を形成する工程とを具備したことを特徴とする半
導体装置の製造方法。
(2) forming a polycrystalline silicon layer; ion-implanting electrically inactive group V atoms into the polycrystalline silicon layer to increase the grain size of the polycrystalline silicon layer to 3000 Å or more; Al or Al in contact with polycrystalline silicon
1. A method for manufacturing a semiconductor device, comprising the step of forming an alloy layer.
(3)前記多結晶シリコンを形成する温度は650℃以
上であることを特徴とする特許請求の範囲第2項に記載
の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 2, wherein the temperature at which the polycrystalline silicon is formed is 650° C. or higher.
JP6446585A 1985-03-28 1985-03-28 Semiconductor device and manufacture thereof Pending JPS61222248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6446585A JPS61222248A (en) 1985-03-28 1985-03-28 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6446585A JPS61222248A (en) 1985-03-28 1985-03-28 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61222248A true JPS61222248A (en) 1986-10-02

Family

ID=13259005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6446585A Pending JPS61222248A (en) 1985-03-28 1985-03-28 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61222248A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715463A (en) * 1980-06-30 1982-01-26 Ibm Method of forming contact for double polysilicon semiconductor device
JPS57102070A (en) * 1980-12-17 1982-06-24 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715463A (en) * 1980-06-30 1982-01-26 Ibm Method of forming contact for double polysilicon semiconductor device
JPS57102070A (en) * 1980-12-17 1982-06-24 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPS61222248A (en) Semiconductor device and manufacture thereof
JPS58103124A (en) Manufacture of semiconductor device
JPS62140451A (en) Manufacture of polycrystalline silicon resistor and wiring
JPS59161857A (en) Semiconductor device wiring and resistor therefor
JPH02283016A (en) Forming method of semiconductor layer containing boron
JPS61105870A (en) Manufacture of thin film transistor
JP3067340B2 (en) Semiconductor device
US6818495B1 (en) Method for forming high purity silicon oxide field oxide isolation region
JPH01268047A (en) Formation of polysilicon resistor
JPS58103153A (en) Manufacture of semiconductor device
JP2875258B2 (en) Semiconductor device and manufacturing method thereof
JPS5891670A (en) Manufacture of semiconductor device
JPH069201B2 (en) Electrodes and wiring for semiconductor devices
JPH01165156A (en) Semiconductor device
JPS603126A (en) Formation of insulating layer
JPH0682787B2 (en) Method for manufacturing semiconductor device
JPH0349230A (en) Semiconductor device and manufacture thereof
JPS6240722A (en) Manufacture of semiconductor device
JPH02109337A (en) Manufacture of semiconductor device
JPS6455846A (en) Semiconductor device
JPS59108354A (en) Manufacture of semiconductor device
JPH08250661A (en) Method for making polycrystalline silicon thin film amorphous and manufacture of polycrystalline silicon thin film resistor which uses the method
JPS63151064A (en) Manufacture of semiconductor device
JPS60182137A (en) Manufacture of semiconductor device
JPS61116833A (en) Manufacture of semiconductor device